Change search
Refine search result
1 - 16 of 16
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Blomdin, Robin
    et al.
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology. Purdue University, USA.
    Heyman, Jakob
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Stroeven, Arjen P.
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Hättestrand, Clas
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Harbor, Jonathan M.
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology. Purdue University, USA.
    Gribenski, Natacha
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Jansson, Krister N.
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Petrakov, Dmitry A.
    Ivanov, Mikhail N.
    Alexander, Orkhonselenge
    Rudoy, Alexei N.
    Walther, Michael
    Glacial geomorphology of the Altai and Western Sayan Mountains, Central Asia2016In: Journal of Maps, ISSN 1744-5647, E-ISSN 1744-5647, Vol. 12, no 1, p. 123-136Article in journal (Refereed)
    Abstract [en]

    In this article, we present a map of the glacial geomorphology of the Altai andWestern Sayan Mountains, covering an area of almost 600,000 km2. Although numerous studies provide evidence for restricted Pleistocene glaciations in this area, others have hypothesized the past existence of an extensive ice sheet. To provide a framework for accurate glacial reconstructions of the Altai and Western Sayan Mountains, we present a map at a scale of 1:1,000,000 based on a mapping from 30 m resolution ASTER DEM and 15 m/30 mresolution Landsat ETM+ satellite imagery. Four landform classes have been mapped: marginal moraines, glacial lineations, hummocky terrain, and glacial valleys. Our mapping reveals an abundance of glacial erosional and depositional landforms. The distribution of these glacial landforms indicates that the Altai and Western Sayan Mountains have experienced predominantly alpine-style glaciations, with some small ice caps centred on the higher mountain peaks. Large marginal moraine complexes mark glacial advances in intermontane basins. By tracing the outer limits of present-day glaciers, glacial valleys, and moraines, we estimate that the past glacier coverage have totalled to 65,000 km2 (10.9% of the mapped area), whereas present-day glacier coverage totals only 1300 km2 (0.2% of the mapped area). This demonstrates the usefulness of remote sensing techniques for mapping the glacial geomorphology in remote mountain areas and for quantifying the past glacier dimensions. The glacial geomorphological map presented here will be used for further detailed reconstructions of the paleoglaciology and paleoclimate of the region.

  • 2.
    Blomdin, Robin
    et al.
    Stockholm University, Faculty of Science, Department of Physical Geography. Purdue University, USA.
    Stroeven, Arjen P.
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Harbor, Jon M.
    Stockholm University, Faculty of Science, Department of Physical Geography. Purdue University, USA.
    Lifton, N. A.
    Heyman, J.
    Gribenski, Natacha
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Petrakov, D. A.
    Caffee, M. W.
    Ivanov, M. N.
    Hättestrand, Clas
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Rogozhina, I.
    Usubaliev, R.
    Evaluating the timing of former glacier expansions in the Tian Shan: A key step towards robust spatial correlations2016In: Quaternary Science Reviews, ISSN 0277-3791, E-ISSN 1873-457X, Vol. 153, p. 78-96Article in journal (Refereed)
    Abstract [en]

    The timing of past glaciation across the Tian Shan provides a proxy for past climate change in this critical area. Correlating glacial stages across the region is difficult but cosmogenic exposure ages have considerable potential. A drawback is the large observed scatter in Be-10 surface exposure data. To quantify the robustness of the dating, we compile, recalculate, and perform statistical analyses on sets of 10Be surface exposure ages from 25 moraines, consisting of 114 new and previously published ages. We assess boulder age scatter by dividing boulder groups into quality classes and rejecting boulder groups of poor quality. This allows us to distinguish and correlate robustly dated glacier limits, resulting in a more conservative chronology than advanced in previous publications. Our analysis shows that only one regional glacial stage can be reliably correlated across the Tian Shan, with glacier expansions occurring between 15 and 281 a during marine oxygen isotope stage (MIS) 2. However, there are examples of older more extensive indicators of glacial stages between MIS 3 and MIS 6. Paleoglacier extent during MIS 2 was mainly restricted to valley glaciation. Local deviations occur: in the central Kyrgyz Tian Shan paleoglaciers were more extensive and we propose that the topographic context explains this pattern. Correlation between glacial stages prior to late MIS 2 is less reliable, because of the low number of samples and/or the poor resolution of the dating. With the current resolution and spatial coverage of robustly-dated glacier limits we advise that paleoclimatic implications for the Tian Shan glacial chronology beyond MIS 2 are speculative and that continued work toward robust glacial chronologies is needed to resolve questions regarding drivers of past glaciation in the Tian Shan and Central Asia.

  • 3.
    Blomdin, Robin
    et al.
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Stroeven, Arjen P.
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Harbor, Jonathan M.
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Gribenski, Natacha
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Caffee, Marc W.
    Heyman, Jakob
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Rogozhina, Irina
    Ivanov, Mikhail N.
    Petrakov, Dmitry A.
    Walther, Michael
    Rudoy, Alexei N.
    Zhang, Wei
    Orkhonselenge, Alexander
    Hättestrand, Clas
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Lifton, Nathaniel A.
    Jansson, Krister N.
    Paleoglaciation on opposite flanks of the Ikh-Turgen Mountains, Central Asia: Importance of style of moraine deposition for 10-Be surface exposure datingManuscript (preprint) (Other academic)
    Abstract [en]

    The ages of marginal moraines that record extensive glacier expansions across the Altai Mountains of Central Asia are poorly documented. We present 18 10Be exposure ages from moraines in valleys on opposite flanks of the Ikh-Turgen Mountains. On the eastern side, exposure ages from a latero-frontal moraine indicate deglaciation during MIS 3 (45.3±2.7 ka) and MIS 2 (22.8±3.5 ka). Corresponding exposure ages, from the western side, indicate a more complex story with large scatter (~14-53 ka). Owing to their close proximity, the paleoglaciers should have responded similarly to climate forcing, yet they exhibited a distinctly different behavior. We propose that differences in glacier dynamics caused differences in ice-marginal depositional environments, explaining the scatter in exposure ages on the western side. This study shows the importance of style of deposition in chronological studies of glacial landforms and demonstrates that certain moraine types can be difficult to use as paleoclimate proxies.

  • 4.
    Blomdin, Robin
    et al.
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Stroeven, Arjen P.
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Harbor, Jonathan M.
    Stockholm University, Faculty of Science, Department of Physical Geography. Purdue University, USA.
    Gribenski, Natacha
    Stockholm University, Faculty of Science, Department of Physical Geography. University of Bern, Switzerland.
    Caffee, Marc W.
    Heyman, Jakob
    Rogozhina, Irina
    Ivanov, Mikhail N.
    Petrakov, Dmitry A.
    Walther, Michael
    Rudoy, Alexei N.
    Zhang, Wei
    Orkhonselenge, Alexander
    Hättestrand, Clas
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Lifton, Nathaniel A.
    Jansson, Krister N.
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Timing and dynamics of glaciation in the Ikh Turgen Mountains, Altai region, High Asia2018In: Quaternary Geochronology, ISSN 1871-1014, E-ISSN 1878-0350, Vol. 47, p. 54-71Article in journal (Refereed)
    Abstract [en]

    Spanning the northern sector of High Asia, the Altai region contains a rich landform record of glaciation. We report the extent, chronologies, and dynamics of two paleoglaciers on opposite flanks of the Ikh Turgen mountains (In Russian: Chikhacheva Range), straddling the border between Russia and Mongolia, using a combination of remote sensing-based glacial geomorphological mapping, Be-10 surface exposure dating, and geomorphometric analysis. On the eastern side (Mongolia), the Turgen-Asgat paleoglacier, with its potential for developing a large accumulation area (similar to 257 km(2)), expanded 40 km down valley, and mean ages from a latero-frontal moraine indicate deglaciation during marine oxygen isotope stage (MIS) 3 (45.1 +/- 1.8 ka, n = 4) and MIS 2 (22.8 +/- 3.3 ka, n = 5). These minimum age constraints are consistent with other Be-10 glacial chronologies and paleoclimate records from the region, which indicates glacier culmination during cold and wet conditions coinciding with MIS 3 (piedmont-style glaciation; inferred for a few sites across the region) and glacier culmination during cold and dry conditions coinciding with MIS 2 (mainly valley-style glaciation; inferred from several sites across the region). On the western side (Russia), the Boguty paleoglacier had a smaller accumulation area (similar to 222 km(2)), and advanced 30 km down valley across a low gradient forefield. Surface exposure ages from two moraine complexes on this side of the mountains exhibit wide scatter (similar to 14-53 ka, n = 8), making paleoclimate inferences and comparison to other proxies difficult. Ice surface profile reconstructions imply that the two paleoglaciers likely shared an ice divide.

  • 5.
    Blomdin, Robin
    et al.
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Stroeven, Arjen P.
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Harbor, Jonathan M.
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Hättestrand, Clas
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Heyman, Jakob
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Gribenski, Natacha
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Topographic and climatic controls on paleoglaciation patterns across the Tian Shan and Altai Mountains, Central AsiaManuscript (preprint) (Other academic)
    Abstract [en]

    Reconstructing spatial patterns of the extents and dynamics of paleoglaciers across Central Asia is key in understanding the mechanisms of global environmental change. The Tian Shan and Altai Mountains are located in the continental interior of Eurasia, at the confluence of several major climate systems. In order to test hypothesized patterns in paleoglacier extent, and to test the role of paleoclimate and mountain topography in modulating the evolution of these glacial systems, we perform a domain-wide terrain analysis. We first divide the Tian Shan and the Altai Mountains into six physiographic regions delineated by major drainage divides and outlining generalised climate zones. Thereafter we mine published datasets on the distribution of glaciers and glacial landforms, calculate their area-elevation distributions (hypsometry), and extract present-day regional equilibrium line altitudes (ELAs) and long-term average ELAs (paleo-ELAs). We show that the use of glacial landform hypsometry is an effective tool to quantify broad-scale paleoglaciation patterns and find that there is a regional variability in glacier extents across the Tian Shan and Altai Mountains. Reconstructed ELAs show pronounced spatial gradients; increasing ELAs from northern to southern Tian Shan, and increasing ELAs from the northern to both the southeastern and southwestern Altai Mountains. In contrast, maximum paleoglaciation patterns and paleo-ELAs were more uniform across the two mountain systems, with inter-regional topographic variability influencing moraine distributions and thus complicating regional paleo-ELA determinations. Because estimated paleo-ELAs were relatively uniform across the Tian Shan and Altai Mountains, the paleo-ELA lowering were most pronounced in the more continental southern and eastern regions. Our current data is insufficient to explain whether this observation is the result of a different regional paleoclimatic regime than today, or if paleoglaciers responded dynamically different to a paleoclimate forcing of the same magnitude. Our ELA reconstructions also lack temporal constraints, so we furthermore propose that future studies systematically compare hypsometry-derived ELA reconstructions with those stemming from surface energy mass balance models, other proxy records (i.e. lake- and ice core records), and from chronologically constrained ice-marginal moraines.  

  • 6.
    Ebert, Karin
    et al.
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Axelsson, Leona
    Harbor, Jon
    Stockholm University, Faculty of Science, Department of Physical Geography. Purdue University, USA.
    Opportunities and challenges for building alumni networks in Sweden: a case study of Stockholm University2015In: Journal of Higher Education Policy and Management, ISSN 1360-080X, E-ISSN 1469-9508, Vol. 37, no 2, p. 252-262Article in journal (Refereed)
    Abstract [en]

    Because of the potential value of alumni involvement for student success, for connections to society and as a base for future philanthropy, there is growing interest in developing university alumni relations programmes in countries that do not have a long tradition in this area. This case study of Stockholm University describes the goals, strategies, barriers and successes of building an alumni programme in an environment that lacks a tradition of alumni relations and aims to provide perspectives and ideas that can help other universities worldwide with their work towards building alumni programmes that fit their cultural contexts and goals.

  • 7. Fu, Ping
    et al.
    Stroeven, Arjen P.
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Harbor, Jonathan M.
    Stockholm University, Faculty of Science, Department of Physical Geography. Purdue University, USA.
    Heyman, Jakob
    Hättestrand, Clas
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Caffee, Marc W.
    Ice cap erosion patterns from bedrock Be-10 and Al-26, southeastern Tibetan Plateau2019In: Earth Surface Processes and Landforms, ISSN 0197-9337, E-ISSN 1096-9837, Vol. 44, no 4, p. 918-932Article in journal (Refereed)
    Abstract [en]

    Quantifying glacial erosion contributes to our understanding of landscape evolution and topographic relief production in high altitude and high latitude areas. Combining in situ Be-10 and Al-26 analysis of bedrock, boulder, and river sand samples, geomorphological mapping, and field investigations, we examine glacial erosion patterns of former ice caps in the Shaluli Shan of the southeastern Tibetan Plateau. The general landform pattern shows a zonal pattern of landscape modification produced by ice caps of up to 4000 km(2) during pre-LGM (Last Glacial Maximum) glaciations, while the dating results and landforms on the plateau surface imply that the LGM ice cap further modified the scoured terrain into different zones. Modeled glacial erosion depth of 0-0.38 m per 100 ka bedrock sample located close to the western margin of the LGM ice cap, indicates limited erosion prior to LGM and Late Glacial moraine deposition. A strong erosion zone exists proximal to the LGM ice cap marginal zone, indicated by modeled glacial erosion depth >2.23 m per 100 ka from bedrock samples. Modeled glacial erosion depths of 0-1.77 m per 100 ka from samples collected along the edge of a central upland, confirm the presence of a zone of intermediate erosion in-between the central upland and the strong erosion zone. Significant nuclide inheritance in river sand samples from basins on the scoured plateau surface also indicate restricted glacial erosion during the last glaciation. Our study, for the first time, shows clear evidence for preservation of glacial landforms formed during previous glaciations under non-erosive ice on the Tibetan Plateau. As patterns of glacial erosion intensity are largely driven by the basal thermal regime, our results confirm earlier inferences from geomorphology for a concentric basal thermal pattern for the Haizishan ice cap during the LGM.

  • 8.
    Gribenski, Natacha
    et al.
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Jansson, Krister N.
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Lukas, Sven
    Stroeven, Arjen P.
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Harbor, Jonathan M.
    Stockholm University, Faculty of Science, Department of Physical Geography. Purdue University, USA.
    Blomdin, Robin
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Ivanov, Mikhail N.
    Heyman, Jakob
    Petrakov, Dmitry A.
    Rudoy, Alexei
    Clifton, Tom
    Lifton, Nathaniel A.
    Caffee, Marc W.
    Complex patterns of glacier advances during the late glacial in the Chagan Uzun Valley, Russian Altai2016In: Quaternary Science Reviews, ISSN 0277-3791, E-ISSN 1873-457X, Vol. 149, p. 288-305Article in journal (Refereed)
    Abstract [en]

    The Southern part of the Russian Altai Mountains is recognized for its evidence for catastrophic glacial lake outbursts. However, little is known about the late Pleistocene paleoglacial history, despite the interest in such reconstructions for constraining paleoclimate. In this study, we present a detailed paleoglaciological reconstruction of the Chagan Uzun Valley, in the Russian Altai Mountains, combining for the first time detailed geomorphological mapping, sedimentological logging, and in situ cosmogenic 10Be and 26Al surface exposure dating of glacially-transported boulders. The Chagan Uzun Valley exhibits the most impressive glacial landforms of this sector of the Altai, with extensive lobate moraine belts deposited in the intramontane Chuja Basin, reflecting a series of pronounced former glacial advances. Observations of “hillside-scale” folding and extensive faulting of pre-existing soft sediments within the outer moraine belts, together with the geomorphology, strongly indicate that these moraine belts were formed during surge-like events. Identification of surge-related features is essential for paleoclimate inference because these features correspond to a glacier system that is not in equilibrium with the contemporary climate, but instead largely influenced by various internal and external factors. Therefore, no strict relationship can be established between climatic variables and the pronounced distal glacial extent observed in the Chagan Uzun Valley/Chuja basin. In contrast, the inner (up-valley) glacial landforms of the Chagan Uzun valley were likely deposited during retreat of temperate valley glaciers, close to equilibrium with climate, and so most probably triggered by a general warming. Cosmogenic ages associated with the outermost, innermost, and intermediate stages all indicate deposition times clustered around 19 ka. However, the actual deposition time of the outermost moraine may slightly predate the 10Be ages due to shielding caused by subsequent lake water coverage. This chronology indicates a Marine Isotope Stage (MIS) 2 last maximum extent of the Chagan Uzun Glacier, and an onset of the deglaciation around 19 ka. This is consistent with other regional paleoclimate proxy records and with the Northern Hemisphere glaciation chronology. Finally, this study also highlights the highly dynamic environment in this area, with complex interactions between glacial events and the formation and drainage of lakes.

  • 9.
    Gribenski, Natacha
    et al.
    Stockholm University, Faculty of Science, Department of Physical Geography. Leibniz Institute for Applied Geophysics, Germany.
    Jansson, Krister N.
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Preusser, Frank
    Harbor, Jonathan M.
    Stockholm University, Faculty of Science, Department of Physical Geography. Purdue University, USA.
    Stroeven, Arjen P.
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Trauerstein, Mareike
    Blomdin, Robin
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Heyman, Jakob
    Caffee, Marc W.
    Lifton, Nathaniel A.
    Zhang, Wei
    Re-evaluation of MIS 3 glaciation using cosmogenic radionuclide and single grain luminescence ages, Kanas Valley, Chinese Altai2018In: Journal of Quaternary Science, ISSN 0267-8179, E-ISSN 1099-1417, Vol. 33, no 1, p. 55-67Article in journal (Refereed)
    Abstract [en]

    Previous investigations observed a period of major glacial advances in Central Asia during marine oxygen isotope stage (MIS) 3 (57-29 ka), out of phase with global ice volume records. We have re-examined the Kanas moraine complex in the Altai Mountains of Central Asia, where an MIS 3 glaciation had been previously inferred. New and consistent cosmogenic exposure and single-grain luminescence ages indicate that the Kanas complex was formed during MIS 2 (29-12 ka), which brings its timing in line with the global ice volume record. We also identified a lateral moraine from a more extensive ice extent that dates to late MIS 5/MIS 4. To place our results in a wider contextual framework, we review the chronologies of another 26 proposed major MIS 3 glacial advances in Central Asia. For most of these sites, we find that the chronological data do not provide an unequivocal case for MIS 3 glaciation.

  • 10.
    Gribenski, Natacha
    et al.
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Lukas, Sven
    Stroeven, Arjen P.
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Jansson, Krister N.
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Harbor, Jonathan M.
    Stockholm University, Faculty of Science, Department of Physical Geography. Purdue University, USA.
    Blomdin, Robin
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Ivanov, Mikhail N.
    Heyman, Jakob
    Petrakov, Dmitry A.
    Rudoy, Alexei
    Clifton, Tom
    Lifton, Nathaniel A.
    Caffee, Marc W.
    Reply to comment received from J. Herget et al. regarding "Complex patterns of glacier advances during the late glacial in the Chagan Uzun Valley, Russian Altai" by Gribenski et al. (2016), Quaternary Science Reviews 149, 288-3052017In: Quaternary Science Reviews, ISSN 0277-3791, E-ISSN 1873-457X, Vol. 168, p. 219-221Article in journal (Refereed)
  • 11. Heyman, Jakob
    et al.
    Applegate, Patrick J.
    Blomdin, Robin
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Gribenski, Natacha
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Harbor, Jonathan M.
    Stockholm University, Faculty of Science, Department of Physical Geography. Purdue University, USA.
    Stroeven, Arjen P.
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Boulder height - exposure age relationships from a global glacial Be-10 compilation2016In: Quaternary Geochronology, ISSN 1871-1014, E-ISSN 1878-0350, Vol. 34, p. 1-11Article in journal (Refereed)
    Abstract [en]

    Cosmogenic exposure dating of glacial boulders is commonly used to estimate the timing of past glaciations because the method enables direct dating of the duration a boulder has been exposed to cosmic rays. For successful dating, the boulders must have been fully shielded from cosmic rays prior to deposition and continuously exposed to cosmic rays ever since. A common assumption is that boulder height (the distance between the top of the boulder and the surrounding surface) is important, and that tall boulders are more likely to have been continuously exposed to cosmic rays than short boulders and therefore yield more accurate exposure ages. Here we test this assumption 'based on exposure age clustering for groups of glacial boulders (and single cobbles) Be-10 exposure ages that have recorded boulder heights (3741 boulders; 579 boulder groups with >= 3 boulders). Of the full set of boulder groups with >= 3 boulders, 21% fulfill a reduced chi square criterion (chi(2)(R) < 2) for well-clustered exposure ages. For boulder groups containing only tall boulders, the fraction of well-clustered exposure age groups is consistently larger. Moreover, this fraction of well-clustered exposure age groups increases with the minimum boulder height in each group. This result confirms the common assumption that tall boulders are generally better targets for cosmogenic exposure dating compared to short boulders. Whereas the tall boulder groups have a significantly larger fraction of well-clustered exposure age groups, there is nonetheless a dominant fraction (>50%) of the boulder groups with scattered exposure ages, highlighting the problem with prior and incomplete exposure for cosmogenic dating of glacial boulders.

  • 12.
    Jansen, John D.
    et al.
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology. University of Wollongong, Australia.
    Codilean, A. T.
    Stroeven, Arjen P.
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Fabel, D.
    Hättestrand, Clas
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Kleman, Johan
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Harbor, Jon M.
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology. Purdue University, USA.
    Heyman, Jakob
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Kubik, P. W.
    Xu, S.
    Inner gorges cut by subglacial meltwater during Fennoscandian ice sheet decay2014In: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 5, p. 3815-Article in journal (Refereed)
    Abstract [en]

    The century-long debate over the origins of inner gorges that were repeatedly covered by Quaternary glaciers hinges upon whether the gorges are fluvial forms eroded by subaerial rivers, or subglacial forms cut beneath ice. Here we apply cosmogenic nuclide exposure dating to seven inner gorges along similar to 500 km of the former Fennoscandian ice sheet margin in combination with a new deglaciation map. We show that the timing of exposure matches the advent of ice-free conditions, strongly suggesting that gorges were cut by channelized subglacial meltwater while simultaneously being shielded from cosmic rays by overlying ice. Given the exceptional hydraulic efficiency required for meltwater channels to erode bedrock and evacuate debris, we deduce that inner gorges are the product of ice sheets undergoing intense surface melting. The lack of postglacial river erosion in our seven gorges implicates subglacial meltwater as a key driver of valley deepening on the Baltic Shield over multiple glacial cycles.

  • 13. Li, Yingkui
    et al.
    Li, Dewen
    Liu, Gengnian
    Harbor, Jon
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology. Purdue University, USA.
    Caffee, Marc
    Stroeven, Arjen P.
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Patterns of landscape evolution on the central and northern Tibetan Plateau investigated using in-situ produced Be-10 concentrations from river Sediments2014In: Earth and Planetary Science Letters, ISSN 0012-821X, E-ISSN 1385-013X, Vol. 398, p. 77-89Article in journal (Refereed)
    Abstract [en]

    Quantifying long-term erosion rates across the Tibetan Plateau and its bordering mountains is of critical importance to an understanding of the interaction between climate, tectonic movement, and landscape evolution. We present a new dataset of basin-wide erosion rates from the central and northern Tibetan Plateau derived using in-situ produced Be-10 concentrations of river sediments. Basin-wide erosion rates from the central plateau range from 10.1 +/- 0.9 to 36.8 +/- 3.2 mm/kyr, slightly higher than published local erosion rates measured from bedrock surfaces. These values indicate that long-term downwearing of plateau surfaces proceeds at low rates and that the landscape is demonstrably stable in the central plateau. In contrast, basin-wide erosion rates from the Kunlun Shan on the northern Tibetan Plateau range from 19.9 +/- 1.7 to 163.2 +/- 15.9 mm/kyr. Although the erosion rates of many of these basins are much higher than the rates from the central plateau, they are lower than published basin-wide erosion rates from other mountains fringing the Tibetan Plateau, probably because the basins in the Kunlun Shan include both areas of low-relief plateau surface and high-relief mountain catchments and may also result from retarded fluvial sediment transport in an arid climate. Significantly higher basin-wide erosion rates derived from the Tibetan Plateau margin, compared to the central plateau, reflect a relatively stable plateau surface that is being dissected at its margins by active fluvial erosion.

  • 14. Li, Yingkui
    et al.
    Liu, Gengnian
    Chen, Yixin
    Li, Yanan
    Harbor, Jon
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Stroeven, Arjen P.
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Caffee, Marc
    Zhang, Mei
    Li, Chuanchuan
    Cui, Zhijiu
    Timing and extent of Quaternary glaciations in the Tianger Range, eastern Tian Shan, China, investigated using Be-10 surface exposure dating2014In: Quaternary Science Reviews, ISSN 0277-3791, E-ISSN 1873-457X, Vol. 98, p. 7-23Article in journal (Refereed)
    Abstract [en]

    Reconstructing glacial chronologies with consistent methods is critical for efforts to examine the timing and pattern of past climate change. Cosmogenic Be-10 surface exposure dating has been widely used to constrain the timing of glacial events on the Tibetan Plateau and in Central Asia. However, few such studies have been conducted in the Chinese Tian Shan and available Be-10 ages from this region have only provided evidence for glacial events during the global Last Glacial Maximum (gLGM) and Lateglacial. Here, we present 45 Be-10 surface exposure ages from glacial landforms in the Ala and Daxi valleys, two formerly glaciated valleys draining the Tianger Range, eastern Tian Shan. Combined with previously published Be-10 surface exposure ages from the Daxi Valley in the source area of the Urumqi River, the new ages record five major glacial events during Marine Oxygen Isotope Stages (MIS) 6 or older, 4, 3, 2, and 1 (during the Little Ice Age, LIA). Landforms from glacial events since MIS 2 are found on the northern slope of the Tianger Range (Daxi Valley), whereas evidence for the older glacial events is only preserved on its southern slope (Ala Valley). This disparity may be caused by different preservation- and micro-climatic conditions on the northern and southern slopes of this mountain range, due to differences in gradient and aspect. The LIA glacial advances are apparently the only Holocene glacial event recorded in this area. Earlier Holocene glacial events were probably so restricted in extent that they were destroyed by subsequent LIA advances.

  • 15. Lifton, Nathaniel
    et al.
    Beel, Casey
    Hättestrand, Clas
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Kassab, Christine
    Rogozhina, Irina
    Heermance, Richard
    Oskin, Michael
    Burbank, Douglas
    Blomdin, Robin
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology. Purdue University, USA.
    Gribenski, Natacha
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Caffee, Marc
    Goehring, Brent M.
    Heyman, Jakob
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Ivanov, Mikhail
    Li, Yanan
    Li, Yingkui
    Petrakov, Dmitry
    Usubaliev, Ryskul
    Codilean, Alexandru T.
    Chen, Yixin
    Harbor, Jon
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology. Purdue University, USA.
    Stroeven, Arjen P.
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Constraints on the late Quaternary glacial history of the Inylchek and Sary-Dzaz valleys from in situ cosmogenic Be-10 and Al-26, eastern Kyrgyz Tian Shan2014In: Quaternary Science Reviews, ISSN 0277-3791, E-ISSN 1873-457X, Vol. 101, p. 77-90Article in journal (Refereed)
    Abstract [en]

    Paleoclimatic constraints from regions at the confluence of major climate systems are particularly important in understanding past climate change. Using geomorphic mapping based on remote sensing and field investigations, combined with in situ cosmogenic Be-10 and Al-26 dating of boulders associated with glacial landforms, we investigate the chronology of past glaciation in the Inylchek and Sary-Dzaz valleys in the eastern Kyrgyz Tian Shan, a tectonically active area with some of the highest peaks in the world outside of the Himalayas. Cosmogenic Be-10 and (26) Al exposure ages of boulders on moraines record up to five glacial advances including: Lateglacial age lateral moraine remnants and meltwater channels in the upper Inylchek Valley; Last Glacial Maximum (LGM, Marine Oxygen Isotope Stage [MIS] 2) moraines in the Sary-Dzaz Valley and in a terminal moraine complex at the west end of the Inylchek Valley, overriding older moraines; an MIS 4 or 5 moraine remnant above the Inylchek terminal moraine complex; and an older high moraine remnant down-valley from the confluence of the Inylchek and Sary-Dzaz valleys. The evidence for glacial extent in this study is consistent with a limited ice expansion hypothesis for Tian Shan glaciation. Published results from the western and central Kyrgyz Tian Shan do not show evidence for significant LGM glacier expansion, which in combination with the results presented here, indicate a spatial variation in glacier records along the Tian Shan. This may reflect either paleoclimatic gradients or the impact of local physiographic conditions on responses to regional climate change, or both.

  • 16.
    Stroeven, Arjen P.
    et al.
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Hättestrand, Clas
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Kleman, Johan
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Heyman, Jakob
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Fabel, Derek
    Fredin, Ola
    Goodfellow, Bradley W.
    Stockholm University, Faculty of Science, Department of Geological Sciences. Lund University, Sweden.
    Harbor, Jonathan M.
    Stockholm University, Faculty of Science, Department of Physical Geography. Purdue University, USA.
    Jansen, John D.
    Stockholm University, Faculty of Science, Department of Physical Geography. University of Potsdam, Germany.
    Olsen, Lars
    Caffee, Marc W.
    Fink, David
    Lundqvist, Jan
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Rosqvist, Gunhild C.
    Stockholm University, Faculty of Science, Department of Physical Geography. University of Bergen, Norway.
    Strömberg, Bo
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Jansson, Krister N.
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Deglaciation of Fennoscandia2016In: Quaternary Science Reviews, ISSN 0277-3791, E-ISSN 1873-457X, Vol. 147, no SI, p. 91-121Article in journal (Refereed)
    Abstract [en]

    To provide a new reconstruction of the deglaciation of the Fennoscandian Ice Sheet, in the form of calendar-year time-slices, which are particularly useful for ice sheet modelling, we have compiled and synthesized published geomorphological data for eskers, ice-marginal formations, lineations, marginal meltwater channels, striae, ice-dammed lakes, and geochronological data from radiocarbon, varve, optically-stimulated luminescence, and cosmogenic nuclide dating. This is summarized as a deglaciation map of the Fennoscandian Ice Sheet with isochrons marking every 1000 years between 22 and 13 cal kyr BP and every hundred years between 11.6 and final ice decay after 9.7 cal kyr BP. Deglaciation patterns vary across the Fennoscandian Ice Sheet domain, reflecting differences in climatic and geomorphic settings as well as ice sheet basal thermal conditions and terrestrial versus marine margins. For example, the ice sheet margin in the high-precipitation coastal setting of the western sector responded sensitively to climatic variations leaving a detailed record of prominent moraines and other ice-marginal deposits in many fjords and coastal valleys. Retreat rates across the southern sector differed between slow retreat of the terrestrial margin in western and southern Sweden and rapid retreat of the calving ice margin in the Baltic Basin. Our reconstruction is consistent with much of the published research. However, the synthesis of a large amount of existing and new data support refined reconstructions in some areas. For example, the LGM extent of the ice sheet in northwestern Russia was located far east and it occurred at a later time than the rest of the ice sheet, at around 17-15 cal kyr BP. We also propose a slightly different chronology of moraine formation over southern Sweden based on improved correlations of moraine segments using new LiDAR data and tying the timing of moraine formation to Greenland ice core cold stages. Retreat rates vary by as much as an order of magnitude in different sectors of the ice sheet, with the lowest rates on the high-elevation and maritime Norwegian margin. Retreat rates compared to the climatic information provided by the Greenland ice core record show a general correspondence between retreat rate and climatic forcing, although a close match between retreat rate and climate is unlikely because of other controls, such as topography and marine versus terrestrial margins. Overall, the time slice reconstructions of Fennoscandian Ice Sheet deglaciation from 22 to 9.7 cal kyr BP provide an important dataset for understanding the contexts that underpin spatial and temporal patterns in retreat of the Fennoscandian Ice Sheet, and are an important resource for testing and refining ice sheet models.

1 - 16 of 16
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf