Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Chen, Yuanying
    et al.
    Stockholm University, Faculty of Science, Department of Physical Geography. Royal Institute of Technology (KTH), Sweden.
    Vigouroux, Guillaume
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Bring, Arvid
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Cvetkovic, Vladimir
    Destouni, Georgia
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Dominant Hydro-Climatic Drivers of Water Temperature, Salinity, and Flow Variability for the Large-Scale System of the Baltic Coastal Wetlands2019In: Water, ISSN 2073-4441, E-ISSN 2073-4441, Vol. 11, no 3, article id 552Article in journal (Refereed)
    Abstract [en]

    For the large-scale coastal wetland system of the Baltic Sea, this study develops a methodology for investigating if and to what degree the variability and changes in certain hydro-climatic drivers control key coastal-marine physical conditions. The studied physical conditions include: (a) water temperature, (b) water salinity, and (c) flow structures (magnitudes and directions of flows between marine basins and the associated coastal zones and wetlands). We use numerical simulations of three hydro-climatically distinct cases to investigate the variations in hydro-climatic drivers and the resulting physical conditions (a-c) among the cases. The studied hydro-climatic forcing variables are: net surface heat flux, wind conditions, saltwater influx from the North Sea, and freshwater runoff from land. For these variables, the available observation-based data show that the total runoff from land is significantly and positively correlated with precipitation on the sea itself, and negatively correlated with saltwater influx from the North Sea to the Baltic Sea. Overall, the physical condition (a-c) variability in the Baltic Sea and its coastal zones is found to be pairwise well-explained by simulation case differences as follows: (a) Net heat flux is a main control of sea water temperature. (b) Runoff from land, along with the correlated salt water influx from the North Sea, controls average sea salinity; with the variability of local river discharges shifting some coastal zones to deviate from the average sea condition. (c) Wind variability and change control the Baltic Sea flow structure, primarily in terms of flow magnitude and less so in terms of flow direction. For specific coastal wetland zones, considerable salinity differences from average Baltic Sea conditions (due to variability in local river discharges) are found for the coasts of Finland and Estonia, while the coastal wetland zones of south-eastern Sweden, and of Estonia and Latvia, emerge as particularly sensitive to wind shifts.

  • 2.
    Jaramillo, Fernando
    et al.
    Stockholm University, Faculty of Science, Department of Physical Geography. Stockholm University, Faculty of Science, Stockholm Resilience Centre. Stockholm University, Faculty of Science, Stockholm University Baltic Sea Centre.
    Desormeaux, Amanda
    Hedlund, Johanna
    Stockholm University, Faculty of Science, Stockholm Resilience Centre.
    Jawitz, James W.
    Clerici, Nicola
    Piemontese, Luigi
    Stockholm University, Faculty of Science, Stockholm Resilience Centre.
    Alexandra Rodríguez-Rodriguez, Jenny
    Adolfo Anaya, Jesús
    Blanco-Libreros, Juan F.
    Borja, Sonia
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Celi, Jorge
    Chalov, Sergey
    Chun, Kwok Pan
    Cresso, Matilda
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Destouni, Georgia
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Dessu, Shimelis Behailu
    Di Baldassarre, Giuliano
    Downing, Andrea
    Stockholm University, Faculty of Science, Stockholm Resilience Centre.
    Espinosa, Luisa
    Ghajarnia, Navid
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Girard, Pierre
    Gutiérrez, Álvaro G.
    Hansen, Amy
    Hu, Tengfei
    Jarsjö, Jerker
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Kalantary, Zahra
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Labbaci, Adnane
    Licero-Villanueva, Lucia
    Livsey, John
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Machotka, Ewa
    Stockholm University, Faculty of Humanities, Department of Asian, Middle Eastern and Turkish Studies.
    McCurley, Kathryn
    Palomino-Ángel, Sebastián
    Pietron, Jan
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Price, René
    Ramchunder, Sorain J.
    Ricaurte-Villota, Constanza
    Ricaurte, Luisa Fernanda
    Dahir, Lula
    Rodríguez, Erasmo
    Salgado, Jorge
    Sannel, A. Britta K.
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Carolina Santos, Ana
    Seifollahi-Aghmiuni, Samaneh
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Sjöberg, Ylva
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Sun, Lian
    Stockholm University, Faculty of Science, Department of Physical Geography. Beijing Normal University, China.
    Thorslund, Josefin
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Vigouroux, Guillaume
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Wang-Erlandsson, Lan
    Stockholm University, Faculty of Science, Stockholm Resilience Centre.
    Xu, Diandian
    Stockholm University, Faculty of Science, Department of Physical Geography. Hohai University, China.
    Zamora, David
    Ziegler, Alan D.
    Åhlén, Imenne
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Priorities and Interactions of Sustainable Development Goals (SDGs) with Focus on Wetlands2019In: Water, ISSN 2073-4441, E-ISSN 2073-4441, Vol. 11, no 3, article id 619Article in journal (Refereed)
    Abstract [en]

    Wetlands are often vital physical and social components of a country's natural capital, as well as providers of ecosystem services to local and national communities. We performed a network analysis to prioritize Sustainable Development Goal (SDG) targets for sustainable development in iconic wetlands and wetlandscapes around the world. The analysis was based on the information and perceptions on 45 wetlandscapes worldwide by 49 wetland researchers of the Global Wetland Ecohydrological Network (GWEN). We identified three 2030 Agenda targets of high priority across the wetlandscapes needed to achieve sustainable development: Target 6.3-Improve water quality; 2.4-Sustainable food production; and 12.2-Sustainable management of resources. Moreover, we found specific feedback mechanisms and synergies between SDG targets in the context of wetlands. The most consistent reinforcing interactions were the influence of Target 12.2 on 8.4-Efficient resource consumption; and that of Target 6.3 on 12.2. The wetlandscapes could be differentiated in four bundles of distinctive priority SDG-targets: Basic human needs, Sustainable tourism, Environmental impact in urban wetlands, and Improving and conserving environment. In general, we find that the SDG groups, targets, and interactions stress that maintaining good water quality and a wise use of wetlandscapes are vital to attaining sustainable development within these sensitive ecosystems.

  • 3.
    Vigouroux, Guillaume
    et al.
    Stockholm University, Faculty of Science, Department of Physical Geography. Royal Institute of Technology (KTH), Sweden.
    Destouni, Georgia
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Jönsson, A.
    Cvetkovic, V.
    A scalable dynamic characterisation approach for water quality management in semi-enclosed seas and archipelagos2019In: Marine Pollution Bulletin, ISSN 0025-326X, E-ISSN 1879-3363, Vol. 139, p. 311-327Article in journal (Refereed)
    Abstract [en]

    In semi-enclosed seas, eutrophication may affect both the coastal waters and the whole sea. We develop and test a modelling approach that can account for nutrient loads from land as well as for influences and feedbacks on water quality across the scales of a whole semi-enclosed sea and its coastal zones. We test its applicability in the example cases of the Baltic Sea and one of its local archipelagos, the Archipelago Sea. For the Baltic Sea scale, model validation shows good representation of surface water quality dynamics and a generally moderate model performance for deeper waters. For the Archipelago Sea, management scenario simulations show that successful sea measures may have the most important effects on coastal water quality. This highlights the need to consistently account for whole-sea water-quality dynamics and management effects, in addition to effects of land drivers, in modelling for characterisation and management of local water quality.

1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf