Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Oskarsson, Hanna
    et al.
    Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences.
    Wiklund, Ann-Kristin Eriksson
    Stockholm University, Faculty of Science, Department of Applied Environmental Science (ITM).
    Thorsén, Gunnar
    Stockholm University, Faculty of Science, Department of Analytical Chemistry.
    Danielsson, Gabriela
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Kumblad, Linda
    Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences.
    Community Interactions Modify the Effects of Pharmaceutical Exposure: A Microcosm Study on Responses to Propranolol in Baltic Sea Coastal Organisms2014In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 9, no 4, article id e93774Article in journal (Refereed)
    Abstract [en]

    This study investigated the uptake and effects of a common human pharmaceutical, propranolol, on the structure and function of a coastal Baltic Sea model community consisting of macroalga (Ceramium tenuicorne), mussels (Mytilus edulis trossulus), amphipods (Gammarus spp.), water and sediment. The most sensitive species, the mussel, was affected to the same extent as in previous single species studies, while the effects on the amphipod and alga were smaller or even positive compared to experiments performed in less complex test systems. The observed cascade of beneficial effects was a result of inter-specific species interactions that buffered for more severe effects. The poor condition of the mussel led to a feeding shift from alga to mussel by the amphipods. The better food quality, due to the dietary shift, counteracted the effects of the exposure. Less amphipod grazing, together with increased levels of nutrients in the water was favourable for the alga, despite the negative effects of propranolol. This microcosm study showed effects on organisms on different organizational levels as well as interactions among the different components resulting in indirect exposure effects of both functional and structural nature. The combination of both direct and indirect effects would not have been detected using simpler single- or even two-species study designs. The observed structural changes would in the natural environment have a long-term influence on ecosystem function, especially in a low-biodiversity ecosystem like the Baltic Sea.

  • 2. Tedesco, Sara
    et al.
    Bayat, Narges
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Danielsson, Gabriela
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Buque, Xabier
    Aspichueta, Patricia
    Fresnedo, Olatz
    Cristoabl, Susana
    Proteomic and lipidomic analysis of primary mouse hepatocytes exposed tometal and metal oxide nanoparticles2015In: Journal of Integrated Omics, ISSN 2182-0287, Vol. 5, no 1Article in journal (Refereed)
    Abstract [en]

    The global analysis of the cellular lipid and protein content upon exposure to metal and metal oxide nanoparticles (NPs) can provide an overview of the possible impact of exposure. Proteomic analysis has been applied to understand the nanoimpact however the relevance of the alteration on the lipidic profile has been underestimated. In our study, primary mouse hepatocytes were treated with ultra-small (US) TiO2-USNPs as well as ZnO-NPs, CuO-NPs and Ag-NPs. The protein extracts were analysed by 2D-DIGE and quantified by imaging software and the selected differentially expressed proteins were identified by nLC-ESI-MS/MS. In parallel, lipidomic analysis of the samples was performed using thin layer chromatography (TLC) and analyzed by imaging software. Our findings show an overall ranking of the nanoimpact at the cellular and molecular level: TiO2-USNPs<ZnO-NPs<Ag-NPs<CuO-NPs. CuO-NPs and Ag-NPs were cytotoxic while ZnO-NPs and CuO-NPs had oxidative capacity. TiO2-USNPs did not have oxidative capacity and were not cytotoxic.  The most common cellular impact of the exposure was the down-regulation of proteins. The proteins identified were involved in urea cycle, lipid metabolism, electron transport chain, metabolism signaling, cellular structure and we could also identify nuclear proteins. CuO-NPs exposure decreased phosphatidylethanolamine and phosphatidylinositol and caused down-regulation of electron transferring protein subunit beta. Ag-NPs exposure caused increased of total lipids and triacylglycerol and decrease of sphingomyelin. TiO2-USNPs also caused decrease of sphingomyelin as well as up-regulation of ATP synthase and electron transferring protein alfa. ZnO-NPs affected the proteome in a concentration-independent manner with down-regulation of RNA helicase.  ZnO-NPs exposure did not affect the cellular lipids. To our knowledge this work represents the first integrated proteomic and lipidomic approach to study the effect of NPs exposure to primary mouse hepatocytes in vitro.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf