Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Centurioni, Luca R.
    et al.
    Turton, Jon
    Lumpkin, Rick
    Braasch, Lancelot
    Brassington, Gary
    Chao, Yi
    Charpentier, Etienne
    Chen, Zhaohui
    Corlett, Gary
    Dohan, Kathleen
    Donlon, Craig
    Gallage, Champika
    Hormann, Verena
    Ignatov, Alexander
    Ingleby, Bruce
    Jensen, Robert
    Kelly-Gerreyn, Boris A.
    Koszalka, Inga M.
    Stockholm University, Faculty of Science, Department of Meteorology . Stockholm University, Faculty of Science, Stockholm University Baltic Sea Centre.
    Lin, Xiaopei
    Lindstrom, Eric
    Maximenko, Nikolai
    Merchant, Christopher J.
    Minnett, Peter
    O'Carroll, Anne
    Paluszkiewicz, Theresa
    Poli, Paul
    Poulain, Pierre-Marie
    Reverdin, Gilles
    Sun, Xiujun
    Swail, Val
    Thurston, Sidney
    Wu, Lixin
    Yu, Lisan
    Wang, Bin
    Zhang, Dongxiao
    Global in situ Observations of Essential Climate and Ocean Variables at the Air-Sea Interface2019In: Frontiers in Marine Science, E-ISSN 2296-7745, Vol. 6, article id 419Article, review/survey (Refereed)
    Abstract [en]

    The air-sea interface is a key gateway in the Earth system. It is where the atmosphere sets the ocean in motion, climate/weather-relevant air-sea processes occur, and pollutants (i.e., plastic, anthropogenic carbon dioxide, radioactive/chemical waste) enter the sea. Hence, accurate estimates and forecasts of physical and biogeochemical processes at this interface are critical for sustainable blue economy planning, growth, and disaster mitigation. Such estimates and forecasts rely on accurate and integrated in situ and satellite surface observations. High-impact uses of ocean surface observations of essential ocean/climate variables (EOVs/ECVs) include (1) assimilation into/validation of weather, ocean, and climate forecast models to improve their skill, impact, and value; (2) ocean physics studies (i.e., heat, momentum, freshwater, and biogeochemical air-sea fluxes) to further our understanding and parameterization of air-sea processes; and (3) calibration and validation of satellite ocean products (i.e., currents, temperature, salinity, sea level, ocean color, wind, and waves). We review strengths and limitations, impacts, and sustainability of in situ ocean surface observations of several ECVs and EOVs. We draw a 10-year vision of the global ocean surface observing network for improved synergy and integration with other observing systems (e.g., satellites), for modeling/forecast efforts, and for a better ocean observing governance. The context is both the applications listed above and the guidelines of frameworks such as the Global Ocean Observing System (GOOS) and Global Climate Observing System (GCOS) (both co-sponsoredby the Intergovernmental Oceanographic Commission of UNESCO, IOC-UNESCO; the World Meteorological Organization, WMO; the United Nations Environment Programme, UNEP; and the International Science Council, ISC). Networks of multiparametric platforms, such as the global drifter array, offer opportunities for new and improved in situ observations. Advances in sensor technology (e.g., low-cost wave sensors), high-throughput communications, evolving cyberinfrastructures, and data information systems with potential to improve the scope, efficiency, integration, and sustainability of the ocean surface observing system are explored.

  • 2. Dugstad, Johannes S.
    et al.
    Koszalka, Inga Monika
    Stockholm University, Faculty of Science, Department of Meteorology . Stockholm University, Faculty of Science, Stockholm University Baltic Sea Centre.
    Isachsen, Pal Erik
    Dagestad, Knut-Frode
    Fer, Ilker
    Vertical Structure and Seasonal Variability of the Inflow to the Lofoten Basin Inferred From High-Resolution Lagrangian Simulations2019In: Journal of Geophysical Research - Oceans, ISSN 2169-9275, E-ISSN 2169-9291, Vol. 124, no 12, p. 9384-9403Article in journal (Refereed)
    Abstract [en]

    The Lofoten Basin in the eastern Nordic Seas plays a central role in modifying the warm Atlantic Water inflow toward the Arctic Ocean. Here, the Atlantic Water experiences increased residence times, cooling, and substantial transformation. In this study, we investigate the Atlantic Water inflow pathways to the Lofoten Basin and their vertical and seasonal variations using 2-D and 3-D Lagrangian simulations forced by a high-resolution ocean model. Atlantic Water enters the basin from all directions, but we find two main inflow pathways at all vertical levels, one close to the Lofoten Escarpment in the southeast, associated with the Slope Current, and another close to the Helgeland Ridge in the southwest, associated with the Front Current. The surface inflow exhibits a stronger seasonal forcing than the inflow at depth as well as a stronger heat loss that is dominated by water masses entering the basin from the south. At deeper levels, the warm inflow from the east cools, while the relatively colder inflow from the west warms. The 2-D and 3-D synthetic trajectories show similar pathways. However, they are affected differently by the seasonal signal, giving different heat exchange patterns. Our results have implications for how results from Lagrangian observations in the region should be interpreted.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf