Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Ge, Changrong
    et al.
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics. University Libre Brussels, Belgium; Karolinska Institutet, Sweden.
    Gómez Llobregat, Jordi
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Skwark, Marcin J.
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics. Aalto University, Finland.
    Ruysschaert, Jean-Marie
    Wieslander, Åke
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Lindén, Martin
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Membrane remodeling capacity of a vesicle-inducing glycosyltransferase2014In: The FEBS Journal, ISSN 1742-464X, E-ISSN 1742-4658, Vol. 281, no 16, p. 3667-3684Article in journal (Refereed)
    Abstract [en]

    Intracellular vesicles are abundant in eukaryotic cells but absent in the Gram-negative bacterium Escherichia coli. However, strong overexpression of a monotopic glycolipid-synthesizing enzyme, monoglucosyldiacylglycerol synthase from Acholeplasma laidlawii (alMGS), leads to massive formation of vesicles in the cytoplasm of E. coli. More importantly, alMGS provides a model system for the regulation of membrane properties by membrane-bound enzymes, which is critical for maintaining cellular integrity. Both phenomena depend on how alMGS binds to cell membranes, which is not well understood. Here, we carry out a comprehensive investigation of the membrane binding of alMGS by combining bioinformatics methods with extensive biochemical studies, structural modeling and molecular dynamics simulations. We find that alMGS binds to the membrane in a fairly upright manner, mainly by residues in the N-terminal domain, and in a way that induces local enrichment of anionic lipids and a local curvature deformation. Furthermore, several alMGS variants resulting from substitution of residues in the membrane anchoring segment are still able to generate vesicles, regardless of enzymatic activity. These results clarify earlier theories about the driving forces for vesicle formation, and shed new light on the membrane binding properties and enzymatic mechanism of alMGS and related monotopic GT-B fold glycosyltransferases.

  • 2.
    Gómez Llobregat, Jordi
    et al.
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Buceta, Javier
    Reigada, Ramon
    Interplay of cytoskeletal activity and lipid phase stability in dynamic protein recruitment and clustering2013In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 3, article id 2608Article in journal (Refereed)
    Abstract [en]

    Recent experiments have revealed that some membrane proteins aggregate to form clusters. This type of process has been proven to be dynamic and to be actively maintained by external kinetics. Additionally, this dynamic recruiting is cholesterol- and actin-dependent, suggesting that raft organization and cytoskeleton rearrangement play a crucial role. In the present study, we propose a simple model that provides a general framework to describe the dynamical behavior of lipid-protein assemblies. Our results suggest that lipid-mediated interactions and cytoskeleton-anchored proteins contribute to the modulation of such behavior. In particular, we find a resonant condition between the membrane protein and cytoskeleton dynamics that results in the invariance of the ratio of clustered proteins that is found in in vivo experimental observations.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf