Change search
Refine search result
1 - 27 of 27
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Bohm, Christian
    et al.
    Stockholm University, Faculty of Science, Department of Physics.
    Burgess, Thomas
    Stockholm University, Faculty of Science, Department of Physics.
    Hulth, Per Olof
    Stockholm University, Faculty of Science, Department of Physics.
    Hultqvist, Klas
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Johansson, Henrik
    Stockholm University, Faculty of Science, Department of Physics.
    Seo, Seon-Hee
    Stockholm University, Faculty of Science, Department of Physics.
    Walck, Christian
    Stockholm University, Faculty of Science, Department of Physics.
    Wikström, Gustav
    Stockholm University, Faculty of Science, Department of Physics.
    Limits on a Muon Flux from Neutralino Annihilations in the Sun with the IceCube 22-string Detector2009In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 102, p. 201302-Article in journal (Refereed)
    Abstract [en]

    A search for muon neutrinos from neutralino annihilations in the Sun has been performed with the IceCube 22-string neutrino detector using data collected in 104.3 days of live time in 2007. No excess over the expected atmospheric background has been observed. Upper limits have been obtained on the annihilation rate of captured neutralinos in the Sun and converted to limits on the weakly interacting massive particle (WIMP) proton cross sections for WIMP masses in the range 250–5000 GeV. These results are the most stringent limits to date on neutralino annihilation in the Sun.

  • 2.
    Bohm, Christian
    et al.
    Stockholm University, Faculty of Science, Department of Physics.
    Danninger, Matthias
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Finley, Chad
    Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Faculty of Science, Department of Physics.
    Flis, Samuel
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hulth, Per-Olof
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hultqvist, Klas
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Johansson, Henrik A. B.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Seo, Seon Hee
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Walck, Christian
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Wolf, Martin
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zoll, Marcel
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    All-particle cosmic ray energy spectrum measured with 26 IceTop stations2013In: Astroparticle physics, ISSN 0927-6505, E-ISSN 1873-2852, Vol. 44, p. 40-58Article in journal (Refereed)
    Abstract [en]

    We report on a measurement of the cosmic ray energy spectrum with the IceTop air shower array, the surface component of the IceCube Neutrino Observatory at the South Pole. The data used in this analysis were taken between June and October, 2007, with 26 surface stations operational at that time, corresponding to about one third of the final array. The fiducial area used in this analysis was 0.122 km(2). The analysis investigated the energy spectrum from 1 to 100 PeV measured for three different zenith angle ranges between 0 degrees and 46 degrees. Because of the isotropy of cosmic rays in this energy range the spectra from all zenith angle intervals have to agree. The cosmic-ray energy spectrum was determined under different assumptions on the primary mass composition. Good agreement of spectra in the three zenith angle ranges was found for the assumption of pure proton and a simple two-component model. For zenith angles theta < 30 degrees, where the mass dependence is smallest, the knee in the cosmic ray energy spectrum was observed at about 4 PeV, with a spectral index above the knee of about -3.1. Moreover, an indication of a flattening of the spectrum above 22 PeV was observed.

  • 3.
    Bohm, Christian
    et al.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Danninger, Matthias
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Finley, Chad
    Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Faculty of Science, Department of Physics.
    Hulth, Per-Olof
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hultqvist, Klas
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Johansson, Henrik A. B.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Seo, Seon Hee
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Walck, Christian
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zoll, Marcel
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    SEARCHES FOR PERIODIC NEUTRINO EMISSION FROM BINARY SYSTEMS WITH 22 AND 40 STRINGS OF ICECUBE2012In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 748, no 2, p. 118-Article in journal (Refereed)
    Abstract [en]

    In this paper, we present the results of searches for periodic neutrino emission from a catalog of binary systems. Such modulation, observed in the photon flux, would be caused by the geometry of these systems. In the analysis, the period is fixed by these photon observations, while the phase and duration of the neutrino emission are treated as free parameters to be fit with the data. If the emission occurs during similar to 20% or less of the total period, this analysis achieves better sensitivity than a time-integrated analysis. We use the IceCube data taken from 2007 May 31 to 2008 April 5 with its 22 string configuration and from 2008 April 5 to 2009 May 20 with its 40 string configuration. No evidence for neutrino emission is found, with the strongest excess occurring for Cygnus X-3 at 2.1 sigma significance after accounting for trials. Neutrino flux upper limits for both periodic and time-integrated emission are provided.

  • 4.
    Bohm, Christian
    et al.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Danninger, Matthias
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Finley, Chad
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hulth, Per-Olof
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hultqvist, Klas
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Johansson, Henrik
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Seo, Seon Hee
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Walck, Christian
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zoll, Marcel
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    The design and performance of icecube deepcore2012In: Astroparticle physics, ISSN 0927-6505, E-ISSN 1873-2852, Vol. 35, no 10, p. 615-624Article in journal (Refereed)
    Abstract [en]

    The IceCube neutrino observatory in operation at the South Pole, Antarctica, comprises three distinct components: a large buried array for ultrahigh energy neutrino detection, a surface air shower array, and a new buried component called DeepCore. DeepCore was designed to lower the IceCube neutrino energy threshold by over an order of magnitude, to energies as low as about 10 GeV. DeepCore is situated primarily 2100 m below the surface of the icecap at the South Pole, at the bottom center of the existing IceCube array, and began taking physics data in May 2010. Its location takes advantage of the exceptionally clear ice at those depths and allows it to use the surrounding IceCube detector as a highly efficient active veto against the principal background of downward-going muons produced in cosmic-ray air showers. DeepCore has a module density roughly five times higher than that of the standard IceCube array, and uses photomultiplier tubes with a new photocathode featuring a quantum efficiency about 35% higher than standard IceCube PMTs. Taken together, these features of DeepCore will increase IceCube's sensitivity to neutrinos from WIMP dark matter annihilations, atmospheric neutrino oscillations, galactic supernova neutrinos, and point sources of neutrinos in the northern and southern skies. In this paper we describe the design and initial performance of DeepCore.

  • 5.
    Bohm, Christian
    et al.
    Stockholm University, Faculty of Science, Department of Physics.
    Danninger, Matthias
    Stockholm University, Faculty of Science, Department of Physics.
    Hulth, Per Olof
    Stockholm University, Faculty of Science, Department of Physics.
    Hultqvist, Klas
    Stockholm University, Faculty of Science, Department of Physics.
    Johansson, Henrik
    Stockholm University, Faculty of Science, Department of Physics.
    Nygren, David
    Stockholm University, Faculty of Science, Department of Physics.
    Seo, Seon-Hee
    Stockholm University, Faculty of Science, Department of Physics.
    Walck, Christian
    Stockholm University, Faculty of Science, Department of Physics.
    Wikström, Gustav
    Stockholm University, Faculty of Science, Department of Physics.
    Measurement of Sound Speed vs Depth in South Pole Ice for Neutrino Astronomy2010In: Astroparticle physics, ISSN 0927-6505, E-ISSN 1873-2852, Vol. 33, p. 277-286Article in journal (Refereed)
    Abstract [en]

    We have measured the speed of both pressure waves and shear waves as a function of depth between 80 and 500 m depth in South Pole ice with better than 1% precision. The measurements were made using the South Pole Acoustic Test Setup (SPATS), an array of transmitters and sensors deployed in the ice at the South Pole in order to measure the acoustic properties relevant to acoustic detection of astrophysical neutrinos. The transmitters and sensors use piezoceramics operating at 5–25 kHz. Between 200 m and 500 m depth, the measured profile is consistent with zero variation of the sound speed with depth, resulting in zero refraction, for both pressure and shear waves. We also performed a complementary study featuring an explosive signal propagating vertically from 50 to 2250 m depth, from which we determined a value for the pressure wave speed consistent with that determined for shallower depths, higher frequencies, and horizontal propagation with the SPATS sensors. The sound speed profile presented here can be used to achieve good acoustic source position and emission time reconstruction in general, and neutrino direction and energy reconstruction in particular. The reconstructed quantities could also help separate neutrino signals from background.

  • 6.
    Fischer, D.
    et al.
    Stockholm University, Faculty of Science, Department of Physics.
    Gudmundsson, Magnus
    Stockholm University, Faculty of Science, Department of Physics.
    Berenyi, Zoltan
    Stockholm University, Faculty of Science, Department of Physics.
    Haag, Nicole
    Stockholm University, Faculty of Science, Department of Physics.
    Johansson, Henrik A. B.
    Stockholm University, Faculty of Science, Department of Physics.
    Misra, Deepankar
    Stockholm University, Faculty of Science, Department of Physics.
    Reinhed, Peter
    Stockholm University, Faculty of Science, Department of Physics.
    Kallberg, A.
    Stockholm University, Faculty of Science, The Manne Siegbahn Laboratory .
    Simonsson, Ansgar
    Stockholm University, Faculty of Science, The Manne Siegbahn Laboratory .
    Stochkel, K.
    Cederquist, Henrik
    Stockholm University, Faculty of Science, Department of Physics.
    Schmidt, H. T.
    Stockholm University, Faculty of Science, The Manne Siegbahn Laboratory .
    Importance of Thomas single-electron transfer in fast p-He collisions2010In: Physical Review A. Atomic, Molecular, and Optical Physics, ISSN 1050-2947, E-ISSN 1094-1622, Vol. 81, no 1, p. 12714-Article in journal (Refereed)
    Abstract [en]

    We report experimental angular differential cross sections for nonradiative single-electron capture in p-He collisions (p + He -> H + He+) with a separate peak at the 0.47 mrad Thomas scattering angle for energies in the 1.3-12.5 MeV range. We find that the intensity of this peak scales with the projectile velocity as v(P)(-11). This constitutes the first experimental test of the prediction from 1927 by L. H. Thomas [Proc. R. Soc. 114, 561 (1927)]. At our highest energy, the peak at the Thomas angle contributes with 13.5% to the total integrated nonradiative single-electron capture cross section.

  • 7.
    Haag, Nicole
    et al.
    Stockholm University, Faculty of Science, Department of Physics.
    Holm, Anne I. S.
    Stockholm University, Faculty of Science, Department of Physics.
    Johansson, Henrik A. B.
    Stockholm University, Faculty of Science, Department of Physics.
    Zettergren, Henning
    Stockholm University, Faculty of Science, Department of Physics.
    Schmidt, Henning T.
    Stockholm University, Faculty of Science, Department of Physics.
    Brøndsted Nielsen, Steen
    Hvelplund, Preben
    Cederquist, Henrik
    Stockholm University, Faculty of Science, Department of Physics.
    Electron capture induced dissociation of doubly protonated pentapeptides: Dependence on molecular structure and charge separation2011In: Journal of Chemical Physics, ISSN 0021-9606, E-ISSN 1089-7690, Vol. 134, no 3, p. 035102-Article in journal (Refereed)
    Abstract [en]

    We have studied electron capture induced dissociation of a set of doubly protonated pentapeptides, all composed of one lysine (K) and either four glycine (G) or four alanine (A) residues, as a function of the sequence of these building blocks. Thereby the separation of the two charges, sequestered on the N-terminal amino group and the lysine side chain, is varied. The characteristic cleavage of N–Cα bonds is observed for all peptides over the whole backbone length, with the charge carrying fragments always containing K. The resulting fragmentation patterns are very similar if G is replaced by A. In the case of [XKXXX+2H]2+ (X=A or G), a distinct feature is observed in the distribution of backbone cleavage fragments and the probability for ammonia loss is drastically reduced. This may be due to an isomer with an amide oxygen as protonation site giving rise to the observed increase in breakage at a specific site in the molecule. For the other peptides, a correlation with the distance between amide oxygen and the charge at the lysine side chain has been found. This may be an indication that it is only the contribution from this site to the charge stabilization of the amide π* orbitals which determines relative fragment intensities. For comparison, complexes with two crown ether molecules have been studied as well. The crown ether provides a shielding of the charge and prevents the peptide from folding and internal hydrogen bonding, which leads to a more uniform fragmentation behavior.

  • 8.
    Haag, Nicole
    et al.
    Stockholm University, Faculty of Science, Department of Physics.
    Liu, Bo
    Brøndsted Nielsen, Steen
    Zettergren, Henning
    Hvelplund, Preben
    Manil, Bruno
    Huber, Bernd A.
    Johansson, Henrik A. B.
    Stockholm University, Faculty of Science, Department of Physics.
    Schmidt, Henning T.
    Stockholm University, Faculty of Science, Department of Physics.
    Cederquist, Henrik
    Stockholm University, Faculty of Science, Department of Physics.
    Collisions with biomolecules embedded in smallwater clusters2009Conference paper (Refereed)
    Abstract [en]

    We have studied fragmentation of water embedded adenosine 5’-monophosphate(AMP) anions after collisions with neutral sodium atoms. At a collision energy of 50 keV,loss of water molecules from the collisionally excited cluster ions is the dominant process andfragmentation of the AMP itself is almost completely prohibited if the number of attachedwater molecules is larger than 13. However, regardless of the initial number of water moleculesattached to the ion, capture of an electron, i.e. formation of a dianion, always leads to loss ofa single hydrogen atom accompanied by evaporation of water molecules. This damaging effectbecomes more important as the size of the water cluster increases, which is just the oppositeto the protective behavior observed for collision induced dissociation (CID) without electrontransfer. For both cases, the loss of water molecules within the experimental time frame isqualitatively well described by means of a common model of an evaporative ensemble. Thesesimulations, however, indicate that characteristically different distributions of internal energyare involved in CID and electron capture induced dissociation.

  • 9.
    Holm, Anne I. S.
    et al.
    Stockholm University, Faculty of Science, Department of Physics.
    Johansson, Henrik A. B.
    Stockholm University, Faculty of Science, Department of Physics.
    Cederquist, Henrik
    Stockholm University, Faculty of Science, Department of Physics.
    Zettergren, Henning
    Stockholm University, Faculty of Science, Department of Physics.
    Dissociation and multiple ionization energies for five polycyclic aromatic hydrocarbon molecules2011In: Journal of Chemical Physics, ISSN 0021-9606, E-ISSN 1089-7690, Vol. 134, no 4, p. 044301-Article in journal (Refereed)
    Abstract [en]

    We have performed density functional theory calculations for a range of neutral, singly, and multiply charged polycyclic aromatic hydrocarbons (PAHs), and their fragmentation products for H-, H+-, C2H2-, and C2H2+-emissions. The adiabatic and vertical ionization energies follow linear dependencies as functions of charge state for all five intact PAHs (naphthalene, biphenylene, anthracene, pyrene, and coronene). First estimates of the total ionization and fragmentation cross sections in ion-PAH collisions display markedly different size dependencies for pericondensed and catacondensed PAH species, reflecting differences in their first ionization energies. The dissociation energies show that the PAHq+-molecules are thermodynamically stable for q <= 2 (naphthalene, biphenylene, and anthracene), q <= 3 (pyrene), and q <= 4 (coronene). PAHs in charge states above these limits may also survive experimental time scales due to the presence of reaction barriers as deduced from explorations of the potential energy surface regions for H+-emissions from all five PAHs and for C2H2+-emission from naphthalene - the smallest PAH.

  • 10.
    Holm, Anne I. S.
    et al.
    Stockholm University, Faculty of Science, Department of Physics.
    Zettergren, Henning
    Stockholm University, Faculty of Science, Department of Physics.
    Johansson, Henrik A. B.
    Stockholm University, Faculty of Science, Department of Physics.
    Seitz, Fabian
    Stockholm University, Faculty of Science, Department of Physics.
    Rosen, Stefan
    Stockholm University, Faculty of Science, Department of Physics.
    Schmidt, Henning T.
    Stockholm University, Faculty of Science, Department of Physics.
    Lawicki, A.
    Rangama, J.
    Rousseau, P.
    Capron, M.
    Maisonny, R.
    Adoui, L.
    Mery, A.
    Manil, B.
    Huber, B. A.
    Cederquist, Henrik
    Stockholm University, Faculty of Science, Department of Physics.
    Ions Colliding with Cold Polycyclic Aromatic Hydrocarbon Clusters2010In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 105, no 21, p. 213401-Article in journal (Refereed)
    Abstract [en]

    We report the first experimental study of ions interacting with clusters of polycyclic aromatic hydrocarbon (PAH) molecules. Collisions between 11.25 keV He-3(+) or 360 keV Xe-129(20+) and weakly bound clusters of one of the smallest PAH molecules, anthracene, show that C14H10 clusters have much higher tendencies to fragment in ion collisions than other weakly bound clusters. The ionization is dominated by peripheral collisions in which the clusters, very surprisingly, are more strongly heated by Xe20+ collisions than by He+ collisions. The appearance size is k = 15 for [C14H10](k)(2+).

  • 11.
    Johansson, Henrik
    Stockholm University, Faculty of Science, Department of Physics.
    Fragmentation of Amino Acids and Microsolvated Peptides and Nucleotides using Electrospray Ionization Tandem Mass Spectrometry2010Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis presents three different series of high energy (keV) collision experiments as well as a brief scientific introduction to the field. In the first series, protonated glycine and leucine were collided with carbon dioxide and a beam attenuation method was applied to determine their total fragmentation cross sections. A technique was also presented for how to restore the resolution in mass spectra obtained with a hemispherical electrostatic analyzer followed by a position sensitive detector (micro-channel plate equipped with a resistive anode). In the second series of experiments, Collision Induced Dissociation (CID) and Electron Capture Induced Dissociation (ECID) studies were performed on the nucleotide adenosine 5'-monophosphate anion (AMP-) in water complexes.  The two dissociation techniques revealed different fragmentation patterns and a numerical solvent evaporation model was used to interpret the spectra. It was then found that the CID and ECID processes were associated with different internal energy distributions. The third experiment concerned ECID of the protonated dipeptide glycine-alanine ([GA+H]+) in complexes with water, methanol, acetonitrile or crown ether. Depending on the attached molecular species, different ratios between the two competing channels ammonia loss and N-Cα bond cleavage were observed. Quantum chemical calculations revealed that a notable shift in the location of the captured electron occurred for the case of two acetonitriles and one crown ether compared to the bare ion and the ion in complexes with either water or methanol. Finally, this thesis will discuss developments of the electrospray ionization platform as well as the new Double ElectroStatic IonRing ExpEriment (DESIREE) facility.

  • 12.
    Johansson, Henrik A. B.
    Stockholm University, Faculty of Science, Department of Physics.
    Ionization and Fragmentation of Complex Molecules and Clusters: Biomolecules and Polycyclic Aromatic Hydrocarbons2011Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    This work deals with ionization and fragmentation of biomolecules and polycyclic aromatic hydrocarbon (PAH) molecules. They are studied in the gas phase both as isolated molecules and as weakly bound clusters. The purpose of the experimental and theoretical investigations are to elucidate charge and energy transfer and related redistribution processes, as well as fragmentation behaviors.

    The first part of this thesis presents results from studies on biomolecular ions, in particular nucleotides and peptides, which are primarily examined in electron capture induced dissociation processes. These investigations are relevant for the better understanding of radiation damage to DNA and processes involved in the sequencing of proteins. It is found that the immediate environment have a decisive influence on the fragmentation behaviors. Evaporation of surrounding molecules protect the biomolecules, but their effect on the electronic structure may also enhance or suppress different fragmentation channels.

    In the second part of the thesis, results from studies on PAH molecules are presented. Experimentally, their properties are mainly probed through collisions with atomic ion projectiles having kilo-electronvolt kinetic energies. As a widespread pollutant on Earth, and as a family of abundant molecules in space, PAHs are not only relevant from an environmental and health perspective, but they are also important for the understanding of the universe. The present results relate to the stabilities of these molecules, both in isolated form and in clusters, when heated or multiply ionized. It is found to be easier to remove several electrons from clusters of PAH molecules than from isolated PAHs, and fission processes determine their ultimate stabilities. Heated low-charge state clusters of PAHs undergo long evaporation sequences once these have started. For isolated and heated PAHs, internal structural rearrangements are demonstrated to be important in the fragmentation processes.

  • 13.
    Johansson, Henrik A. B.
    et al.
    Stockholm University, Faculty of Science, Department of Physics.
    Zettergren, Henning
    Stockholm University, Faculty of Science, Department of Physics.
    Holm, Anne I. S.
    Stockholm University, Faculty of Science, Department of Physics.
    Haag, Nicole
    Stockholm University, Faculty of Science, Department of Physics.
    Brøndsted Nielsen, S.
    Wyer, J. A.
    Kirketerp, M.-B. S.
    Støchkel, K.
    Hvelplund, P.
    Schmidt, Henning T.
    Stockholm University, Faculty of Science, Department of Physics.
    Cederquist, Henrik
    Stockholm University, Faculty of Science, Department of Physics.
    Unimolecular dissociation of anthracene and acridine cations: The importance of isomerization barriers for the C2H2 loss and HCN loss channels2011In: Journal of Chemical Physics, ISSN 0021-9606, E-ISSN 1089-7690, Vol. 135, p. 084304-Article in journal (Refereed)
    Abstract [en]

    The loss of C2H2 is a low activation energy dissociation channel for anthracene (C14H10) and acridine (C13H9N) cations. For the latter ion another prominent fragmentation pathway is the loss of HCN. We have studied these two dissociation channels by collision induced dissociation experiments of 50 keV anthracene cations and protonated acridine, both produced by electrospray ionization, in collisions with a neutral xenon target. In addition, we have carried out density functional theory calculations on possible reaction pathways for the loss of C2H2 and HCN. The mass spectra display features of multi-step processes, and for protonated acridine the dominant first step process is the loss of a hydrogen from the N site, which then leads to C2H2/HCN loss from the acridine cation. With our calculations we have identified three pathways for the loss of C2H2 from the anthracene cation, with three different cationic products: 2-ethynylnaphthalene, biphenylene, and acenaphthylene. The third product is the one with the overall lowest dissociation energy barrier. For the acridine cation our calculated pathway for the loss of C2H2 leads to the 3-ethynylquinoline cation, and the loss of HCN leads to the biphenylene cation. Isomerization plays an important role in the formation of the non-ethynyl containing products. All calculated fragmentation pathways should be accessible in the present experiment due to substantial energy deposition in the collisions.

  • 14.
    Johansson, Henrik A. B.
    et al.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zettergren, Henning
    Stockholm University, Faculty of Science, Department of Physics.
    Holm, Anne I. S.
    Stockholm University, Faculty of Science, Department of Physics.
    Seitz, Fabian
    Stockholm University, Faculty of Science, Department of Physics.
    Schmidt, Henning T.
    Stockholm University, Faculty of Science, Department of Physics.
    Rousseau, P.
    Lawicki, A.
    Capron, M.
    Domaracka, A.
    Lattouf, E.
    Maclot, S.
    Maisonny, R.
    Manil, B.
    Chesnel, J.-Y.
    Adoui, L.
    Huber, B. A.
    Cederquist, Henrik
    Stockholm University, Faculty of Science, Department of Physics.
    Ionization and fragmentation of polycyclic aromatic hydrocarbon clusters in collisions with keV ions2011In: Physical Review A. Atomic, Molecular, and Optical Physics, ISSN 1050-2947, E-ISSN 1094-1622, Vol. 84, no 4, p. 043201-Article in journal (Refereed)
    Abstract [en]

    We report on an experimental study of the ionization and fragmentation of clusters of k polycyclic aromatic hydrocarbon (PAH) molecules using anthracene, C14H10, or coronene, C24H12. These PAH clusters are moderately charged and strongly heated in small impact parameter collisions with 22.5-keV He2+ ions, after which they mostly decay in long monomer evaporation sequences with singly charged and comparatively cold monomers as dominating end products. We describe a simple cluster evaporation model and estimate the number of PAH molecules in the clusters that have to be hit by He2+ projectiles for such complete cluster evaporations to occur. Highly charged and initially cold clusters are efficiently formed in collisions with 360-keV Xe20+ ions, leading to cluster Coulomb explosions and several hot charged fragments, which again predominantly yield singly charged, but much hotter, monomer ions than the He2+ collisions. We present a simple formula, based on density-functional-theory calculations, for the ionization energy sequences as functions of coronene cluster size, rationalized in terms of the classic electrostatic expression for the ionization of a charged conducting object. Our analysis indicates that multiple electron removal by highly charged ions from a cluster of PAH molecules rapidly may become more important than single ionization as the cluster size k increases and that this is the main reason for the unexpectedly strong heating in these types of collisions.

  • 15. Lawicki, A.
    et al.
    Holm, Anne I. S.
    Stockholm University, Faculty of Science, Department of Physics.
    Rousseau, P.
    Capron, M.
    Maisonny, R.
    Maclot, S.
    Seitz, Fabian
    Stockholm University, Faculty of Science, Department of Physics.
    Johansson, Henrik A. B.
    Stockholm University, Faculty of Science, Department of Physics.
    Rosén, Stefan
    Stockholm University, Faculty of Science, Department of Physics.
    Schmidt, Henning T.
    Stockholm University, Faculty of Science, Department of Physics.
    Zettergren, Henning
    Stockholm University, Faculty of Science, Department of Physics.
    Manil, B.
    Adoui, L.
    Cederquist, Henrik
    Stockholm University, Faculty of Science, Department of Physics.
    Huber, B. A.
    Multiple ionization and fragmentation of isolated pyrene and coronene molecules in collision with ions2011In: Physical Review A. Atomic, Molecular, and Optical Physics, ISSN 1050-2947, E-ISSN 1094-1622, Vol. 83, no 2, p. 022704-Article in journal (Refereed)
    Abstract [en]

    The interaction of multiply charged ions (He2+, O3+, and Xe20+) with gas-phase pericondensed polycyclic aromatic hydrocarbon (PAH) molecules of coronene (C24H12) and pyrene (C16H10) is studied for low-velocity collisions (v <= 0.6 a.u.). The mass spectrometric analysis shows that singly and up to quadruply charged intact molecules are important reaction products. The relative experimental yields are compared with the results of a simple classical over-the-barrier model. For higher molecular charge states, the experimental yields decrease much more strongly than the model predictions due to the instabilities of the multiply charged PAH molecules. Even-odd oscillations with the number of carbon atoms, n, in the intensity distributions of the CnHx+ fragments indicate a linear chain structure of the fragments similar to those observed for ion-C60 collisions. The latter oscillations are known to be due to dissociation energy differences between even-and odd-n Cn-chain molecules. For PAH molecules, the average numbers of H atoms attached to the CnHx chains are larger for even-n reflecting acetylenic bond systems.

  • 16. Liu, B.
    et al.
    Haag, Nicole
    Stockholm University, Faculty of Science, Department of Physics.
    Johansson, Henrik
    Stockholm University, Faculty of Science, Department of Physics.
    Schmidt, Henning T.
    Stockholm University, Faculty of Science, Department of Physics.
    Cederquist, Henrik
    Stockholm University, Faculty of Science, Department of Physics.
    Brondsted Nielsen, S.
    Zettergren, Henning
    Stockholm University, Faculty of Science, Department of Physics.
    Hvelplund, P.
    Manil, B.
    Huber, B. A.
    Electron capture induced dissociation of nucleotide anions in water nanodroplets2008In: Journal of Chemical Physics, ISSN 0021-9606, E-ISSN 1089-7690, Vol. 128, no 7, p. 075102-Article in journal (Refereed)
    Abstract [en]

    We have studied the outcome of collisions between the hydrated nucleotide anion adenosine 5′-monophosphate (AMP) and sodium. Electron capture leads to hydrogen loss as well as water evaporation regardless of the initial number m of water molecules attached to the parent ion (m ⩽ 16). The yield of dianions with microsecond lifetimes increases strongly with m, which is explained from dielectric screening of the two charges by the water nanodroplet. For comparison, collision induced dissociation results in water losses with no or very little damage of the AMP molecule itself.

  • 17.
    Reinhed, Peter
    et al.
    Stockholm University, Faculty of Science, Department of Physics.
    Orbán, Andrea
    Stockholm University, Faculty of Science, Department of Physics.
    Rosén, Stefan
    Stockholm University, Faculty of Science, Department of Physics.
    Thomas, Richard
    Stockholm University, Faculty of Science, Department of Physics.
    Kashperka, Iryna
    Stockholm University, Faculty of Science, Department of Physics.
    Johansson, Henrik
    Stockholm University, Faculty of Science, Department of Physics.
    Misra, Deepankar
    Stockholm University, Faculty of Science, Department of Physics.
    Fardi, Afshin
    Brännholm, Lars
    Stockholm University, Faculty of Science, The Manne Siegbahn Laboratory .
    Björkhage, Mikael
    Stockholm University, Faculty of Science, The Manne Siegbahn Laboratory .
    Cederquist, Henrik
    Stockholm University, Faculty of Science, Department of Physics.
    Schmidt, Henning
    Stockholm University, Faculty of Science, Department of Physics.
    Cryogenic keV ion-beam storage in ConeTrap - a tool for ion-temperature control2010In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, ISSN 0168-9002, E-ISSN 1872-9576, Vol. 621, no 1-3, p. 83-90Article in journal (Refereed)
    Abstract [en]

    We have tested the ion-storage capabilities of the compact triple-electrode electrostatic ion-beam trap, ConeTrap, down to cryogenic temperatures. The low-temperature operation of this electrostatic storage device is an important test for the double electrostatic ion-ring experiment, DESIREE, which is presently under construction at Stockholm University. In the present work we measured the pressure dependent storage lifetimes of 2.5 keV He+ and 2.8 keV Ar+ ion beams in ConeTrap at temperatures down to 28 K and pressures down to 1.3·10-10 mbar. The so far longest measured ion storage lifetime using this system is 21.5±3.8 s for Ar+ ions. The present combination of ConeTrap and the cryogenic experimental chamber was recently applied in the first black-body correction-free measurement of the lifetime of the metastable He- ion at 10 K [Phys. Rev. Lett. 103, 213002(2009)].

  • 18.
    Reinhed, Peter
    et al.
    Stockholm University, Faculty of Science, Department of Physics.
    Orbán, Andrea
    Stockholm University, Faculty of Science, Department of Physics.
    Werner, Josefina
    Stockholm University, Faculty of Science, Department of Physics.
    Rosén, Stefan
    Stockholm University, Faculty of Science, Department of Physics.
    Thomas, Richard D.
    Stockholm University, Faculty of Science, Department of Physics.
    Kashperka, Iryna
    Stockholm University, Faculty of Science, Department of Physics.
    Johansson, Henrik A. B.
    Stockholm University, Faculty of Science, Department of Physics.
    Misra, Deepankar
    Stockholm University, Faculty of Science, Department of Physics.
    Brännholm, Lars
    Stockholm University, Faculty of Science, Department of Physics, The Manne Siegbahn Laboratory.
    Björkhage, Mikael
    Stockholm University, Faculty of Science, Department of Physics, The Manne Siegbahn Laboratory.
    Cederquist, Henrik
    Stockholm University, Faculty of Science, Department of Physics.
    Schmidt, Henning T.
    Stockholm University, Faculty of Science, Department of Physics.
    Precision lifetime measurements of He- in a cryogenic electrostatic ion-beam trap2009In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 103, no 21, p. 213002-Article in journal (Refereed)
    Abstract [en]

    We have developed a small purely electrostatic ion-beam trap which may be operated in thermal equilibrium at precisely controlled temperatures down to 10 K. Thus, we avoid magnetic field induced mixing of quantum states and may effectively eliminate any influence from absorption of photons from black-body radiation. We report the first correction free measurements of the lifetimes of the 1s2s2p 4PoJ state of 4He- and the high precision result 359.0±0.7 μs for the J=5/2 level. The lifetimes for the J=3/2 and J=1/2 levels are determined to be 12.3±0.5 and 7.8±1.0 μs, respectively.

  • 19. Rousseau, P.
    et al.
    Lawicki, A.
    Holm, Anne I. S.
    Stockholm University, Faculty of Science, Department of Physics.
    Capron, M.
    Maisonny, R.
    Maclot, S.
    Lattouf, E.
    Johansson, Henrik A. B.
    Stockholm University, Faculty of Science, Department of Physics.
    Seitz, Fabian
    Stockholm University, Faculty of Science, Department of Physics.
    Mery, A.
    Rangama, J.
    Zettergren, Henning
    Stockholm University, Faculty of Science, Department of Physics.
    Rosen, S.
    Stockholm University, Faculty of Science, Department of Physics.
    Schmidt, Henning
    Stockholm University, Faculty of Science, Department of Physics.
    Chesnel, J. -Y
    Domaracka, A.
    Manil, B.
    Adoui, L.
    Cederquist, Henrik
    Stockholm University, Faculty of Science, Department of Physics.
    Huber, B. A.
    Low energy ions interacting with anthracene molecules and clusters2012In: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, ISSN 0168-583X, E-ISSN 1872-9584, Vol. 279, p. 140-143Article in journal (Refereed)
    Abstract [en]

    The interaction of slow ions (nu similar to 0.4 au.) with a small polycyclic aromatic hydrocarbon, namely anthracene (C14H10), is studied in the gas-phase either with the isolated molecule or with a pure cluster target. We discuss the ionization and fragmentation of the molecule with respect to the projectile charge state, i.e. for singly charged He+ ions and for multiply charged Xe20+. ions. For the isolated C14H10, single or multiple ionization of the molecule occurs under ion impact. The (multi) cation relative yields are compared with those obtained by other ionization methods (electron and fs-laser). The molecular dissociation occurs by loss of hydrogen and small hydrocarbon molecules, leading to the formation of CnHx cations. The interaction of Xe20+ with C14H10 clusters gives surprising results, i.e. the emission of hotter monomer compared to the interaction with He+.

  • 20.
    Savage, Christopher
    et al.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Edsjö, Joakim
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bohm, Christian
    Stockholm University, Faculty of Science, Department of Physics.
    Danninger, Matthias
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Finley, Chad
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Flis, Samuel
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hulth, Per-Olof
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hultqvist, Klas
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Johansson, Henrik
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Seo, Seon Hee
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Walck, Christian
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Wolf, Martin
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zoll, Marcel
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Use of event level neutrino telescope data in global fits for theories of new physics2012In: Journal of Cosmology and Astroparticle Physics, ISSN 1475-7516, E-ISSN 1475-7516, no 11, article id 057Article in journal (Refereed)
    Abstract [en]

    We present a fast likelihood method for including event-level neutrino telescope data in parameter explorations of theories for new physics, and announce its public release as part of DarkSUSY 5.0.6. Our construction includes both angular and spectral information about neutrino events, as well as their total number. We also present a corresponding measure for simple model exclusion, which can be used for single models without reference to the rest of a parameter space. We perform a number of supersymmetric parameter scans with IceCube data to illustrate the utility of the method: example global fits and a signal recovery in the constrained minimal supersymmetric standard model (CMSSM), and a model exclusion exercise in a 7-parameter phenomenological version of the MSSM. The final IceCube detector con figuration will probe almost the entire focus-point region of the CMSSM, as well as a number of MSSM-7 models that will not otherwise be accessible to e. g. direct detection. Our method accurately recovers the mock signal, and provides tight constraints on model parameters and derived quantities. We show that the inclusion of spectral information significantly improves the accuracy of the recovery, providing motivation for its use in future IceCube analyses.

  • 21.
    Schmidt, Henning
    et al.
    Stockholm University, Faculty of Science, Department of Physics.
    Fischer, Daniel
    Stockholm University, Faculty of Science, Department of Physics.
    Berenyi, Zoltan
    Stockholm University, Faculty of Science, Department of Physics.
    Cocke, Charles Lewis
    Gudmundsson, Magnus
    Stockholm University, Faculty of Science, Department of Physics.
    Haag, Nicole
    Stockholm University, Faculty of Science, Department of Physics.
    Johansson, Henrik A. B.
    Stockholm University, Faculty of Science, Department of Physics.
    Källberg, Anders
    Stockholm University, Faculty of Science, The Manne Siegbahn Laboratory .
    Levin, Sergey B.
    Reinhed, Peter
    Stockholm University, Faculty of Science, Department of Physics.
    Sassenberg, Ulf
    Stockholm University, Faculty of Science, Department of Physics.
    Schuch, Reinhold
    Stockholm University, Faculty of Science, Department of Physics.
    Simonsson, Ansgar
    Stockholm University, Faculty of Science, The Manne Siegbahn Laboratory .
    Stöchkel, Kristian
    Cederquist, Henrik
    Stockholm University, Faculty of Science, Department of Physics.
    Evidence of Wave-Particle Duality for Single Fast Hydrogen Atoms2008In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 101, no 8, p. 083201-Article in journal (Refereed)
    Abstract [en]

    We report the direct observation of interference effects in a Young's double-slit experiment where the interfering waves are two spatially separated components of the de Broglie wave of single 1.3 MeV hydrogen atoms formed close to either target nucleus in H+ + H2 electron-transfer collisions. Quantum interference strongly influences the results even though the hydrogen atoms have a de Broglie wavelength, \lambda_dB, as small as 25 fm.

  • 22.
    Schmidt, Henning
    et al.
    Stockholm University, Faculty of Science, Department of Physics.
    Johansson, Henrik
    Stockholm University, Faculty of Science, Department of Physics.
    Thomas, Richard
    Stockholm University, Faculty of Science, Department of Physics.
    Geppert, Wolf
    Stockholm University, Faculty of Science, Department of Physics.
    Haag, Nicole
    Stockholm University, Faculty of Science, Department of Physics.
    Reinhed, Peter
    Stockholm University, Faculty of Science, Department of Physics.
    Rosén, Stefan
    Stockholm University, Faculty of Science, Department of Physics.
    Larsson, Mats
    Stockholm University, Faculty of Science, Department of Physics.
    Danared, Håkan
    Stockholm University, Faculty of Science, The Manne Siegbahn Laboratory .
    Rensfelt, K.-G
    Stockholm University, Faculty of Science, The Manne Siegbahn Laboratory .
    Liljeby, Leif
    Stockholm University, Faculty of Science, The Manne Siegbahn Laboratory .
    Bagge, Lars
    Stockholm University, Faculty of Science, The Manne Siegbahn Laboratory .
    Björkhage, Mikael
    Stockholm University, Faculty of Science, The Manne Siegbahn Laboratory .
    Blom, Mikael
    Stockholm University, Faculty of Science, The Manne Siegbahn Laboratory .
    Löfgren, Patrik
    Stockholm University, Faculty of Science, The Manne Siegbahn Laboratory .
    Källberg, Anders
    Stockholm University, Faculty of Science, The Manne Siegbahn Laboratory .
    Simonsson, Ansgar
    Stockholm University, Faculty of Science, The Manne Siegbahn Laboratory .
    Paál, Andras
    Stockholm University, Faculty of Science, The Manne Siegbahn Laboratory .
    Zettergren, Henning
    Stockholm University, Faculty of Science, Department of Physics.
    Cederquist, Henrik
    Stockholm University, Faculty of Science, Department of Physics.
    DESIREE as a new tool for interstellar ion chemistry2008In: International Journal of Astrobiology, ISSN 1473-5504, E-ISSN 1475-3006, Vol. 7, no 3-4, p. 205-208Article in journal (Refereed)
    Abstract [en]

    A novel cryogenic electrostatic storage device consisting of two ion-beam storage rings with a common straight section for studies of interactions between oppositely charged ions at low and well-defined relative velocities is under construction at Stockholm University. Here we consider the prospect of using this new tool to measure cross-sections and rate coefficients for mutual neutralization reactions of importance in interstellar ion chemistry in general and specifically in cosmic pre-biotic ion chemistry.

  • 23.
    Seitz, Fabian
    et al.
    Stockholm University, Faculty of Science, Department of Physics.
    Holm, Anne I. S.
    Stockholm University, Faculty of Science, Department of Physics.
    Zettergren, Henning
    Stockholm University, Faculty of Science, Department of Physics.
    Johansson, Henrik A. B.
    Stockholm University, Faculty of Science, Department of Physics.
    Rosén, Stefan
    Stockholm University, Faculty of Science, Department of Physics.
    Schmidt, Henning T.
    Stockholm University, Faculty of Science, Department of Physics.
    Lawicki, A.
    Rangama, J.
    Rousseau, P.
    Capron, M.
    Maisonny, R.
    Domaracka, A.
    Adoui, L.
    Mery, A.
    Manil, B.
    Huber, B. A.
    Cederquist, Henrik
    Stockholm University, Faculty of Science, Department of Physics.
    Polycyclic aromatic hydrocarbon-isomer fragmentation pathways: Case study for pyrene and fluoranthene molecules and clusters2011In: Journal of Chemical Physics, ISSN 0021-9606, E-ISSN 1089-7690, Vol. 135, no 6, p. 064302-Article in journal (Refereed)
    Abstract [en]

    We report on measurements of the ionization and fragmentation of polycyclic aromatic hydrocarbon (PAH) targets in Xe(20+) + C(16)H(10) and Xe(20+) + [C(16)H(10)](k) collisions and compare results for the two C(16)H(10) isomers: pyrene and fluoranthene. For both types of targets, i.e., for single PAH molecules isolated in vacuum or for isomerically pure clusters of one of the molecules, the resulting fragment spectra are surprisingly similar. However, we do observe weak but significant isomer effects. Although these are manifested in very different ways for the monomer and cluster targets, they both have at their roots small differences (<2.5 eV) between the total binding energies of neutral, and singly and multiply charged pyrene and fluoranthene monomers. The results will be discussed in view of the density functional theory calculations of ionization and dissociation energies for fluoranthene and pyrene. A simple classical over-the-barrier model is used to estimate cross sections for single-and multiple-electron transfer between PAHs and ions. Calculated single and multiple ionization energies, and the corresponding model PAH ionization cross sections, are given.

  • 24.
    Stockett, Mark H.
    et al.
    Stockholm University, Faculty of Science, Department of Physics.
    Zettergren, Henning
    Stockholm University, Faculty of Science, Department of Physics.
    Adoui, L.
    Alexander, J. D.
    Bērziņš,, U.
    Chen, Tao
    Stockholm University, Faculty of Science, Department of Physics.
    Gatchell, Michael
    Stockholm University, Faculty of Science, Department of Physics.
    Haag, N.
    Huber, B. A.
    Hvelplund, P.
    Johansson, A.
    Stockholm University, Faculty of Science, Department of Physics.
    Johansson, Henrik A. B.
    Stockholm University, Faculty of Science, Department of Physics.
    Kulyk, Kostiantyn
    Stockholm University, Faculty of Science, Department of Physics.
    Rosén, S.
    Rousseau, P.
    Støchkel, K.
    Schmidt, Henning
    Stockholm University, Faculty of Science, Department of Physics.
    Cederquist, Henrik
    Stockholm University, Faculty of Science, Department of Physics.
    Nonstatistical fragmentation of large molecules2014In: Physical Review A. Atomic, Molecular, and Optical Physics, ISSN 1050-2947, E-ISSN 1094-1622, Vol. 89, no 3, article id 032701Article in journal (Refereed)
    Abstract [en]

    We present experimental evidence for the dominance of prompt single-atom knockout in fragmenting collisions between large polycyclic aromatic hydrocarbon cations and He atoms at center-of-mass energies close to 100 eV. Such nonstatistical processes are shown to give highly reactive fragments. We argue that nonstatistical fragmentation is dominant for any sufficiently large molecular system under similar conditions.

  • 25. Wyer, Jean Ann
    et al.
    Cederquist, Henrik
    Stockholm University, Faculty of Science, Department of Physics.
    Haag, Nicole
    Stockholm University, Faculty of Science, Department of Physics.
    Huber, Bernd A.
    Hvelplund, Preben
    Johansson, Henrik A. B.
    Stockholm University, Faculty of Science, Department of Physics.
    Maisonny, Remy
    Bröndsted Nielsen, Steen
    Rangama, Jimmy
    Rousseau, Patrick
    Schmidt, Henning T.
    Stockholm University, Faculty of Science, Department of Physics.
    On the hydrogen loss from protonated nucleobases after electronic excitation or collisional electron capture2009In: European journal of mass spectrometry, ISSN 1469-0667, E-ISSN 1751-6838, Vol. 15, p. 681-688Article in journal (Refereed)
    Abstract [en]

    In this work, we have subjected protonated nucleobases MH+ (M = guanine, adenine, thymine, uracil and cytosine) to a range of experiments that involve high-energy (50 keV) collision induced dissociation and electron capture induced dissociation. In the latter case, both neutralisation reionisation and charge reversal were done. For the collision induced dissociation experiments, the ions interacted with O2. In neutral reionisation, caesium atoms were used as the target gas and the protonated nucleobases captured electrons to give neutrals. These were reionised to cations a microsecond later in collisions with O2. In choosing Cs as the target gas, we have assured that the first electron transfer process is favourable (by about 0.1–0.8 eV depending on the base). In the case of protonated adenine, charge reversal experiments (two Cs collisions) were also carried out, with the results corroborating those from the neutralisation reionisation experiments. We find that while collisional excitation of protonated nucleobases in O2 may lead to hydrogen loss with limited probabilities, this channel becomes dominant for electron capture events. Indeed, when sampling reionised neutrals on a microsecond timescale, we see that the ratio between MH+ and M+ is 0.2–0.4 when one electron is captured from Cs. There are differences in these ratios between the bases but no obvious correlation with recombination energies was found.

  • 26.
    Zettergren, Henning
    et al.
    Stockholm University, Faculty of Science, Department of Physics.
    Adoui, Lamri
    Bernigaud, Virgile
    Cederquist, Henrik
    Stockholm University, Faculty of Science, Department of Physics.
    Haag, Nicole
    Stockholm University, Faculty of Science, Department of Physics.
    Holm, Anne I. S.
    Stockholm University, Faculty of Science, Department of Physics.
    Huber, Bernd A.
    Hvelplund, Preben
    Johansson, Henrik A. B.
    Stockholm University, Faculty of Science, Department of Physics.
    Kadhane, Umesh
    Larsen, Mikkel Kofoed
    Liu, Bo
    Manil, Bruno
    Bröndsted Nielsen, Steen
    Panja, Subhasis
    Rangama, Jimmy
    Reinhed, Peter
    Stockholm University, Faculty of Science, Department of Physics.
    Schmidt, Henning T.
    Stockholm University, Faculty of Science, Department of Physics.
    Stöchkel, Kristian
    Electron-Capture-Induced Dissociation of Microsolvated Di- and > Tripeptide Monocations: Elucidation of Fragmentation Channels from > Measurements of Negative Ions2009In: ChemPhysChem, ISSN 1439-4235, E-ISSN 1439-7641, Vol. 10, no 9-10, p. 1619-1623Article in journal (Refereed)
    Abstract [en]

    The branching ratio between ammonia loss and NCα bond cleavage of singly charged microsolvated peptides after electron capture from cesium depends on the solvent molecule attached. Density functional calculations reveal that for [GA+H]+(CE) (G=glycine, A=alanine, CE=crown ether), the singly occupied molecular orbital of the neutral radical is located mainly on the amide group (see picture).

    The results from an experimental study of bare and microsolvated peptide monocations in high-energy collisions with cesium vapor are reported. Neutral radicals form after electron capture from cesium, which decay by H loss, NH3 loss, or NCα bond cleavage into characteristic z. and c fragments. The neutral fragments are converted into negatively charged species in a second collision with cesium and are identified by means of mass spectrometry. For protonated GA (G=glycine, A=alanine), the branching ratio between NH3 loss and NCα bond cleavage is found to strongly depend on the molecule attached (H2O, CH3CN, CH3OH, and 18-crown-6 ether (CE)). Addition of H2O and CH3OH increases this ratio whereas CH3CN and CE decrease it. For protonated AAA ([AAA+H]+), a similar effect is observed with methanol, while the ratio between the z1 and z2 fragment peaks remains unchanged for the bare and microsolvated species. Density functional theory calculations reveal that in the case of [GA+H]+(CE), the singly occupied molecular orbital is located mainly on the amide group in accordance with the experimental results.

  • 27.
    Åsman, Barbro
    et al.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bendtz, Katarina
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bohm, Christian
    Stockholm University, Faculty of Science, Department of Physics.
    Clément, Christophe
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Eriksson, Daniel
    Stockholm University, Faculty of Science, Department of Physics.
    Gellerstedt, Karl
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hellman, Sten
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Holmgren, Sven-Olof
    Stockholm University, Faculty of Science, Department of Physics.
    Johansen, Marianne
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Johansson, K. Erik
    Stockholm University, Faculty of Science, Department of Physics.
    Jon-And, Kerstin
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Kim, Hyeon Jin
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Klimek, Pawel
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Lundberg, Johan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Milstead, David A.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Moa, Torbjörn
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Ohm, Christian C.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Papadelis, Aras
    Stockholm University, Faculty of Science, Department of Physics.
    Sellden, Björn
    Stockholm University, Faculty of Science, Department of Physics.
    Silverstein, Samuel
    Stockholm University, Faculty of Science, Department of Physics.
    Sjölin, Jörgen
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Strandberg, Sara
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Tylmad, Maja
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Yang, Zhaoyu
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Search for tb Resonances in Proton-Proton Collisions at root s=7 TeV with the ATLAS Detector2012In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 109, no 8, p. 081801-Article in journal (Refereed)
    Abstract [en]

    This Letter presents a search for tb resonances in 1.04 fb(-1) of LHC proton-proton collision data collected by the ATLAS detector at a center-of-mass energy of 7 TeV. Events with a lepton, missing transverse momentum, and two jets are selected and the invariant mass of the corresponding final state is reconstructed. The search exploits the shape of the tb invariant mass distribution compared to the expected standard model backgrounds. The model of a right-handed W'(R) with standard model-like couplings is chosen as the benchmark model for this search. No statistically significant excess of events is observed in the data, and upper limits on the cross section times the branching ratio of W'(R) resonances at 95% C.L. lie in the range of 6.1-1.0 pb for W'(R) masses ranging from 0.5 to 2.0 TeV. These limits are translated into a lower bound on the allowed right-handed W'(R) mass, giving mW'(R) > 1.13 TeV at 95% C.L.

1 - 27 of 27
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf