Change search
Refine search result
1 - 8 of 8
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Aydin, Juhanes
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Fine-tuning of the catalytic activity and selectivity of palladium pincer complexes2007Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis is focused on optimization of the catalytic properties of so-called pincer complexes. This work involved synthesis of a large variety of palladium pincer complexes, which were applied in various organic transformations. Optimization of the catalytic properties (also called fine-tuning) was directed to increase the catalytic activity as well as the chemo- and stereo-selectivity of the complexes. This could be achieved by varying the heteroatoms in the terdentate pincer ligand, by changing the electronic properties of the coordinated aryl moiety and by implementing chiral functionalities in the pincer complexes.

    In the cross-coupling reaction of vinyl epoxides and aziridines with organoboronic acids the chemoselectivity of the reaction could be increased by employment of pincer complexes instead of commonly used palladium(0) catalysts. Furthermore, application of a methoxy substituent in the aromatic subunit of the complex considerably increased the activity of the pincer complex catalyst.

    Fine-tuning of the stereoselectivity in electrophilic allylation reactions was achieved using a wide variety of BINOL and biphenanthrol based pincer complexes. The synthesis of these highly stable chiral palladium complexes was accomplished by using an efficient modular approach. The highest enantioselectivity (85% ee) was obtained by applying biphenanthrol based pincer complexes.

    We have presented the first palladium pincer complex catalyzed condensation of sulfonimines with isocyanoacetate. Variation of the heteroatoms in the terdentate ligand of the complex strongly influenced the stereoselectivity of the catalytic transformation. The highest stereoselectivity was obtained by using phosphine based pincer complexes. We have also succeeded to isolate and fully characterize the key intermediate of this reaction.

  • 2.
    Aydin, Juhanes
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Conrad, Cathrin S.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Szabó, Kálmán J.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Stereoselective pincer-complex catalyzed C-H functionalization of benzyl nitriles under mild conditions. An efficient route to β-aminonitriles2008In: Organic Letters, ISSN 1523-7060, Vol. 10, no 22, p. 5175-5178Article in journal (Refereed)
  • 3.
    Aydin, Juhanes
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kumar, K. Senthil
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Eriksson, Lars
    Stockholm University, Faculty of Science, Department of Physical, Inorganic and Structural Chemistry.
    Szabó, Kálmán J.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Palladium pincer complex-catalyzed condensation of sulfonimines and isocyanoacetate to imidazoline derivatives. Dependence of the stereoselectivity on the ligand effects2007In: Advanced Synthesis & Catalysis, ISSN 1615-4150, Vol. 349, no 17-18, p. 2585-2594Article in journal (Refereed)
  • 4.
    Aydin, Juhanes
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Senthil, Kumar K
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Sayah, Mahmoud J
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Wallner, Olov A
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Szabó, Kálmán J
    Synthesis and catalytic application of chiral 1,1'-Bi-2-naphthol- and biphenanthrol-based pincer complexes: selective allylation of sulfonimines with allyl stannane and allyl trifluoroborate.2007In: Journal of Organic Chemistry, Vol. 72, no 13, p. 4689-4697Article in journal (Refereed)
    Abstract [en]

    New easily accessible 1,1'-bi-2-naphthol- (BINOL-) and biphenanthrol-based chiral pincer complex catalysts were prepared for selective (up to 85% enantiomeric excess) allylation of sulfonimines. The chiral pincer complexes were prepared by a flexible modular approach allowing an efficient tuning of the selectivity of the catalysts. By employment of the different enantiomeric forms of the catalysts, both enantiomers of the homoallylic amines could be selectively obtained. Both allyl stannanes and allyl trifluoroborates can be employed as allyl sources in the reactions. The biphenanthrol-based complexes gave higher selectivity than the substituted BINOL-based analogues, probably because of the well-shaped chiral pocket generated by employment of the biphenanthrol complexes. The enantioselective allylation of sulfonimines presented in this study has important implications for the mechanism given for the pincer complex-catalyzed allylation reactions, confirming that this process takes place without involvement of palladium(0) species.

  • 5.
    Aydin, Juhanes
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Senthil Kumar, Kuppusamy
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Szabó, Kálmán J.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Mechanistic studies of the palladium pincer complex-catalyzed condensation of sulfonimines and isocyanoacetate to imidazoline derivatives2008In: Abstracts of Papers, 235th ACS National Meeting, New Orleans, LA, United States, April 6-10, 2008, 2008Conference paper (Other academic)
  • 6.
    Aydin, Juhanes
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Szabó, Kálmán
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Palladium-pincer complex catalyzed C-C coupling of allyl nitriles with tosyl imines via regioselective allylic C-H bond functionalization2008In: Organic Letters, ISSN 1523-7060, Vol. 10, no 13, p. 2881-2884Article in journal (Refereed)
    Abstract [en]

    A mechanistically new palladium-pincer complex catalyzed allylation of sulfonimines is presented. This reaction involves C-H bond functionalization of allyl nitriles under mild conditions. The reaction proceeds with a high regioselectivity, without allyl rearrangement of the product. Modeling studies indicate that the carbon-carbon bond formation process proceeds via (η1-allyl)palladium pincer complex intermediates.

  • 7.
    Aydin, Juhanes
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Wallner, Olov A.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Olsson, Vilhelm J.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Szabó, Kálmán J.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Application of BINOL based pincer-complexes for palladium-catalyzed transformations2007In: Abstracts of Papers, 233rd ACS National Meeting, Chicago, IL, United States, March 25-29, 2007, 2007Conference paper (Other academic)
  • 8.
    Aydin, Juhanes
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Wallner, Olov A.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Olsson, Vilhelm J.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Szabó, Kálmán J.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Palladium pincer complex catalyzed asymmetric transformations of sulfonimines2007In: Abstracts of Papers, 233rd ACS National Meeting, Chicago, IL, United States, March 25-29, 2007, 2007Conference paper (Other academic)
1 - 8 of 8
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf