Change search
Refine search result
1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Emmenegger, Jacopo
    Stockholm University, Faculty of Science, Department of Mathematics.
    A category-theoretic version of the identity type weak factorization systemManuscript (preprint) (Other academic)
    Abstract [en]

    Gambino and Garner proved that the syntactic category of a dependent type theory with identity types can be endowed with a weak factorization system structure, called identity type weak factorization system. In this paper we consider an enrichment of Joyal's notion of tribe which allow us to prove a purely category-theoretic version of the identity type weak factorization system, thus generalizing Gambino and Garner's result. We investigate then how it relates with other well-known weak factorization systems, namely those arising from Quillen model structures on the category of topological spaces and on the category of small groupoids.

  • 2.
    Emmenegger, Jacopo
    Stockholm University, Faculty of Science, Department of Mathematics.
    Exact completion and type-theoretic structures2019Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis consists of four papers and is a contribution to the study of representations of extensional properties in intensional type theories using, mainly, the language and tools from category theory. Our main focus is on exact completions of categories with weak finite limits as a category-theoretic description of the setoid construction in Martin-Löf's intensional type theory.

    Paper I, which is joint work with Erik Palmgren, provides sufficient conditions for such an exact completion to produce a model of the system CETCS (Constructive Elementary Theory of the Category of Sets), a finite axiomatisation of the theory of well-pointed locally cartesian closed pretoposes with a natural numbers object and enough projectives. In particular, we use a condition inspired by Aczel's set-theoretic Fullness Axiom to obtain the local cartesian closure of an exact completion. As an application, we obtain a simple  uniform proof that the category of setoids is a model of CETCS.

    Paper II was prompted by the discovery of an overlooked issue in the characterisationof local cartesian closure for exact completions due to Carboni and Rosolini. In this paper we clarify the problem, show that their characterisation is still valid when the base category has finite limits, and provide a complete solution in the general case of a category with weak finite limits.

    In paper III we generalise the approach used in paper I to obtain the local cartesian closure of an exact completion to arbitrary categories with finite limits. We then show how this condition inspired by the Fullness Axiom naturally arises in several homotopy categories and apply this result to obtain the local cartesian closure of the exact completion of the homotopy category of spaces, thus answering a question left open by Marino Gran and Enrico Vitale.

    Finally, in paper IV we abandon the pure category-theoretic approach and instead present a type-theoretic construction, formalised in Coq, of W-types in the category of setoids from dependent W-types in the underlying intensional theory. In particular, contrary to previous approaches, this construction does not require the assumption of Uniqueness of Identity Proofs nor recursion into a type universe.

  • 3.
    Emmenegger, Jacopo
    Stockholm University, Faculty of Science, Department of Mathematics.
    On the local cartesian closure of exact completionsManuscript (preprint) (Other academic)
    Abstract [en]

    A characterisation of cartesian closure of exact completions as a property of the projective objects was given by Carboni and Rosolini. We show that the argument used to prove that characterisation is equivalent to the projectives being closed under binary products (equivalently, being internally projective). The property in question is the existence of weak simple products (a slight strengthening of weak exponentials) and the argument used relies on two claims: that weak simple products endow the internal logic with universal quantification, and that an exponential is the quotient of a weak exponential. We show that either these claims hold if and only if the projectives are internally projectives, which entails that Carboni and Rosolini's characterisation only applies to ex/lex completions. We then argue that this limitation depends on the universal property of weak simple products, and derive from this observation an alternative notion, which we call generalised weak simple product. We conclude by showing that existence of generalised weak simple products in the subcategory of projectives is equivalent to the cartesian closure of the exact category, thus obtaining a complete characterisation of (local) cartesian closure for exact completions of categories with weak finite limits.

  • 4.
    Emmenegger, Jacopo
    Stockholm University, Faculty of Science, Department of Mathematics.
    The Fullness Axiom and exact completions of homotopy categoriesManuscript (preprint) (Other academic)
    Abstract [en]

    We use a category-theoretic formulation of Aczel's Fullness Axiom from Constructive Set Theory to derive the local cartesian closure of an exact completion. As an application, we prove that such a formulation is valid in the homotopy category of any model category satisfying mild requirements, thus obtaining in particular the local cartesian closure of the exact completion of topological spaces and homotopy classes of maps. Under a type-theoretic reading, these results provide a general motivation for the local cartesian closure of the category of setoids. However, results and proofs are formulated solely in the language of categories, and no knowledge of type theory or constructive set theory is required on the reader's part.

  • 5.
    Emmenegger, Jacopo
    Stockholm University, Faculty of Science, Department of Mathematics.
    W-types in setoidsManuscript (preprint) (Other academic)
    Abstract [en]

    W-types and their categorical analogue, initial algebras for polynomial endofunctors, are an important tool in predicative systems to replace transfinite recursion on well-orderings. Current arguments to obtain W-types in quotient completions rely on assumptions, like Uniqueness of Identity Proofs, or on constructions that involve recursion into a universe, that limit their applicability to a specific setting. We present an argument, verified in Coq, that instead uses dependent W-types in the underlying type theory to construct W-types in the setoid model. The immediate advantage is to have a proof more type-theoretic in flavour, which directly uses recursion on the underlying W-type to prove initiality. Furthermore, taking place in intensional type theory and not requiring any recursion into a universe, it may be generalised to various categorical quotient completions, with the aim of finding a uniform construction of extensional W-types.

  • 6.
    Emmenegger, Jacopo
    et al.
    Stockholm University, Faculty of Science, Department of Mathematics.
    Palmgren, Erik
    Stockholm University, Faculty of Science, Department of Mathematics.
    Exact completion and constructive theories of setsManuscript (preprint) (Other academic)
    Abstract [en]

    In the present paper we use the theory of exact completions to study categorical properties of small setoids in Martin-Loef type theory and, more generally, of models of the Constructive Elementary Theory of the Category of Sets, in terms of properties of their subcategories of choice objects (i.e. objects satisfying the axiom of choice). Because of these intended applications, we deal with categories that lack equalisers and just have weak ones, but whose objects can be regarded as collections of global elements. In this context, we study the internal logic of the categories involved, and employ this analysis to give a sufficient condition for the local cartesian closure of an exact completion. Finally, we apply this result to show when an exact completion produces a model of CETCS.

1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf