Change search
Refine search result
1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Audusseau, Helene
    et al.
    Stockholm University, Faculty of Science, Department of Zoology.
    Nylin, Sören
    Stockholm University, Faculty of Science, Department of Zoology.
    Janz, Niklas
    Stockholm University, Faculty of Science, Department of Zoology.
    Implications of a temperature increase for host plant range: predictions for a butterfly2013In: Ecology and Evolution, ISSN 2045-7758, E-ISSN 2045-7758, Vol. 3, no 9, p. 3021-3029Article in journal (Refereed)
    Abstract [en]

    Although changes in phenology and species associations are relatively well-documented responses to global warming, the potential interactions between these phenomena are less well understood. In this study, we investigate the interactions between temperature, phenology (in terms of seasonal timing of larval growth) and host plant use in the polyphagous butterfly Polygonia c-album. We found that the hierarchy of larval performance on three natural host plants was not modified by a temperature increase as such. However, larval performance on each host plant and temperature treatment was affected by rearing season. Even though larvae performed better at the higher temperature regardless of the time of the rearing, relative differences between host plants changed with the season. For larvae reared late in the season, performance was always better on the herbaceous plant than on the woody plants. In this species, it is likely that a prolonged warming will lead to a shift from univoltinism to bivoltinism. The demonstrated interaction between host plant suitability and season means that such a shift is likely to lead to a shift in selective regime, favoring specialization on the herbaceous host. Based on our result, we suggest that host range evolution in response to temperature increase would in this species be highly contingent on whether the population undergoes a predicted shift from one to two generations. We discuss the effect of global warming on species associations and the outcome of asynchrony in rates of phenological change.

  • 2.
    Audusseau, Hélène
    Stockholm University, Faculty of Science, Department of Zoology.
    Effect of climate and land use on niche utilization and distribution of nettle-feeding  butterflies2015Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Anthropogenic changes in climate and land use are causing a dramatic erosion of biodiversity. To understand this erosion, and predict future transformations of biodiversity, we need to understand better species’ response to these changes at different spatial and temporal scales. Modeling studies have identified correlations between physical parameters of the environment and species’ distribution at large spatial scales. However, this does not accurately characterize the response of a specific species, since this does not account for the constraints arising from the biology of the species. This thesis shall combine knowledge on the biology of species obtained from laboratory experiments with modeling studies. This will allow us (i) to identify life history traits and biotic interactions that influence species’ adaptive potential, and hence, explain possible differences in species’ distribution, and (ii) to consider, not only the ecological but also the evolutionary aspects of species’ response to changes. This integrative approach is likely to improve our predictions on species’ population dynamic in a changing environment.

    I focus on a community of butterflies in Sweden (Vanessa cardui, Polygonia c-album, Aglais urticae, Aglais io, Araschnia levana) that feeds on the stinging nettle (Urtica dioica). The available knowledge on the biology of these species and their short life cycles, which allow investigations of their response to changes on a short-time scale, make them a good system to study. Among three of these species, I showed great differences in organisms’ response to variation in food nutrient content. This is a potentially important finding considering the increased use of chemical fertilizers. These differences are to a large extent explained by differences among species in their degree of host plant specialization and voltinism (paper II). Thus, life history traits determine the response of species to environmental changes, but are themselves likely to evolve in response to such changes. Climate change, for instance, may alter the phenological synchrony between plant-feeding insects and their host plants, making it necessary for the insects to evolve their host plant range in order to ensure the availability of resources during larval development (paper I & III). The biology of a species, including biotic interactions, helps to explain the observed shift in a species’ distribution and environmental niche that result from climate change. I have shown that the recent establishment of A. levana in southern Sweden has modified the niche of the resident species, A. urticae and A. io (Paper IV). Niche partitioning in this community is likely mediated by parasite-driven apparent competition.

  • 3.
    Audusseau, Hélène
    et al.
    Stockholm University, Faculty of Science, Department of Zoology. Paris-Est Créteil University, France.
    Celorio-Mancera, Maria de la Paz
    Stockholm University, Faculty of Science, Department of Zoology.
    Janz, Niklas
    Stockholm University, Faculty of Science, Department of Zoology.
    Nylin, Sören
    Stockholm University, Faculty of Science, Department of Zoology.
    Why stay in a bad relationship? The effect of local host phenology on a generalist butterfly feeding on a low-ranked host2016In: BMC Evolutionary Biology, ISSN 1471-2148, E-ISSN 1471-2148, Vol. 16, article id 144Article in journal (Refereed)
    Abstract [en]

    Background: In plant-feeding insects, the evolutionary retention of polyphagy remains puzzling. A better understanding of the relationship between these organisms and changes in the metabolome of their host plants is likely to suggest functional links between them, and may provide insights into how polyphagy is maintained. Results: We investigated the phenological change of Cynoglossum officinale, and how a generalist butterfly species, Vanessa cardui, responded to this change. We used untargeted metabolite profiling to map plant seasonal changes in both primary and secondary metabolites. We compared these data to differences in larval performance on vegetative plants early and late in the season. We also performed two oviposition preference experiments to test females' ability to choose between plant developmental stages (vegetative and reproductive) early and late in the season. We found clear seasonal changes in plant primary and secondary metabolites that correlated with larval performance. The seasonal change in plant metabolome reflected changes in both nutrition and toxicity and resulted in zero survival in the late period. However, large differences among families in larval ability to feed on C. officinale suggest that there is genetic variation for performance on this host. Moreover, females accepted all plants for oviposition, and were not able to discriminate between plant developmental stages, in spite of the observed overall differences in metabolite profile potentially associated with differences in suitability as larval food. Conclusions: In V. cardui, migratory behavior, and thus larval feeding times, are not synchronized with plant phenology at the reproductive site. This lack of synchronization, coupled with the observed lack of discriminatory oviposition, obviously has potential fitness costs. However, this opportunistic behavior may as well function as a source of potential host plant evolution, promoting for example the acceptance of new plants.

  • 4.
    Audusseau, Hélène
    et al.
    Stockholm University, Faculty of Science, Department of Zoology.
    Kolb, Gundula
    Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences.
    Janz, Niklas
    Stockholm University, Faculty of Science, Department of Zoology.
    Plant Fertilization Interacts with Life History: Variation in Stoichiometry and Performance in Nettle-Feeding Butterflies2015In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 10, no 5, article id e0124616Article in journal (Refereed)
    Abstract [en]

    Variation in food stoichiometry affects individual performance and population dynamics, but it is also likely that species with different life histories should differ in their sensitivity to food stoichiometry. To address this question, we investigated the ability of the three nettle-feeding butterflies (Aglais urticae, Polygonia c-album, and Aglais io) to respond adaptively to induced variation in plant stoichiometry in terms of larval performance. We hypothesized that variation in larval performance between plant fertilization treatments should be functionally linked to species differences in host plant specificity. We found species-specific differences in larval performance between plant fertilization treatments that could not be explained by nutrient limitation. We showed a clear evidence of a positive correlation between food stoichiometry and development time to pupal stage and pupal mass in Aglais urticae. The other two species showed a more complex response. Our results partly supported our prediction that host plant specificity affects larval sensitivity to food stoichiometry. However, we suggest that most of the differences observed may instead be explained by differences in voltinism (number of generations per year). We believe that the potential of some species to respond adaptively to variation in plant nutrient content needs further attention in the face of increased eutrophication due to nutrient leakage from human activities.

  • 5.
    Audusseau, Hélène
    et al.
    Stockholm University, Faculty of Science, Department of Zoology. Paris-Est Créteil University, France.
    Le Vaillant, Maryline
    Stockholm University, Faculty of Science, Department of Zoology.
    Janz, Niklas
    Stockholm University, Faculty of Science, Department of Zoology.
    Nylin, Sören
    Stockholm University, Faculty of Science, Department of Zoology.
    Karlsson, Bengt
    Stockholm University, Faculty of Science, Department of Zoology.
    Schmucki, Reto
    Species range expansion constrains the ecological niches of resident butterflies2017In: Journal of Biogeography, ISSN 0305-0270, E-ISSN 1365-2699, Vol. 44, no 1, p. 28-38Article in journal (Refereed)
    Abstract [en]

    Aim: Changes in community composition resulting from environmental changes modify biotic interactions and affect the distribution and density of local populations. Such changes are currently occurring in nettle-feeding butterflies in Sweden where Araschnia levana has recently expanded its range northward and is now likely to interact with resident species (Aglais urticae and Aglais io). Butterfly occurrence data collected over years and across regions enabled us to investigate how a recent range expansion of A. levana may have affected the environmental niche of resident species.

    Location: We focused on two regions of Sweden (Skane and Norrstrom) where A. levana has and has not established and two time periods (2001-2006 and 2009-2012) during its establishment in Skane.

    Methods: We performed two distinct analyses in each region using the PCA-env and the framework described in Broennimann etal. (2012). First, we described the main sources of variation in the environment. Second, in each time period and region, we characterized the realized niches of our focal species across topographic and land use gradients. Third, we quantified overlaps and differences in realized niches between and within species over time.

    Results: In Skane, A. levana has stabilized its distribution over time, while the distribution of the native species has shifted. These shifts depicted a consistent pattern of avoiding overlap between the native species and the environmental space occupied by A. levana, and it was stronger for A. urticae than for A. io. In both regions, we also found evidence of niche partitioning between native species.

    Main conclusions: Interspecific interactions are likely to affect local species distributions. It appears that the ongoing establishment of A. levana has modified local biotic interactions and induced shifts in resident species distributions. Among the mechanisms that can explain such patterns of niche partitioning, parasitoid-driven apparent competition may play an important role in this community.

  • 6.
    Nylin, Sören
    et al.
    Stockholm University, Faculty of Science, Department of Zoology, Animal Ecology.
    Söderlind, Lina
    Stockholm University, Faculty of Science, Department of Zoology, Animal Ecology.
    Gamberale-Stille, Gabriella
    Stockholm University, Faculty of Science, Department of Zoology, Ethology.
    Audusseau, Hélène
    Stockholm University, Faculty of Science, Department of Zoology, Animal Ecology.
    Celorio-Mancera, Maria de la Paz
    Stockholm University, Faculty of Science, Department of Zoology, Animal Ecology.
    Janz, Niklas
    Stockholm University, Faculty of Science, Department of Zoology, Animal Ecology.
    Sperling, Felix A. H.
    Vestiges of an ancestral host plant: preference and performance in the butterfly Polygonia faunus and its sister species P. c-album2015In: Ecological Entomology, ISSN 0307-6946, E-ISSN 1365-2311, Vol. 40, no 3, p. 307-315Article in journal (Refereed)
    Abstract [en]

    1. In the study of the evolution of insect-host plant interactions, important information is provided by host ranking correspondences among female preference, offspring preference, and offspring performance. Here, we contrast such patterns in two polyphagous sister species in the butterfly family Nymphalidae, the Nearctic Polygonia faunus, and the Palearctic P. c-album. 2. These two species have similar host ranges, but according to the literature P. faunus does not use the ancestral host plant clade-the urticalean rosids'. Comparisons of the species can thus test the effects of a change in insect-plant associations over a long time scale. Cage experiments confirmed that P. faunus females avoid laying eggs on Urtica dioica (the preferred host of P. c-album), instead preferring Salix, Betula, and Ribes.3. However, newly hatched larvae of both species readily accept and grow well on U. dioica, supporting the general theory that evolutionary changes in host range are initiated through shifts in female host preferences, whereas larvae are more conservative and also can retain the capacity to perform well on ancestral hosts over long time spans.4. Similar rankings of host plants among female preference, offspring preference, and offspring performance were observed in P. c-album but not in P. faunus. This is probably a result of vestiges of larval adaptations to the lost ancestral host taxon in the latter species. 5. Female and larval preferences seem to be largely free to evolve independently, and consequently larval preferences warrant more attention.

1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf