Change search
Refine search result
1 - 13 of 13
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.
  • 1.
    Bornschein, Christoph
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry. Universität Rostock, Germany.
    Gustafson, Karl P. J.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Verho, Oscar
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Beller, Matthias
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Evaluation of Fe and Ru Pincer-Type Complexes as Catalysts for the Racemization of Secondary Benzylic Alcohols2016In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 22, no 33, 11583-11586 p.Article in journal (Refereed)
    Abstract [en]

    Fe and Ru pincer-type catalysts are used for the racemization of benzylic alcohols. Racemization with the Fe catalyst was achieved within 30 minutes under mild reaction conditions, with a catalyst loading as low as 2 mol %. This reaction constitutes the first example of an iron-catalyzed racemization of an alcohol. The efficiency for racemization of the Fe catalyst and its Ru analogue was evaluated for a wide range of sec-benzylic alcohols. The commercially available Ru complex proved to be highly robust and even tolerated the presence of water in the reaction mixture.

  • 2.
    Bruneau, Alexandre
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Gustafson, Karl P. J.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Yuan, Ning
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). Swedish University of Agricultural Sciences, Sweden.
    Tai, Cheuk-Wai
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Persson, Ingmar
    Zou, Xiaodong
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Synthesis of Benzofurans and Indoles from Terminal Alkynes and Iodoaromatics Catalyzed by Recyclable Palladium Nanoparticles Immobilized on Siliceous Mesocellular Foam2017In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 23, no 52, 12886-12891 p.Article in journal (Refereed)
    Abstract [en]

    Herein, we report on the utilization of a heterogeneous catalyst, consisting of Pd nanoparticles supported on a siliceous mesocellular foam (Pd-0-AmP-MCF), for the synthesis of heterocycles. Reaction of o-iodophenols and protected o-iodoanilines with acetylenes in the presence of a Pd nanocatalyst produced 2-substituted benzofurans and indoles, respectively. In general, the catalytic protocol afforded the desired products in good to excellent yields under mild reaction conditions without the addition of ligands. Moreover, the structure of the reported Pd nanocatalyst was further elucidated with extended X-ray absorption fine-structure spectroscopy, and it was proven that the catalyst could be recycled multiple times without significant loss of activity.

  • 3.
    Engström, Karin
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Johnston, Eric V.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Verho, Oscar
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Gustafson, Karl P. J.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Shakeri, Mozaffar
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Tai, Cheuk-Wai
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK), Inorganic and Structural Chemistry.
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Co-immobilization of an Enzyme and a Metal into the Compartments of Mesoporous Silica for Cooperative Tandem Catalysis: An Artificial Metalloenzyme2013In: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 52, no 52, 14006-14010 p.Article in journal (Refereed)
    Abstract [en]

    Surpassing nature: A hybrid catalyst in which Candida antarctica lipase B and a nanopalladium species are co-immobilized into the compartments of mesoporous silica is presented. The metal nanoparticles and the enzyme are in close proximity to one another in the cavities of the support. The catalyst mimics a metalloenzyme and was used for dynamic kinetic resolution of a primary amine in high yield and excellent enantioselectivity.

  • 4.
    Gustafson, Karl P. J.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Gudmundsson, Arnar
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Lewis, Kayla
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Chemoenzymatic Dynamic Kinetic Resolution of Secondary Alcohols Using an Air- and Moisture-Stable Iron Racemization Catalyst2017In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 23, no 5, 1048-1051 p.Article in journal (Refereed)
    Abstract [en]

    Herein, we report on a metalloenzymatic dynamic kinetic resolution of sec-alcohols employing an iron-based racemization catalyst together with a lipase. The iron catalyst was evaluated in racemization and then used in dynamic kinetic resolution of a number of sec-alcohols to give enantiomerically pure products in good to high yields. The iron catalyst is air and moisture stable and is readily accessible.

  • 5.
    Gustafson, Karl P. J.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Lihammar, Richard
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Verho, Oscar
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Engström, Karin
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Chemoenzymatic Dynamic Kinetic Resolution of Primary Amines Using a Recyclable Palladium Nanoparticle Catalyst Together with Lipases2014In: Journal of Organic Chemistry, ISSN 0022-3263, E-ISSN 1520-6904, Vol. 79, no 9, 3747-3751 p.Article in journal (Refereed)
    Abstract [en]

    A catalyst consisting of palladium nanoparticles supported on amino-functionalized siliceous mesocellular foam (Pd-AmP-MCF) was used in chemoenzymatic dynamic kinetic resolution (DKR) to convert primary amines to amides in high yields and excellent ee's. The efficiency of the nanocatalyst at temperatures below 70 degrees C enables reaction conditions that are more suitable for enzymes. In the present study, this is exemplified by subjecting 1-phenylethylamine (1a) and analogous benzylic amines to DKR reactions using two commercially available lipases, Novozyme-435 (Candida antartica Lipase B) and Amano Lipase PS-C1 (lipase from Burkholderia cepacia) as biocatalysts. The latter enzyme has not previously been used in the DKR of amines because of its low stability at temperatures over 60 degrees C. The viability of the heterogeneous Pd-AmP-MCF was further demonstrated in a recycling study, which shows that the catalyst can be reused up to five times.

  • 6.
    Gustafson, Karl P. J.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Shatskiy, Andrey
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Verho, Oscar
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kärkäs, Markus D.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Schluschass, Bastian
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Tai, Cheuk-Wai
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Johnston, Eric V.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Water oxidation mediated by ruthenium oxide nanoparticles supported on siliceous mesocellular foam2017In: Catalysis Science & Technology, ISSN 2044-4753, E-ISSN 2044-4761, Vol. 7, no 1, 293-299 p.Article in journal (Refereed)
    Abstract [en]

    Artificial photosynthesis is an attractive strategy for converting solar energy into fuel. In this context, development of catalysts for oxidation of water to molecular oxygen remains a critical bottleneck. Herein, we describe the preparation of a well-defined nanostructured RuO2 catalyst, which is able to carry out the oxidation of water both chemically and photochemically. The developed heterogeneous RuO2 nanocatalyst was found to be highly active, exceeding the performance of most known heterogeneous water oxidation catalysts when driven by chemical or photogenerated oxidants.

  • 7.
    Görbe, Tamás
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Gustafson, Karl P. J.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Verho, Oscar
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kervefors, Gabriella
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Zheng, Haoquan
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Zou, Xiaodong
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Johnston, Eric V.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Design of a Pd(0)-CalB CLEA Biohybrid Catalyst and Its Application in a One-Pot Cascade Reaction2017In: ACS Catalysis, ISSN 2155-5435, E-ISSN 2155-5435, Vol. 7, no 3, 1601-1605 p.Article in journal (Refereed)
    Abstract [en]

    Herein, a design of a biohybrid catalyst is described, consisting of Pd nanoparticles and a cross-linked network of aggregated lipase B enzyme of Candida antarctica (CalB CLEA) functioning as an active support for the Pd nanoparticles. Both entities of the hybrid catalyst showed good catalytic activity. The applicability was demonstrated in a one-pot reaction, where the Pd-catalyzed cycloisomerization of 4-pentynoic acid afforded a lactone that serves as an acyl donor in a subsequent selective enzymatic kinetic resolution of a set of sec-alcohols. The catalyst proved to be robust and could be recycled five times without a significant loss of activity.

  • 8.
    Tinnis, Fredrik
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Verho, Oscar
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Gustafson, Karl P. J.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Tai, Cheuk-Wai
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Adolfsson, Hans
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Efficient Palladium-Catalyzed Aminocarbonylation of Aryl Iodides Using Palladium Nanoparticles Dispersed on Siliceous Mesocellular Foam2014In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 20, no 20, 5885-5889 p.Article in journal (Refereed)
    Abstract [en]

    A highly dispersed nanopalladium catalyst supported on mesocellular foam (MCF), was successfully used in the heterogeneous catalysis of aminocarbonylation reactions. During the preliminary evaluation of this catalyst it was discovered that the supported palladium nanoparticles exhibited a “release and catch” effect, meaning that a minor amount of the heterogeneous palladium became soluble and catalyzed the reaction, after which it re-deposited onto the support.

  • 9.
    Verho, Oscar
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Gustafson, Karl P. J.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Nagendiran, Anuja
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Tai, Cheuk-Wai
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Mild and Selective Hydrogenation of Nitro Compounds using Palladium Nanoparticles Supported on Amino-Functionalized Mesocellular Foam2014In: ChemCatChem, ISSN 1867-3880, E-ISSN 1867-3899, Vol. 6, no 11, 3153-3159 p.Article in journal (Refereed)
    Abstract [en]

    We present the utilization of a heterogeneous catalyst comprised of Pd nanoparticles supported on aminopropyl-functionalized siliceous mesocellular foam (Pd-0-AmP-MCF) for the selective hydrogenation of aromatic, aliphatic, and heterocyclic nitro compounds to the corresponding amines. In general, the catalytic protocol exclusively affords the desired amine products in excellent yields within short reaction times with the reactions performed at room temperature under ambient pressure of H-2. Moreover, the reported Pd nanocatalyst displayed excellent structural integrity for this transformation as it could be recycled multiple times without any observable loss of activity or leaching of metal. In addition, the Pd nanocatalyst could be easily integrated into a continuous-flow device and used for the hydrogenation of 4-nitroanisole on a 2.5 g scale, where the product p-anisidine was obtained in 95% yield within 2 h with a Pd content of less than 1 ppm.

  • 10.
    Verho, Oscar
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kärkäs, Markus
    Åkermark, Torbjörn
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK), Materials Chemistry.
    Johnston, Eric V.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Gustafson, Karl
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Tai, Cheuk-Wai
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK), Inorganic and Structural Chemistry.
    Svengren, Henrik
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK), Inorganic and Structural Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Well-Defined Palladium Nanoparticles Supported on Amino-Functionalized Siliceous Mesocellular Foam: An Efficient Heterogeneous Catalyst for Chemically-Induced H2O OxidationManuscript (preprint) (Other academic)
  • 11.
    Verho, Oscar
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Zheng, Haoquan
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Gustafson, Karl P. J.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Nagendiran, Anuja
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Zou, Xiaodong
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Application of Pd Nanoparticles Supported on Mesoporous Hollow Silica Nanospheres for the Efficient and Selective Semihydrogenation of Alkynes2016In: ChemCatChem, ISSN 1867-3880, E-ISSN 1867-3899, Vol. 8, no 4, 773-778 p.Article in journal (Refereed)
    Abstract [en]

    Herein, the preparation of a heterogeneous catalyst consisting of 1-2nm sized Pd nanoparticles supported on amino-functionalized mesoporous hollow silica nanospheres and its use for the semihydrogenation of mono- and disubstituted alkynes is reported. By utilizing this Pd nanocatalyst together with the green poisoning agent DMSO, high yields of the desired alkenes could be achieved, while suppressing the degree of over-reduction to alkanes. To our delight, the Pd nanocatalyst displayed remarkable chemoselectivity towards the alkyne moiety, allowing the transformation to be carried out in the presence of other reducible functionalities, such as halogens, carbonyl, and nitro groups.

  • 12.
    Verho, Oscar
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Torbjörn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Johnston, Eric V.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Gustafson, Karl P. J.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Tai, Cheuk-Wai
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Svengren, Henrik
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Kärkäs, Markus D.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Well-Defined Palladium Nanoparticles Supported on Siliceous Mesocellular Foam as Heterogeneous Catalysts for the Oxidation of Water2015In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 21, no 15, 5909-5915 p.Article in journal (Refereed)
    Abstract [en]

    Herein, we describe the use of Pd nanoparticles immobilized on an amino-functionalized siliceous mesocellular foam for the catalytic oxidation of H2O. The Pd nanocatalyst proved to be capable of mediating the four-electron oxidation of H2O to O-2, both chemically and photochemically. The Pd nanocatalyst is easy to prepare and shows high chemical stability, low leaching, and recyclability. Together with its promising catalytic activity, these features make the Pd nanocatalyst of potential interest for future sustainable solar-fuel production.

  • 13.
    Volkov, Alexey
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Gustafson, Karl P. J.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Tai, Cheuk-Wai
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Verho, Oscar
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Adolfsson, Hans
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Mild Deoxygenation of Aromatic Ketones and Aldehydes over Pd/C Using Polymethylhydrosiloxane as the Reducing Agent2015In: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 54, no 17, 5122-5126 p.Article in journal (Refereed)
    Abstract [en]

    Herein, a practical and mild method for the deoxygenation of a wide range of benzylic aldehydes and ketones is described, which utilizes heterogeneous Pd/C as the catalyst together with the green hydride source, polymethylhydrosiloxane. The developed catalytic protocol is scalable and robust, as exemplified by the deoxygenation of ethyl vanillin, which was performed on a 30 mmol scale in an open-to-air setup using only 0.085 mol% Pd/C catalyst to furnish the corresponding deoxygenated product in 93% yield within 3 hours at room temperature. Furthermore, the Pd/C catalyst was shown to be recyclable up to 6 times without any observable decrease in efficiency and it exhibited low metal leaching under the reaction conditions.

1 - 13 of 13
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf