Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Hjelm, Linnea C.
    et al.
    Ninebrant, Johan
    Nygren, Per-Åke
    Nilsson, Anders S.
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Seijsing, Johan
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Lysis of Staphylococcal Cells by Modular Lysin Domains Linked via a Non-covalent Barnase-Barstar Interaction Bridge2019In: Frontiers in Microbiology, ISSN 1664-302X, E-ISSN 1664-302X, Vol. 10, article id 558Article in journal (Refereed)
    Abstract [en]

    Bacteriophage endolysins and bacterial exolysins are capable of enzymatic degradation of the cell wall peptidoglycan layer and thus show promise as a new class of antimicrobials. Both exolysins and endolysins often consist of different modules, which are responsible for enzymatic functions and cell wall binding, respectively. Individual modules from different endo- or exolysins with different binding and enzymatic activities, can via gene fusion technology be re-combined into novel variants for investigations of arrangements of potential clinical interest. The aim of this study was to investigate if separately produced cell wall binding and enzyme modules could be assembled into a functional lysin via a non-covalent affinity interaction bridge composed of the barnase ribonuclease from Bacillus amyloliquefaciens and its cognate inhibitor barstar, known to form a stable heterodimeric complex. In a proof-of-principle study, using surface plasmon resonance, flow cytometry and turbidity reduction assays, we show that separately produced modules of a lysin cysteine/histidine-dependent amidohydrolase/peptidase (CHAP) from Staphylococcus aureus bacteriophage K endolysin (LysK) fused to barnase and a cell wall binding Src homology 3 domain (SH3b) from the S. simulans exolysin lysostaphin fused to barstar can be non-covalently assembled into a functional lysin showing both cell wall binding and staphylolytic activity. We hypothesize that the described principle for assembly of functional lysins from separate modules through appended hetero-dimerization domains has a potential for investigations of also other combinations of enzymatically active and cell wall binding domains for desired applications.

  • 2. Nileback, Linnea
    et al.
    Widhe, Mona
    Seijsing, Johan
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Bysell, Helena
    Sharma, Prashant K.
    Hedhammar, My
    Bioactive Silk Coatings Reduce the Adhesion of Staphylococcus aureus while Supporting Growth of Osteoblast-like Cells2019In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 11, no 28, p. 24999-25007Article in journal (Refereed)
    Abstract [en]

    Orthopedic and dental implants are associated with a substantial risk of failure due to biomaterial-associated infections and poor osseointegration. To prevent such outcomes, a coating can be applied on the implant to ideally both reduce the risk of bacterial adhesion and support establishment of osteoblasts. We present a strategy to construct dual-functional silk coatings with such properties. Silk coatings were made from a recombinant partial spider silk protein either alone (silk(wt)) or fused with a cell-binding motif derived from fibronectin (FN-silk). The biofilm-dispersal enzyme Dispersin B (DspB) and two peptidoglycan degrading endolysins, PlySs2 and SAL-1, were produced recombinantly. A sortase recognition tag (SrtTag) was included to allow site-specific conjugation of each enzyme onto silk(wt) and FN-silk coatings using an engineered variant of the transpeptidase Sortase A (SrtA*). To evaluate bacterial adhesion on the samples, Staphylococcus aureus was incubated on the coatings and subsequently subjected to live/dead staining. Fluorescence microscopy revealed a reduced number of bacteria on all silk coatings containing enzymes. Moreover, the bacteria were mobile to a higher degree, indicating a negative influence on the bacterial adhesion. The capability to support mammalian cell interactions was assessed by cultivation of the osteosarcoma cell line U-2 OS on dual-functional surfaces, prepared by conjugating the enzymes onto FN-silk coatings. U-2 OS cells could adhere to silk coatings with enzymes and showed high spreading and viability, demonstrating good cell compatibility.

  • 3.
    Seijsing, Fredrik
    et al.
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Nilebäck, Linnea
    Öhman, Oskar
    Pasupuleti, Rajeev
    Ståhl, Camilla
    Seijsing, Johan
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Hedhammar, My
    Recombinant spider silk coatings functionalized with enzymes targeting bacteria and biofilms2020In: MicrobiologyOpen, ISSN 2045-8827, E-ISSN 2045-8827, Vol. 9, no 4, article id e993Article in journal (Refereed)
    Abstract [en]

    Bacteria forming biofilms on surgical implants is a problem that might be alleviated by the use of antibacterial coatings. In this article, recombinant spider silk was functionalized with the peptidoglycan degrading endolysin SAL-1 from the staphylococcal bacteriophage SAP-1 and the biofilm-matrix-degrading enzyme Dispersin B from Aggregatibacter actinomycetemcomitans using direct genetic fusion and/or covalent protein-protein fusion catalyzed by Sortase A. Spider silk assembly and enzyme immobilization was monitored using quartz crystal microbalance analysis. Enzyme activity was investigated both with a biochemical assay using cleavage of fluorescent substrate analogues and bacterial assays for biofilm degradation and turbidity reduction. Spider silk coatings functionalized with SAL-1 and Disperin B were found to exhibit bacteriolytic effect and inhibit biofilm formation, respectively. The strategy to immobilize antibacterial enzymes to spider silk presented herein show potential to be used as surface coatings of surgical implants and other medical equipment to avoid bacterial colonization.

1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf