Change search
Refine search result
1 - 27 of 27
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Bäckström, Erik
    et al.
    Stockholm University, Faculty of Science, Department of Physics.
    Hanstorp, D.
    Hole, Odd Magnar
    Stockholm University, Faculty of Science, Department of Physics.
    Kaminska, Magdalena
    Stockholm University, Faculty of Science, Department of Physics. Jan Kochanowski University, Poland.
    Nascimento, Rodrigo F.
    Stockholm University, Faculty of Science, Department of Physics.
    Blom, Mikael
    Stockholm University, Faculty of Science, Department of Physics.
    Björkhage, Mikael
    Stockholm University, Faculty of Science, Department of Physics.
    Källberg, Anders
    Stockholm University, Faculty of Science, Department of Physics.
    Löfgren, Patrik
    Stockholm University, Faculty of Science, Department of Physics.
    Reinhed, Peter
    Stockholm University, Faculty of Science, Department of Physics.
    Rosén, Stefan
    Stockholm University, Faculty of Science, Department of Physics.
    Simonsson, Ansgar
    Stockholm University, Faculty of Science, Department of Physics.
    Thomas, Richard D.
    Stockholm University, Faculty of Science, Department of Physics.
    Mannervik, Sven
    Stockholm University, Faculty of Science, Department of Physics.
    Schmidt, Henning T.
    Stockholm University, Faculty of Science, Department of Physics.
    Cederquist, Henrik
    Stockholm University, Faculty of Science, Department of Physics.
    Storing keV negative ions for an hour: The lifetime of the metastable 2P1/2 level in 32S−2015In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 114, no 14, article id 143003Article in journal (Refereed)
    Abstract [en]

    We use a novel electrostatic ion storage ring to measure the radiative lifetime of the upper level in the 3p 5  P 2  o 1/2 →3p 5  P 2  o 3/2   spontaneous radiative decay in S −  32   to be 503±54  sec . This is by orders of magnitude the longest lifetime ever measured in a negatively charged ion. Cryogenic cooling of the storage ring gives a residual-gas pressure of a few times 10 −14   mbar at 13 K and storage of 10 keV sulfur anions for more than an hour. Our experimental results differ by 1.3σ  from the only available theoretical prediction.

  • 2.
    Chartkunchand, Kiattichart C.
    et al.
    Stockholm University, Faculty of Science, Department of Physics.
    Kaminska, Magdalena
    Stockholm University, Faculty of Science, Department of Physics. Jan Kochanowski University, Poland.
    Anderson, Emma K.
    Stockholm University, Faculty of Science, Department of Physics.
    Kristiansson, M. K.
    Eklund, Gustav
    Stockholm University, Faculty of Science, Department of Physics.
    Hole, Odd Magnar
    Stockholm University, Faculty of Science, Department of Physics.
    Nascimento, Rodrigo F.
    Stockholm University, Faculty of Science, Department of Physics. Centro Federal de Educação Tecnológica Celso Suckow da Fonseca, Brazil.
    Blom, Mikael
    Stockholm University, Faculty of Science, Department of Physics.
    Björkhage, Mikael
    Stockholm University, Faculty of Science, Department of Physics.
    Källberg, Anders
    Stockholm University, Faculty of Science, Department of Physics.
    Löfgren, Patrik
    Stockholm University, Faculty of Science, Department of Physics.
    Reinhed, Peter
    Stockholm University, Faculty of Science, Department of Physics.
    Rosén, Stefan
    Stockholm University, Faculty of Science, Department of Physics.
    Simonsson, Ansgar
    Stockholm University, Faculty of Science, Department of Physics.
    Thomas, Richard D.
    Stockholm University, Faculty of Science, Department of Physics.
    Mannervik, Sven
    Stockholm University, Faculty of Science, Department of Physics.
    Davis, V. T.
    Neill, P. A.
    Thompson, J. S.
    Hanstorp, D.
    Zettergren, Henning
    Stockholm University, Faculty of Science, Department of Physics.
    Cederquist, Henrik
    Stockholm University, Faculty of Science, Department of Physics.
    Schmidt, Henning T.
    Stockholm University, Faculty of Science, Department of Physics.
    Radiative lifetimes of the bound excited states of Pt-2016In: Physical Review A, ISSN 2469-9926, Vol. 94, no 3, article id 032501Article in journal (Refereed)
    Abstract [en]

    The intrinsic radiative lifetimes of the 5d(10)6s(2)S(1/2) and 5d(9)6s(2) D-2(3/2) bound excited states in the platinum anion Pt- have been studied at cryogenic temperatures at the Double ElectroStatic Ion Ring Experiment (DESIREE) facility at Stockholm University. The intrinsic lifetime of the higher-lying 5d(10)6s S-2(1/2) state was measured to be 2.54 +/- 0.10 s, while only a lifetime in the range of 50-200 ms could be estimated for the 5d(9)6s(2) D-2(3/2) fine-structure level. The storage lifetime of the Pt- ion beam was measured to be a little over 15 min at a ring temperature of 13 K. The present study reports the lifetime of an atomic negative ion in an excited bound state with an electron configuration different from that of the ground state.

  • 3.
    Chartkunchand, Kiattichart C.
    et al.
    Stockholm University, Faculty of Science, Department of Physics.
    Stockett, Mark H.
    Stockholm University, Faculty of Science, Department of Physics.
    Anderson, Emma K.
    Stockholm University, Faculty of Science, Department of Physics.
    Eklund, Gustav
    Stockholm University, Faculty of Science, Department of Physics.
    Kristiansson, Moa K.
    Stockholm University, Faculty of Science, Department of Physics.
    Kamińska, Magdalena
    Stockholm University, Faculty of Science, Department of Physics. Jan Kochanowski University, Poland.
    de Ruette, Nathalie
    Stockholm University, Faculty of Science, Department of Physics.
    Blom, Mikael
    Stockholm University, Faculty of Science, Department of Physics.
    Björkhage, Mikael
    Stockholm University, Faculty of Science, Department of Physics.
    Källberg, Anders
    Stockholm University, Faculty of Science, Department of Physics.
    Löfgren, Patrik
    Stockholm University, Faculty of Science, Department of Physics.
    Reinhed, Peter
    Stockholm University, Faculty of Science, Department of Physics.
    Rosén, Stefan
    Stockholm University, Faculty of Science, Department of Physics.
    Simonsson, Ansgar
    Stockholm University, Faculty of Science, Department of Physics.
    Zettergren, Henning
    Stockholm University, Faculty of Science, Department of Physics.
    Schmidt, Henning T.
    Stockholm University, Faculty of Science, Department of Physics.
    Cederquist, Henrik
    Stockholm University, Faculty of Science, Department of Physics.
    Dianion diagnostics in DESIREE: High-sensitivity detection of C-n(2-) from a sputter ion source2018In: Review of Scientific Instruments, ISSN 0034-6748, E-ISSN 1089-7623, Vol. 89, no 3, article id 033112Article in journal (Refereed)
    Abstract [en]

    A sputter ion source with a solid graphite target has been used to produce dianions with a focus on carbon cluster dianions, C-n(2-), with n = 7-24. Singly and doubly charged anions from the source were accelerated together to kinetic energies of 10 keV per atomic unit of charge and injected into one of the cryogenic (13 K) ion-beam storage rings of the Double ElectroStatic Ion Ring Experiment facility at Stockholm University. Spontaneous decay of internally hot C-n(2-) dianions injected into the ring yielded C-n(2-) anions with kinetic energies of 20 keV, which were counted with a microchannel plate detector. Mass spectra produced by scanning the magnetic field of a 90 degrees analyzing magnet on the ion injection line reflect the production of internally hot C-7(2-) - C-24(2-) dianions with lifetimes in the range of tens of microseconds to milliseconds. In spite of the high sensitivity of this method, no conclusive evidence of C-6(2-) was found while there was a clear C-7(2-) signal with the expected isotopic distribution. This is consistent with earlier experimental studies and with theoretical predictions. An upper limit is deduced for a C-6(2-) signal that is two orders-of-magnitude smaller than that for C-7(2-). In addition, CnO2- and CnCu2- dianions were detected.

  • 4.
    Danielsson, Mathias
    et al.
    Stockholm University, Faculty of Science, Department of Physics.
    Hamberg, Mathias
    Stockholm University, Faculty of Science, Department of Physics.
    Simonsson, Ansgar
    Stockholm University, Faculty of Science, The Manne Siegbahn Laboratory .
    Paál, Andreas
    Stockholm University, Faculty of Science, The Manne Siegbahn Laboratory .
    Larsson, Mats
    Stockholm University, Faculty of Science, Department of Physics.
    Geppert, Wolf
    Stockholm University, Faculty of Science, Department of Physics.
    Zhaunerchyk, Vitaly
    Stockholm University, Faculty of Science, Department of Physics.
    Ehlerding, Anneli
    Stockholm University, Faculty of Science, Department of Physics.
    Kaminska, Magdalena
    Stockholm University, Faculty of Science, Department of Physics.
    Hellberg, Fredrik
    Stockholm University, Faculty of Science, Department of Physics.
    Thomas, Richard
    Stockholm University, Faculty of Science, Department of Physics.
    Österdal, Fabian
    af Ugglas, Magnus
    Stockholm University, Faculty of Science, The Manne Siegbahn Laboratory .
    Källberg, Anders
    Stockholm University, Faculty of Science, The Manne Siegbahn Laboratory .
    The cross-section and branching fractions for dissociative recombination of the diacetylene cation C4D2+2008In: International Journal of Mass Spectrometry, ISSN 1387-3806, E-ISSN 1873-2798, Vol. 273, no 3, p. 111-116Article in journal (Refereed)
    Abstract [en]

    In this paper we report the results of a study on the dissociative recombination (DR) of the diacetylene cation, C4D2+, which has been carried out at the ion storage ring CRYRING in Stockholm, Sweden. The energy-dependent absolute DR cross-section as well as the branching fractions at 0 eV collision energy were measured. The DR cross-section was best fitted using the expression σ(E) = (7.5 ± 1.5) × 10−16 × E−(1.29±0.03) cm2 over the collision energy range 1–100 meV. The thermal rate coefficient was deduced from the cross-section to be α(T) = (1.10 ± 0.15) × 10−6 × (T/300)−(0.79±0.03) cm3/s. The reported branching fractions for C4D2+ agree with previous experiments on the DR of C4H2+ performed at the ASTRID storage ring in Aarhus, Denmark, and furthermore, indicate that the DR of C4D2+ possesses only two channels leading to the following products: C4D + D (75%) and C2D + C2D (25%).

  • 5.
    Das, S.
    et al.
    Stockholm University, Faculty of Science, Department of Physics.
    Källberg, Anders
    Stockholm University, Faculty of Science, Department of Physics.
    Spatial Resolution Test of a Beam Profile Monitoring System for the Double Electrostatic Ion Storage Ring2014In: Acta Physica Polonica. A, ISSN 0587-4246, E-ISSN 1898-794X, Vol. 125, no 1, p. 13-17Article in journal (Refereed)
    Abstract [en]

    A beam profile monitoring system based on the imaging of low energy electrons created when the ion beam impinges on a metal plate was built to monitor the beam profile and to cover the wide range of beam intensities and energies for the DESIREE (Double ElectroStatic Ion Ring ExpEriment) beam line diagnostics. The spatial resolution of the system was tested with different beams of various energies and was found to be around 2 mm. A significant steering effect on the ion beam before hitting the metallic foil was observed at low energies.

  • 6.
    Ellman, A.
    et al.
    Stockholm University, Faculty of Science, Department of Physics.
    Schef, P.
    Stockholm University, Faculty of Science, Department of Physics.
    Lundin, P.
    Stockholm University, Faculty of Science, Department of Physics.
    Royen, P.
    Stockholm University, Faculty of Science, Department of Physics.
    Mannervik, S.
    Stockholm University, Faculty of Science, Department of Physics.
    Fritioff, K.
    Andersson, P.
    Hanstorp, D.
    Froese Fischer, C.
    Österdahl, F.
    Pegg, D.J.
    Gibson, N.D.
    Danared, H.
    Källberg, A.
    Stockholm University, Faculty of Science, The Manne Siegbahn Laboratory .
    Radiative Lifetime of a Bound Excited State of Te-2004In: Physical Review Letters, ISSN 0031-9007, Vol. 92, no 25, p. 253002-Article in journal (Refereed)
    Abstract [en]

    We report on the first experimental study of the lifetime of a bound excited state of a negative ion. A new experimental technique was developed and used to measure the radiative lifetime of the 5p52P1/2 level of Te-. The experiment was performed in a magnetic storage ring, where a laser beam was applied along one of the straight sections. In the experiment the population of the excited J=1/2 level was probed each time the Te- ions passed through the laser field. A decay curve was built up by sampling the population of the excited level of the Te- ions as a function of time after injection into the ring. A multiconfiguration Dirac-Hartree-Fock calculation was performed in conjunction with the experiment. The calculation yielded a radiative lifetime of 0.45 s, in excellent agreement with the measured value of 0.42(5) s.

  • 7.
    Gatchell, Michael
    et al.
    Stockholm University, Faculty of Science, Department of Physics.
    Schmidt, Henning T.
    Stockholm University, Faculty of Science, Department of Physics.
    Alexander, John D.
    Stockholm University, Faculty of Science, Department of Physics.
    Andler, Guillermo
    Stockholm University, Faculty of Science, Department of Physics.
    Björkhage, Mikael
    Stockholm University, Faculty of Science, Department of Physics.
    Blom, Mikael
    Stockholm University, Faculty of Science, Department of Physics.
    Brännholm, Lars
    Stockholm University, Faculty of Science, Department of Physics.
    Bäckström, Erik
    Stockholm University, Faculty of Science, Department of Physics.
    Chen, Tao
    Stockholm University, Faculty of Science, Department of Physics.
    Geppert, Wolf
    Stockholm University, Faculty of Science, Department of Physics.
    Halldén, Per
    Stockholm University, Faculty of Science, Department of Physics.
    Hanstorp, Dag
    Hellberg, Fredrik
    Stockholm University, Faculty of Science, Department of Physics.
    Källberg, Anders
    Stockholm University, Faculty of Science, Department of Physics.
    Larsson, Mats
    Stockholm University, Faculty of Science, Department of Physics.
    Leontein, Sven
    Stockholm University, Faculty of Science, Department of Physics.
    Liljeby, Leif
    Stockholm University, Faculty of Science, Department of Physics.
    Löfgren, Patrik
    Stockholm University, Faculty of Science, Department of Physics.
    Mannervik, Sven
    Stockholm University, Faculty of Science, Department of Physics.
    Paal, Andras
    Stockholm University, Faculty of Science, Department of Physics.
    Reinhed, Peter
    Stockholm University, Faculty of Science, Department of Physics.
    Rensfelt, Karl-Gunnar
    Stockholm University, Faculty of Science, Department of Physics.
    Rosén, Stefan
    Stockholm University, Faculty of Science, Department of Physics.
    Seitz, Fabian
    Stockholm University, Faculty of Science, Department of Physics.
    Simonsson, Ansgar
    Stockholm University, Faculty of Science, Department of Physics.
    Stockett, Mark H.
    Stockholm University, Faculty of Science, Department of Physics.
    Thomas, Richard D.
    Stockholm University, Faculty of Science, Department of Physics.
    Zettergren, Henning
    Stockholm University, Faculty of Science, Department of Physics.
    Cederquist, Henrik
    Stockholm University, Faculty of Science, Department of Physics.
    First results from the Double ElectroStatic Ion-Ring ExpEriment, DESIREE2014In: Journal of Physics, Conference Series, ISSN 1742-6588, E-ISSN 1742-6596, Vol. 488, p. 092003-Article in journal (Refereed)
    Abstract [en]

    We have stored the first beams in one of the rings of the double electrostatic ion-storage ring, DESIREE at cryogenic and at room temperature conditions. At cryogenic operations the following parameters are found. Temperature; T= 13K, pressure; p <10(-13) mbar, initial number of stored ions; N > 10(7) and storage lifetime of a C-2(-) beam; tau = 450 S.

  • 8.
    Gatchell, Michael
    et al.
    Stockholm University, Faculty of Science, Department of Physics.
    Schmidt, Henning T.
    Stockholm University, Faculty of Science, Department of Physics.
    Thomas, Richard D.
    Stockholm University, Faculty of Science, Department of Physics.
    Rosén, Stefan
    Stockholm University, Faculty of Science, Department of Physics.
    Reinhed, Peter
    Stockholm University, Faculty of Science, Department of Physics.
    Löfgren, Patrik
    Stockholm University, Faculty of Science, Department of Physics.
    Brännholm, Lars
    Stockholm University, Faculty of Science, Department of Physics.
    Blom, Mikael
    Stockholm University, Faculty of Science, Department of Physics.
    Björkhage, Mikael
    Stockholm University, Faculty of Science, Department of Physics.
    Bäckström, Erik
    Stockholm University, Faculty of Science, Department of Physics.
    Alexander, John D.
    Stockholm University, Faculty of Science, Department of Physics.
    Leontein, Sven
    Stockholm University, Faculty of Science, Department of Physics.
    Hanstorp, D.
    Zettergren, Henning
    Stockholm University, Faculty of Science, Department of Physics.
    Liljeby, Leif
    Stockholm University, Faculty of Science, Department of Physics.
    Källberg, Anders
    Stockholm University, Faculty of Science, Department of Physics.
    Simonsson, Ansgar
    Stockholm University, Faculty of Science, Department of Physics.
    Hellberg, Fredrik
    Stockholm University, Faculty of Science, Department of Physics.
    Mannervik, Sven
    Stockholm University, Faculty of Science, Department of Physics.
    Larsson, Mats
    Stockholm University, Faculty of Science, Department of Physics.
    Geppert, Wolf D.
    Stockholm University, Faculty of Science, Department of Physics.
    Rensfelt, Karl-Gunnar
    Stockholm University, Faculty of Science, Department of Physics.
    Danared, Håkan
    Stockholm University, Faculty of Science, Department of Physics. European Spallation Source, Sweden.
    Paál, Andras
    Stockholm University, Faculty of Science, Department of Physics.
    Masuda, Masaharu
    Stockholm University, Faculty of Science, Department of Physics.
    Halldén, Per
    Stockholm University, Faculty of Science, Department of Physics.
    Andler, Guillermo
    Stockholm University, Faculty of Science, Department of Physics.
    Stockett, Mark H.
    Stockholm University, Faculty of Science, Department of Physics.
    Chen, Tao
    Stockholm University, Faculty of Science, Department of Physics.
    Källersjö, Gunnar
    Stockholm University, Faculty of Science, Department of Physics.
    Weimer, Jan
    Stockholm University, Faculty of Science, Department of Physics.
    Hansen, K.
    Hartman, H.
    Cederquist, Henrik
    Stockholm University, Faculty of Science, Department of Physics.
    Commissioning of the DESIREE storage rings - a new facility for cold ion-ion collisions2014In: Journal of Physics, Conference Series, ISSN 1742-6588, E-ISSN 1742-6596, Vol. 488, p. 012040-Article in journal (Refereed)
    Abstract [en]

    We report on the ongoing commissioning of the Double ElectroStatic Ion Ring ExpEriment, DESIREE, at Stockholm University. Beams of atomic carbon anions (C-) and smaller carbon anion molecules (C-2(-), C-3(-), C-4(-) etc.) have been produced in a sputter ion source, accelerated to 10 keV or 20 keV, and stored successfully in the two electrostatic rings. The rings are enclosed in a common vacuum chamber cooled to below 13 Kelvin. The DESIREE facility allows for studies of internally relaxed single isolated atomic, molecular and cluster ions and for collision experiments between cat-and anions down to very low center-of-mass collision energies (meV scale). The total thermal load of the vacuum chamber at this temperature is measured to be 32 W. The decay rates of stored ion beams have two components: a non-exponential component caused by the space charge of the beam itself which dominates at early times and an exponential term from the neutralization of the beam in collisions with residual gas at later times. The residual gas limited storage lifetime of carbon anions in the symmetric ring is over seven minutes while the 1/e lifetime in the asymmetric ring is measured to be about 30 seconds. Although we aim to improve the storage in the second ring, the number of stored ions are now sufficient for many merged beams experiments with positive and negative ions requiring milliseconds to seconds ion storage.

  • 9.
    Geppert, W.D.
    et al.
    Stockholm University, Faculty of Science, Department of Physics.
    Hamberg, M.
    Stockholm University, Faculty of Science, Department of Physics.
    Thomas, R.D.
    Stockholm University, Faculty of Science, Department of Physics.
    Österdahl, F.
    Hellberg, F.
    Stockholm University, Faculty of Science, Department of Physics.
    Zhauernerchyk, V.
    Stockholm University, Faculty of Science, Department of Physics.
    Ehlerding, A.
    Stockholm University, Faculty of Science, Department of Physics.
    Millar, T.J.
    Roberts, H.
    Semaniak, J.
    af Ugglas, M.
    Stockholm University, Faculty of Science, The Manne Siegbahn Laboratory .
    Källberg, Anders
    Stockholm University, Faculty of Science, The Manne Siegbahn Laboratory .
    Simonsson, Ansgar
    Stockholm University, Faculty of Science, The Manne Siegbahn Laboratory .
    Kaminska, M.
    Larsson, M.
    Stockholm University, Faculty of Science, Department of Physics.
    Dissociative recombination of protonated methanol2006In: Journal of the Chemical Society, Faraday Transactions, ISSN 0956-5000, E-ISSN 1364-5455, Vol. 133, p. 177-190Article in journal (Refereed)
  • 10. Gorda, O.
    et al.
    Braeuning-Demian, A.
    Danared, Håkan
    Stockholm University, Faculty of Science, Department of Physics.
    Dolinskii, A.
    Engström, Mats
    Stockholm University, Faculty of Science, Department of Physics.
    Herfurth, F.
    Källberg, Anders
    Stockholm University, Faculty of Science, Department of Physics.
    Kleffner, C-M
    Lestinsky, M.
    Simonsson, Ansgar
    Stockholm University, Faculty of Science, Department of Physics.
    Sjöholm, Johannes
    Stockholm University, Faculty of Science, Department of Physics.
    Vorobjev, G.
    Ion-optical design of CRYRING@ESR2015In: Physica Scripta, ISSN 0031-8949, E-ISSN 1402-4896, Vol. T166, article id 014043Article in journal (Refereed)
    Abstract [en]

    In 2012 the CRYRING storage ring was delivered from Stockholm to Darmstadt as a part of the Swedish in-kind contribution to the FAIR project. The ring lattice has been slightly changed for optimal injection and to provide additional space for experiment equipment. For the injection from the experimental storage ring (ESR), a new transfer line has been designed. The local injector line has been significantly modified compared to the previous one in Stockholm taking into account the geometry of the existing GSI building. In this paper we present the ion-optical properties of CRYRING@ESR after the described modifications. Single-turn injection from the ESR and multi-turn injection from the local injector are discussed. Ion-optical calculations of fast and slow extraction from CRYRING are also presented. The closed orbit correction scheme is considered taking into account the future arrangement of the beam position monitors and correction magnets. Based on the results of the calculations the requirements for the magnet alignment are finally discussed.

  • 11.
    Gudmundsson, Magnus
    et al.
    Stockholm University, Faculty of Science, Department of Physics.
    Fischer, D
    Misra, D
    Källberg, Anders
    Stockholm University, Faculty of Science, Department of Physics.
    Simonsson, Ansgar
    Stockholm University, Faculty of Science, Department of Physics.
    Støchkel, K
    Cederquist, Henrik
    Stockholm University, Faculty of Science, Department of Physics.
    Schmidt, H. T.
    Orientation-dependent charge transfer cross section in 1.04MeV p-N2 collisionsManuscript (preprint) (Other academic)
  • 12.
    Hamberg, Mathias
    et al.
    Stockholm University, Faculty of Science, Department of Physics.
    Kashperka, Iryna
    Stockholm University, Faculty of Science, Department of Physics.
    Danielsson, Mathias
    af Ugglas, Magnus
    Stockholm University, Faculty of Science, Department of Physics.
    Österdahl, Fabian
    Stockholm University, Faculty of Science, The Manne Siegbahn Laboratory .
    Zhaunerchyk, Vitali
    Stockholm University, Faculty of Science, Department of Physics.
    Thomas, Richard D.
    Stockholm University, Faculty of Science, Department of Physics.
    Vigren, Erik
    Stockholm University, Faculty of Science, Department of Physics.
    Kaminska, Magdalena
    Jan Kochanowski University, Kielce, Poland.
    Källberg, Anders
    Stockholm University, Faculty of Science, The Manne Siegbahn Laboratory .
    Simonsson, Ansgar
    Stockholm University, Faculty of Science, The Manne Siegbahn Laboratory .
    Paál, András
    Stockholm University, Faculty of Science, The Manne Siegbahn Laboratory .
    Larsson, Mats
    Stockholm University, Faculty of Science, Department of Physics.
    Geppert, Wolf
    Stockholm University, Faculty of Science, Department of Physics.
    Experimental studies on the dissociative recombination of H13CO+ with electrons at energies between 2 – 50 000 meVManuscript (preprint) (Other academic)
    Abstract [en]

    Determination of dissociative recombination processes of H13CO+ using merged ion-electron beam methods has been performed at the heavy storage ring CRYRING, Stockholm, Sweden. We have measured the branching fractions at ~0 eV as: CO+H 87±2%, OH+C 9±2% and O+CH 4±2%. The channels leading to CO+H have the following branching fractions between the accessible electronic states of CO(X1S+)+H 46±3%, CO(a3Pg)+H 20±1% and CO(a’3S+)+H 34±3% respectively. The reaction cross section was fitted between 1-300 meV and followed the expression σ = 1.2±0.25×10-16 E-1.32±0.02 cm2 and the corresponding thermal rate constant was determined to k(T) = 2.0±0.4×10−7(T/300)−0.82±0.02 cm3s−1. The cross sections between ~2-50 000 meV were investigated showing resonant structures between 3-15 eV.

  • 13.
    Hamberg, Mathias
    et al.
    Stockholm University, Faculty of Science, Department of Physics. Uppsala University, Sweden.
    Kashperka, Iryna
    Stockholm University, Faculty of Science, Department of Physics.
    Thomas, Richard D.
    Stockholm University, Faculty of Science, Department of Physics.
    Roueff, Evelyne
    Zhaunerchyk, Vitali
    Stockholm University, Faculty of Science, Department of Physics. Uppsala University, Sweden.
    Danielsson, Mathias
    Stockholm University, Faculty of Science, Department of Physics.
    af Ugglas, Magnus
    Stockholm University, Faculty of Science, Department of Physics.
    Österdahl, Fabian
    Stockholm University, Faculty of Science, Department of Physics.
    Vigren, Erik
    Stockholm University, Faculty of Science, Department of Physics.
    Kaminska, Magdalena
    Källberg, Anders
    Stockholm University, Faculty of Science, Department of Physics.
    Simonsson, Ansgar
    Stockholm University, Faculty of Science, Department of Physics.
    Paál, Andras
    Stockholm University, Faculty of Science, Department of Physics.
    Gerin, Maryvonne
    Larsson, Mats
    Stockholm University, Faculty of Science, Department of Physics.
    Geppert, Wolf D.
    Stockholm University, Faculty of Science, Department of Physics.
    Experimental Studies of (HCO+)-C-13 Recombining with Electrons at Energies between 2-50 000 meV2014In: Journal of Physical Chemistry A, ISSN 1089-5639, E-ISSN 1520-5215, Vol. 118, no 31, p. 6034-6049Article in journal (Refereed)
    Abstract [en]

    An investigation into the dissociative recombination process for (HCO+)-C-13 using merged ion-electron beam methods has been performed at the heavy ion storage ring CRYRING, Stockholm, Sweden. We have measured the branching fractions of the different product channels at similar to 0 eV collision energy to be the following: CO + H 87 +/- 2%, OH + C 9 +/- 2%, and O + CH 4 +/- 2%. The formation of electronically excited CO in the dominant reaction channel has also been studied, and we report the following tentative branching fractions for the different CO product electronic states: CO(X (1)Sigma(+)) + H, 54 +/- 10%; CO(a (3)Pi) + H, 23 +/- 4%; and CO(a' (3)Sigma(+)) + H, 23 +/- 4%. The absolute cross section between similar to 2-50 000 meV was measured and showed resonance structures between 3 and 15 eV. The cross section was fitted in the energy range relevant to astrophysics, i.e., between 1 and 300 meV, and was found to follow the expression sigma = 1.3 +/- 0.3 X 10(-16) E-1.29 +/- 0.05 cm(2) and the corresponding thermal rate constant was determined to be k(T) = 2.0 +/- 0.4 X 10(-7)(T/300)(-0.79 +/- 0.05) cm(3) s(-1). Radioastronomical observations with the IRAM 30 m telescope of HCO+ toward the Red Rectangle yielded an upper column density limit of 4 X 10(11) cm(-2) of HCO+ at the 1 sigma level in that object, indicating that previous claims that the dissociative recombination of HCO+ plays an important role in the production of excited CO molecules emitting the observed Cameron bands in that object are not supported.

  • 14.
    Hamberg, Mathias
    et al.
    Stockholm University, Faculty of Science, Department of Physics.
    Zhaunerchyk, Vitali
    Stockholm University, Faculty of Science, Department of Physics.
    Vigren, Erik
    Stockholm University, Faculty of Science, Department of Physics.
    Kaminska, Magdalena
    Jan Kochanowski University, Kielce, Poland.
    Kashperka, Iryna
    Stockholm University, Faculty of Science, Department of Physics.
    Zhang, Mingwu
    Institute of Modern Physics.
    Trippel, Sebastian
    Albert-Ludwigs-Universität Freiburg, Tyskland.
    Österdahl, Fabian
    Stockholm University, Faculty of Science, The Manne Siegbahn Laboratory .
    af Ugglas, Magnus
    Stockholm University, Faculty of Science, Department of Physics.
    Thomas, Richard D.
    Stockholm University, Faculty of Science, Department of Physics.
    Källberg, Anders
    Stockholm University, Faculty of Science, The Manne Siegbahn Laboratory .
    Simonsson, Ansgar
    Stockholm University, Faculty of Science, The Manne Siegbahn Laboratory .
    Paál, András
    Stockholm University, Faculty of Science, The Manne Siegbahn Laboratory .
    Larsson, Mats
    Stockholm University, Faculty of Science, Department of Physics.
    Geppert, Wolf
    Stockholm University, Faculty of Science, Department of Physics.
    Experimental studies of the dissociative recombination for CD3CDOD+ and CH3CH2OH2+Manuscript (preprint) (Other academic)
    Abstract [en]

    Aims:  Determination of branching fractions, cross sections and thermal rate constants for the dissociative recombination of CD3CDOD+ and CH3CH2OH2+ at the low relative kinetic energies encountered in the interstellar medium.

    Methods: The experiments were carried out by merging an ion and electron beam at the heavy ion storage ring CRYRING, Stockholm, Sweden.

    Results: Break-up of the CCO structure into three heavy fragments is not found for either of the ions. Instead the CCO structure is retained in 23 ± 3% of the DR reactions of CD3CDOD+ and 7 ± 3% in the DR of CH3CH2OH2+, whereas rupture into two heavy fragments occurs in 77 ± 3% and 93 ± 3% of the DR events of the respective ions. The measured cross sections were fitted between 1-200 meV yielding the following thermal rate constants and cross-section dependencies on the relative kinetic energy: σ(Ecm[eV]) = 1.7 ± 0.3 × 1015(Ecm[eV])1.23±0.02 cm2 and k(T) = 1.9 ± 0.4 × 106(T/300)0.73±0.02 cm3s1 for CH3CH2OH2+  as well as k(T) = 1.1 ± 0.4 × 106(T/300)0.74±0.05 cm3s1 and σ(Ecm[eV]) = 9.2 ± 4 × 1016(Ecm[eV])1.24±0.05 cm2 for CD3CDOD+.

  • 15.
    Hamberg, Mathias
    et al.
    Stockholm University, Faculty of Science, Department of Physics.
    Österdahl, Fabian
    Stockholm University, Faculty of Science, Department of Physics.
    Thomas, Richard D.
    Stockholm University, Faculty of Science, Department of Physics.
    Zhaunerchyk, Vitali
    Stockholm University, Faculty of Science, Department of Physics.
    Vigren, Erik
    Stockholm University, Faculty of Science, Department of Physics.
    Kaminska, Magdalena
    Jan Kochanowski University.
    af Ugglas, Magnus
    Stockholm University, Faculty of Science, Department of Physics.
    Källberg, Anders
    Stockholm University, Faculty of Science, Department of Physics, The Manne Siegbahn Laboratory.
    Simonsson, Ansgar
    Stockholm University, Faculty of Science, Department of Physics, The Manne Siegbahn Laboratory.
    Paál, András
    Stockholm University, Faculty of Science, Department of Physics, The Manne Siegbahn Laboratory.
    Larsson, Mats
    Geppert, Wolf D.
    Stockholm University, Faculty of Science, Department of Physics.
    Experimental studies of the dissociative recombination processes for the dimethyl ether ions CD3OCD2+ and (CD3)2OD+2010In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 514, p. A83-Article in journal (Refereed)
    Abstract [en]

    Aims: Determination of branching fractions, cross sections and thermal rate coefficients for the dissociative recombination of CD3OCD2+ (0-0.3 eV) and (CD3)2OD+ (0-0.2 eV) at the low relative kinetic energies encountered in the interstellar medium.

    Methods: The measurements were carried out using merged electron and ion beams at the CRYRING storage ring, Stockholm, Sweden.

    Results: For (CD3)2OD+ we have experimentally determined the branching fraction for ejection of a single hydrogen atom in the DR process to be maximally 7% whereas 49% of the reactions involve the break up of the COC chain into two heavy fragments and 44% ruptures both C-O bonds. The DR of CD3OCD2+ is dominated by fragmentation of the COC chain into two heavy fragments. The measured thermal rate constants and cross sections are k(T) =1.7 ± 0.5 × 106(T/300)0.77±0.01 cm3s−1,  σ= 1.2 ± 0.4 × 1015(Ecm[eV])1.27 ± 0.01 cm2 and k(T) = 1.7 ± 0.6 × 106(T/300)0.70±0.02 cm3s1,σ= 1.7 ± 0.6 × 1015(Ecm[eV])1.20±0.02 cm2 for CD3OCD2+ and (CD3)2OD+, respectively.

  • 16.
    Kamińska, Magdalena
    et al.
    Stockholm University, Faculty of Science, Department of Physics. Jan Kochanowski University, Poland.
    Davis, V. T.
    Hole, Odd Magnar
    Stockholm University, Faculty of Science, Department of Physics.
    Nascimento, Rodrigo F.
    Stockholm University, Faculty of Science, Department of Physics. Centro Federal de Educação Tecnológica Celso Suckow da Fonseca, Brazil.
    Chartkunchand, Kiattichart C.
    Stockholm University, Faculty of Science, Department of Physics. University of Nevada, USA.
    Blom, Mikael
    Stockholm University, Faculty of Science, Department of Physics.
    Björkhage, Mikael
    Stockholm University, Faculty of Science, Department of Physics.
    Källberg, Anders
    Stockholm University, Faculty of Science, Department of Physics.
    Löfgren, Patrik
    Stockholm University, Faculty of Science, Department of Physics.
    Reinhed, Peter
    Stockholm University, Faculty of Science, Department of Physics.
    Rosén, Stefan
    Stockholm University, Faculty of Science, Department of Physics.
    Simonsson, Ansgar
    Stockholm University, Faculty of Science, Department of Physics.
    Thomas, Richard D.
    Stockholm University, Faculty of Science, Department of Physics.
    Mannervik, Sven
    Stockholm University, Faculty of Science, Department of Physics.
    Neill, P. A.
    Thompson, J. S.
    Schmidt, Henning T.
    Stockholm University, Faculty of Science, Department of Physics.
    Cederquist, Henrik
    Stockholm University, Faculty of Science, Department of Physics.
    Hanstorp, D.
    Lifetime of the bound excited level in Ni-2016In: Physical Review A. Atomic, Molecular, and Optical Physics, ISSN 1050-2947, E-ISSN 1094-1622, Vol. 93, no 1, article id 012512Article in journal (Refereed)
    Abstract [en]

    The intrinsic lifetime of the upper level in the bound-bound 3d(9) 4s(2) D-2(3/2) -> 3d(9) 4s(2) D-2(5/2) radiative transition in Ni- was measured to be 15.1 +/- 0.4 s. The experiment was performed at cryogenic temperatures in one of the ion-beam storage rings of the Double ElectroStatic Ion Ring ExpEriment facility at Stockholm University. The storage lifetime of the Ni- ion beam was measured to be close to 5 min at a ring temperature of 13 K.

  • 17. Lestinsky, M.
    et al.
    Andrianov, V.
    Aurand, B.
    Bagnoud, V.
    Bernhardt, D.
    Beyer, H.
    Bishop, S.
    Blaum, K.
    Bleile, A.
    Borovik, At.
    Bosch, F.
    Bostock, C. J.
    Brandau, C.
    Braeuning-Demian, A.
    Bray, I.
    Davinson, T.
    Ebinger, B.
    Echler, A.
    Egelhof, P.
    Ehresmann, A.
    Engström, Mats
    Stockholm University, Faculty of Science, Department of Physics.
    Enss, C.
    Ferreira, N.
    Fischer, D.
    Fleischmann, A.
    Foerster, E.
    Fritzsche, S.
    Geithner, R.
    Geyer, S.
    Glorius, J.
    Goebel, K.
    Gorda, O.
    Goullon, J.
    Grabitz, P.
    Grisenti, R.
    Gumberidze, A.
    Hagmann, S.
    Heil, M.
    Heinz, A.
    Herfurth, F.
    Hess, R.
    Hillenbrand, P. -M.
    Hubele, R.
    Indelicato, P.
    Källberg, Anders
    Stockholm University, Faculty of Science, Department of Physics.
    Kester, O.
    Kiselev, O.
    Knie, A.
    Kozhuharov, C.
    Kraft-Bermuth, S.
    Kuehl, T.
    Lane, G.
    Litvinov, Yu. A.
    Liesen, D.
    Ma, X. W.
    Maertin, R.
    Moshammer, R.
    Mueller, A.
    Namba, S.
    Neumeyer, P.
    Nilsson, T.
    Noertershaeuser, W.
    Paulus, G.
    Petridis, N.
    Reed, M.
    Reifarth, R.
    Reiss, P.
    Rothhardt, J.
    Sanchez, R.
    Sanjari, M. S.
    Schippers, S.
    Schmidt, Henning T.
    Stockholm University, Faculty of Science, Department of Physics.
    Schneider, D.
    Scholz, P.
    Schuch, Reinhold
    Stockholm University, Faculty of Science, Department of Physics.
    Schulz, M.
    Shabaev, V.
    Simonsson, Ansgar
    Stockholm University, Faculty of Science, Department of Physics.
    Sjöholm, Johannes
    Skeppstedt, Örjan
    Stockholm Univ, Fysikum, S-10691 Stockholm, Sweden.
    Sonnabend, K.
    Spillmann, U.
    Stiebing, K.
    Steck, M.
    Stohlker, T.
    Surzhykov, A.
    Torilov, S.
    Trabert, E.
    Trassinelli, M.
    Trotsenko, S.
    Tu, X. L.
    Uschmann, I.
    Walker, P. M.
    Weber, G.
    Winters, D. F. A.
    Woods, P. J.
    Zhao, H. Y.
    Zhang, Y. H.
    Physics book: CRYRING@ESR2016In: The European Physical Journal Special Topics, ISSN 1951-6355, E-ISSN 1951-6401, Vol. 225, no 5, p. 797-882Article, review/survey (Refereed)
    Abstract [en]

    The exploration of the unique properties of stored and cooled beams of highly-charged ions as provided by heavy-ion storage rings has opened novel and fascinating research opportunities in the realm of atomic and nuclear physics research. Since the late 1980s, pioneering work has been performed at the CRYRING at Stockholm (Abrahamsson et al. 1993) and at the Test Storage Ring (TSR) at Heidelberg (Baumann et al. 1988). For the heaviest ions in the highest charge-states, a real quantum jump was achieved in the early 1990s by the commissioning of the Experimental Storage Ring (ESR) at GSI Helmholtzzentrum für Schwerionenforschung (GSI) in Darmstadt (Franzke 1987) where challenging experiments on the electron dynamics in the strong field regime as well as nuclear physics studies on exotic nuclei and at the borderline to atomic physics were performed. Meanwhile also at Lanzhou a heavy-ion storage ring has been taken in operation, exploiting the unique research opportunities in particular for medium-heavy ions and exotic nuclei (Xia et al. 2002).

  • 18. Lestinsky, M.
    et al.
    Bräuning-Demian, A.
    Danared, H.
    Engström, Mats
    Stockholm University, Faculty of Science, Department of Physics.
    Enders, W.
    Fedotova, S.
    Franzke, B.
    Heinz, A.
    Herfurth, F.
    Källberg, Anders
    Stockholm University, Faculty of Science, Department of Physics.
    Kester, O.
    Litvinov, Y.
    Steck, M.
    Reistad, D.
    Simonsson, Ansgar
    Stockholm University, Faculty of Science, Department of Physics.
    Skeppstedt, Örjan
    Stockholm University, Faculty of Science, Department of Physics.
    Stöhlker, T.
    Vorobjev, G.
    CRYRING@ESR: present status and future research2015In: Physica Scripta, ISSN 0031-8949, E-ISSN 1402-4896, Vol. T166, article id 014075Article in journal (Refereed)
    Abstract [en]

    The former storage ring CRYRING has been shipped from the Manne Siegbahn Laboratory in Stockholm to Darmstadt as a Swedish in-kind contribution to FAIR. At its new location downstream of ESR all ion species presently accessible in ESR can be transferred to CRYRING, in which ions with rigidities between 1.44 and 0.054 Tm can be stored. The original Swedish layout has been modified by reconfiguring the sequence of straight sections and by slightly increasing the circumference to ESR/2. Ions can be injected from ESR or from an independent 300 keV/u RFQ test injector. The instrumentation of the ring includes an RF drift tube system for acceleration and deceleration (1 T s(-1), with a possibility for an upgrade to 7 T s(-1)), electron cooling, a free experimental section, and both fast and slow extraction of ions. We report on the present progress of this project, give a prospective timeline, and summarize the new research which will be enabled by this project. First beam for commissioning of the storage ring is expected for 2015, final bakeout to restore ultrahigh vacuum conditions in 2016 and ion beams injected through ESR in similar to 2017.

  • 19.
    Misra, Deepankar
    et al.
    Stockholm University, Faculty of Science, Department of Physics.
    Schmidt, Henning Thordal
    Stockholm University, Faculty of Science, Department of Physics.
    Gudmundsson, Magnus
    Stockholm University, Faculty of Science, Department of Physics.
    Fischer, Daniel
    Max-Planck Institut, Heidelberg.
    Haag, Nicole
    Stockholm University, Faculty of Science, Department of Physics.
    Johansson, Henrik A B
    Stockholm University, Faculty of Science, Department of Physics.
    Källberg, Anders
    Stockholm University, Faculty of Science, The Manne Siegbahn Laboratory .
    Najjari, B
    Max-Planck Institut, Heidelberg.
    Reinhed, Peter
    Stockholm University, Faculty of Science, Department of Physics.
    Schuch, Reinhold
    Stockholm University, Faculty of Science, Department of Physics.
    Schöffler, Marcus
    Frankfurt University.
    Simonsson, Ansgar
    Stockholm University, Faculty of Science, The Manne Siegbahn Laboratory .
    Voitkiv, A B
    Max-Planck Institut, Heidelberg.
    Cederquist, Henrik
    Stockholm University, Faculty of Science, Department of Physics.
    Two-Center Double-Capture Interference in Fast He2++H2 Collisions2009In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 102, no 15, p. 153201-Article in journal (Refereed)
    Abstract [en]

    We report the first observation of Young-type interference effects in a two-electron transfer process. These effects change strongly as the projectile velocity changes in fast (1.2 and 2.0 MeV) He^{2+}-H_2 collisions as manifested in strong variations of the double-electron capture rates with the H_2 orientation. This is consistent with fully quantum mechanical calculations, which ignore sequential electron transfer, and a simple projectile de Broglie wave picture assuming that two-electron transfer probabilities are higher in collisions where the projectile passes close to either one of the H_2 nuclei.

  • 20.
    Orban, Istvan
    et al.
    Stockholm University, Faculty of Science, Department of Physics.
    Altun, Zikri
    Department of Physics, Marmara University, 81040 Istanbul, Turkey.
    Källberg, Anders
    Stockholm University, Faculty of Science, The Manne Siegbahn Laboratory .
    Simonsson, Ansgar
    Stockholm University, Faculty of Science, The Manne Siegbahn Laboratory .
    Andler, Guillermo
    Stockholm University, Faculty of Science, The Manne Siegbahn Laboratory .
    Paál, Andreas
    Stockholm University, Faculty of Science, The Manne Siegbahn Laboratory .
    Blom, Mikael
    Stockholm University, Faculty of Science, The Manne Siegbahn Laboratory .
    Löfgren, Patrik
    Stockholm University, Faculty of Science, The Manne Siegbahn Laboratory .
    Trotsenko, Sergiy
    GSI Gesellschaft für Schwerionenforschung, 64291 Darmstadt, Germany.
    Böhm, Sebastian
    Stockholm University, Faculty of Science, Department of Physics.
    Schuch, Reinhold
    Stockholm University, Faculty of Science, Department of Physics.
    Experimental dielectronic recombination rate coefficientsfor Na-like S VI and Na-like Ar VIII2009In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 498, p. 909-914Article in journal (Refereed)
    Abstract [en]

    Aims. Absolute recombination rate coefficients for two astrophysically relevant Na-like ions are presented.Methods. Recombination rate coefficients of S vi and Ar viii are determined from merged-beam type experiments at the CRYRINGelectron cooler. Calculated rate coefficients are used to account for recombination into states that are field-ionized and therefore notdetected in the experiment.Results. Dielectronic recombination rate coefficients were obtained over an energy range covering Δ n = 0 core excitations. ForNa-like Ar a measurement was also performed over the Δn = 1 type of resonances. In the low-energy part of the Ar viii spectrum,enhancements of more than one order of magnitude are observed as compared to the calculated radiative recombination. The plasmarecombination rate coefficients of the two Na-like ions are compared with calculated results from the literature. In the 103−104 Krange, large discrepancies are observed between calculated plasma rate coefficients and our data. At higher temperatures, above105 K, in the case of both ions our data is 30% higher than two calculated plasma rate coefficients, other data from the literaturehaving even lower values.Conclusions. Discrepancies below 104 K show that at such temperatures even state-of-the-art calculations yield plasma rate coefficientsthat have large uncertainties. The main reason for these uncertainties are the contributions from low-energy resonances, whichare difficult to calculate accurately.

  • 21.
    Orban, Istvan
    et al.
    Stockholm University, Faculty of Science, Department of Physics.
    Glans, P.
    Altun, Z.
    Lindroth, Eva
    Stockholm University, Faculty of Science, Department of Physics.
    Källberg, Anders
    Stockholm University, Faculty of Science, Department of Physics, The Manne Siegbahn Laboratory.
    Schuch, Reinhold
    Stockholm University, Faculty of Science, Department of Physics.
    Determination of the recombination rate coefficients for Na-like Si IV forming Mg-like Si III2006In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 459, no 1, p. 291-296Article in journal (Refereed)
    Abstract [en]

    Aims. Absolute, total recombination rate coefficients for Si iv were determined using the CRYRING heavy-ion storage ring.Calculated rate coefficients were used to estimate recombination into states that could not be detected in the experiment becauseof field ionization. Total, as well as separate, radiative and dielectronic plasma recombination rate coefficients were determined.Methods. Stored ions were merged with an expanded electron beam in the electron cooler section of the storage ring. Recombined ionswere separated from the stored ion beam in the first dipole magnet after the electron cooler and were detected with unity efficiency.The absolute radiative and dielectronic recombination rate coefficients were obtained over a center-of-mass energy range of 0−20 eV,covering Δn = 0 core excitations up to the 3s → 3d series limit. The results of an intermediate coupling autostructure calculationwere compared with the experiment. The theoretical results were also used to estimate the contribution to dielectronic recombinationby high Rydberg states, which were not detected because of field ionization. The spectra were convoluted with Maxwell-Boltzmannenergy distributions in the 103−106 K temperature range.Results. The resulting plasma recombination rate coefficients are presented and compared with theoretical results frequently usedfor plasma modeling. In the 103−104 K range, a significant underestimation of the calculated dielectronic recombination plasma ratecoefficients was observed. Above 3 × 104 K, the agreement between our dielectronic recombination plasma rate coefficients and twoof the previously published rate coefficients is better than 20%.Conclusions. The observed differences between the experimental and calculated recombination rate coefficients at low temperaturesreflect the need for benchmarking experiments. Our experimentally-derived rate coefficients can guide the development of bettertheoretical models and lead to more accurately-calculated rate coefficients.

  • 22.
    Schmidt, Henning T.
    et al.
    Stockholm University, Faculty of Science, Department of Physics.
    Thomas, Richard D.
    Stockholm University, Faculty of Science, Department of Physics.
    Gatchell, Michael
    Stockholm University, Faculty of Science, Department of Physics.
    Rosén, Stefan
    Stockholm University, Faculty of Science, Department of Physics.
    Reinhed, Peter
    Stockholm University, Faculty of Science, Department of Physics.
    Löfgren, Patrik
    Stockholm University, Faculty of Science, Department of Physics.
    Brännholm, Lars
    Stockholm University, Faculty of Science, Department of Physics.
    Blom, Mikael
    Stockholm University, Faculty of Science, Department of Physics.
    Björkhage, Mikael
    Stockholm University, Faculty of Science, Department of Physics.
    Bäckström, Erik
    Stockholm University, Faculty of Science, Department of Physics.
    Alexander, John D.
    Stockholm University, Faculty of Science, Department of Physics.
    Leontein, Sven
    Stockholm University, Faculty of Science, Department of Physics.
    Hanstorp, D.
    Zettergren, Henning
    Stockholm University, Faculty of Science, Department of Physics.
    Liljeby, Leif
    Stockholm University, Faculty of Science, Department of Physics.
    Källberg, Anders
    Stockholm University, Faculty of Science, Department of Physics.
    Simonsson, Ansgar
    Stockholm University, Faculty of Science, Department of Physics.
    Hellberg, Fredrik
    Stockholm University, Faculty of Science, Department of Physics.
    Mannervik, Sven
    Stockholm University, Faculty of Science, Department of Physics.
    Larsson, Mats
    Stockholm University, Faculty of Science, Department of Physics.
    Geppert, Wolf D.
    Stockholm University, Faculty of Science, Department of Physics.
    Rensfelt, Karl-Gunnar
    Stockholm University, Faculty of Science, Department of Physics.
    Danared, Håkan
    Stockholm University, Faculty of Science, Department of Physics.
    Paal, A.
    Stockholm University, Faculty of Science, Department of Physics.
    Masuda, Masaharu
    Stockholm University, Faculty of Science, Department of Physics.
    Hallden, Per
    Stockholm University, Faculty of Science, Department of Physics.
    Andler, Guillermo
    Stockholm University, Faculty of Science, Department of Physics.
    Stockett, Mark H.
    Stockholm University, Faculty of Science, Department of Physics.
    Chen, Tao
    Stockholm University, Faculty of Science, Department of Physics.
    Källersjö, Gunnar
    Stockholm University, Faculty of Science, Department of Physics.
    Weimer, Jan
    Stockholm University, Faculty of Science, Department of Physics.
    Hansen, K.
    Hartman, H.
    Cederquist, Henrik
    Stockholm University, Faculty of Science, Department of Physics.
    First storage of ion beams in the Double Electrostatic Ion-Ring Experiment: DESIREE2013In: Review of Scientific Instruments, ISSN 0034-6748, E-ISSN 1089-7623, Vol. 84, no 5, p. 055115-Article in journal (Refereed)
    Abstract [en]

    We report on the first storage of ion beams in the Double ElectroStatic Ion Ring ExpEriment, DESIREE, at Stockholm University. We have produced beams of atomic carbon anions and small carbon anion molecules (C-n(-), n = 1, 2, 3, 4) in a sputter ion source. The ion beams were accelerated to 10 keV kinetic energy and stored in an electrostatic ion storage ring enclosed in a vacuum chamber at 13 K. For 10 keV C-2(-) molecular anions we measure the residual-gas limited beam storage lifetime to be 448 s +/- 18 s with two independent detector systems. Using the measured storage lifetimes we estimate that the residual gas pressure is in the 10(-14) mbar range. When high current ion beams are injected, the number of stored particles does not follow a single exponential decay law as would be expected for stored particles lost solely due to electron detachment in collision with the residual-gas. Instead, we observe a faster initial decay rate, which we ascribe to the effect of the space charge of the ion beam on the storage capacity.

  • 23.
    Schmidt, Henning
    et al.
    Stockholm University, Faculty of Science, Department of Physics.
    Fischer, Daniel
    Stockholm University, Faculty of Science, Department of Physics.
    Berenyi, Zoltan
    Stockholm University, Faculty of Science, Department of Physics.
    Cocke, Charles Lewis
    Gudmundsson, Magnus
    Stockholm University, Faculty of Science, Department of Physics.
    Haag, Nicole
    Stockholm University, Faculty of Science, Department of Physics.
    Johansson, Henrik A. B.
    Stockholm University, Faculty of Science, Department of Physics.
    Källberg, Anders
    Stockholm University, Faculty of Science, The Manne Siegbahn Laboratory .
    Levin, Sergey B.
    Reinhed, Peter
    Stockholm University, Faculty of Science, Department of Physics.
    Sassenberg, Ulf
    Stockholm University, Faculty of Science, Department of Physics.
    Schuch, Reinhold
    Stockholm University, Faculty of Science, Department of Physics.
    Simonsson, Ansgar
    Stockholm University, Faculty of Science, The Manne Siegbahn Laboratory .
    Stöchkel, Kristian
    Cederquist, Henrik
    Stockholm University, Faculty of Science, Department of Physics.
    Evidence of Wave-Particle Duality for Single Fast Hydrogen Atoms2008In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 101, no 8, p. 083201-Article in journal (Refereed)
    Abstract [en]

    We report the direct observation of interference effects in a Young's double-slit experiment where the interfering waves are two spatially separated components of the de Broglie wave of single 1.3 MeV hydrogen atoms formed close to either target nucleus in H+ + H2 electron-transfer collisions. Quantum interference strongly influences the results even though the hydrogen atoms have a de Broglie wavelength, \lambda_dB, as small as 25 fm.

  • 24.
    Schmidt, Henning
    et al.
    Stockholm University, Faculty of Science, Department of Physics.
    Johansson, Henrik
    Stockholm University, Faculty of Science, Department of Physics.
    Thomas, Richard
    Stockholm University, Faculty of Science, Department of Physics.
    Geppert, Wolf
    Stockholm University, Faculty of Science, Department of Physics.
    Haag, Nicole
    Stockholm University, Faculty of Science, Department of Physics.
    Reinhed, Peter
    Stockholm University, Faculty of Science, Department of Physics.
    Rosén, Stefan
    Stockholm University, Faculty of Science, Department of Physics.
    Larsson, Mats
    Stockholm University, Faculty of Science, Department of Physics.
    Danared, Håkan
    Stockholm University, Faculty of Science, The Manne Siegbahn Laboratory .
    Rensfelt, K.-G
    Stockholm University, Faculty of Science, The Manne Siegbahn Laboratory .
    Liljeby, Leif
    Stockholm University, Faculty of Science, The Manne Siegbahn Laboratory .
    Bagge, Lars
    Stockholm University, Faculty of Science, The Manne Siegbahn Laboratory .
    Björkhage, Mikael
    Stockholm University, Faculty of Science, The Manne Siegbahn Laboratory .
    Blom, Mikael
    Stockholm University, Faculty of Science, The Manne Siegbahn Laboratory .
    Löfgren, Patrik
    Stockholm University, Faculty of Science, The Manne Siegbahn Laboratory .
    Källberg, Anders
    Stockholm University, Faculty of Science, The Manne Siegbahn Laboratory .
    Simonsson, Ansgar
    Stockholm University, Faculty of Science, The Manne Siegbahn Laboratory .
    Paál, Andras
    Stockholm University, Faculty of Science, The Manne Siegbahn Laboratory .
    Zettergren, Henning
    Stockholm University, Faculty of Science, Department of Physics.
    Cederquist, Henrik
    Stockholm University, Faculty of Science, Department of Physics.
    DESIREE as a new tool for interstellar ion chemistry2008In: International Journal of Astrobiology, ISSN 1473-5504, E-ISSN 1475-3006, Vol. 7, no 3-4, p. 205-208Article in journal (Refereed)
    Abstract [en]

    A novel cryogenic electrostatic storage device consisting of two ion-beam storage rings with a common straight section for studies of interactions between oppositely charged ions at low and well-defined relative velocities is under construction at Stockholm University. Here we consider the prospect of using this new tool to measure cross-sections and rate coefficients for mutual neutralization reactions of importance in interstellar ion chemistry in general and specifically in cosmic pre-biotic ion chemistry.

  • 25.
    Schmidt, Henning T.
    et al.
    Stockholm University, Faculty of Science, Department of Physics.
    Eklund, Gustav
    Stockholm University, Faculty of Science, Department of Physics.
    Chartkunchand, Kiattichart C.
    Stockholm University, Faculty of Science, Department of Physics.
    Anderson, Emma K.
    Stockholm University, Faculty of Science, Department of Physics.
    Kamińska, Magdalena
    Stockholm University, Faculty of Science, Department of Physics. Jan Kochanowski University, Poland.
    de Ruette, Nathalie
    Stockholm University, Faculty of Science, Department of Physics.
    Thomas, Richard D.
    Stockholm University, Faculty of Science, Department of Physics.
    Kristiansson, Moa K.
    Stockholm University, Faculty of Science, Department of Physics.
    Gatchell, Michael
    Stockholm University, Faculty of Science, Department of Physics.
    Reinhed, Peter
    Stockholm University, Faculty of Science, Department of Physics.
    Rosen, Stefan
    Stockholm University, Faculty of Science, Department of Physics.
    Simonsson, Ansgar
    Stockholm University, Faculty of Science, Department of Physics.
    Källberg, Anders
    Stockholm University, Faculty of Science, Department of Physics.
    Löfgren, Patrik
    Stockholm University, Faculty of Science, Department of Physics.
    Mannervik, Sven
    Stockholm University, Faculty of Science, Department of Physics.
    Zettergren, Henning
    Stockholm University, Faculty of Science, Department of Physics.
    Cederquist, Henrik
    Stockholm University, Faculty of Science, Department of Physics.
    Rotationally Cold OH- Ions in the Cryogenic Electrostatic Ion-Beam Storage Ring DESIREE2017In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 119, no 7, article id 073001Article in journal (Refereed)
    Abstract [en]

    We apply near-threshold laser photodetachment to characterize the rotational quantum level distribution of OH- ions stored in the cryogenic ion-beam storage ring DESIREE at Stockholm University. We find that the stored ions relax to a rotational temperature of 13.4 +/- 0.2 K with 94.9 +/- 0.3% of the ions in the rotational ground state. This is consistent with the storage ring temperature of 13.5 +/- 0.5 K as measured with eight silicon diodes but in contrast to all earlier studies in cryogenic traps and rings where the rotational temperatures were always much higher than those of the storage devices at their lowest temperatures. Furthermore, we actively modify the rotational distribution through selective photodetachment to produce an OH- beam where 99.1 +/- 0.1% of approximately one million stored ions are in the J = 0 rotational ground state. We measure the intrinsic lifetime of the J = 1 rotational level to be 145 +/- 28 s.

  • 26.
    Thomas, Richard D.
    et al.
    Stockholm University, Faculty of Science, Department of Physics.
    Schmidt, Henning T.
    Stockholm University, Faculty of Science, Department of Physics.
    Andler, Guillermo
    Stockholm University, Faculty of Science, Department of Physics.
    Björkhage, Mikael
    Stockholm University, Faculty of Science, Department of Physics.
    Blom, Mikael
    Stockholm University, Faculty of Science, Department of Physics.
    Brännholm, Lars
    Stockholm University, Faculty of Science, Department of Physics.
    Bäckstrom, Erik
    Stockholm University, Faculty of Science, Department of Physics.
    Danared, Håkan
    Stockholm University, Faculty of Science, Department of Physics.
    Das, Susanta
    Stockholm University, Faculty of Science, Department of Physics.
    Haag, Nicole
    Stockholm University, Faculty of Science, Department of Physics.
    Halldén, Per
    Stockholm University, Faculty of Science, Department of Physics.
    Hellberg, Fredrik
    Stockholm University, Faculty of Science, Department of Physics.
    Holm, Anne I. S.
    Stockholm University, Faculty of Science, Department of Physics.
    Johansson, H. A. B.
    Stockholm University, Faculty of Science, Department of Physics.
    Källberg, Anders
    Stockholm University, Faculty of Science, Department of Physics.
    Källersjö, Gunnar
    Stockholm University, Faculty of Science, Department of Physics.
    Larsson, Mats
    Stockholm University, Faculty of Science, Department of Physics.
    Leontein, Sven
    Stockholm University, Faculty of Science, Department of Physics.
    Liljeby, Leif
    Stockholm University, Faculty of Science, Department of Physics.
    Löfgren, Patrik
    Stockholm University, Faculty of Science, Department of Physics.
    Malm, Bo
    Stockholm University, Faculty of Science, Department of Physics.
    Mannervik, Sven
    Stockholm University, Faculty of Science, Department of Physics.
    Masuda, Masaharu
    Stockholm University, Faculty of Science, Department of Physics.
    Misra, Deepankar
    Stockholm University, Faculty of Science, Department of Physics.
    Orban, A.
    Stockholm University, Faculty of Science, Department of Physics.
    Paál, Andras
    Stockholm University, Faculty of Science, Department of Physics.
    Reinhed, Peter
    Stockholm University, Faculty of Science, Department of Physics.
    Rensfelt, Karl-Gunnar
    Stockholm University, Faculty of Science, Department of Physics.
    Rosén, Stefan
    Stockholm University, Faculty of Science, Department of Physics.
    Schmidt, K.
    Stockholm University, Faculty of Science, Department of Physics.
    Seitz, Fabian
    Stockholm University, Faculty of Science, Department of Physics.
    Simonsson, Ansgar
    Stockholm University, Faculty of Science, Department of Physics.
    Weimer, Jan
    Stockholm University, Faculty of Science, Department of Physics.
    Zettergren, Henning
    Stockholm University, Faculty of Science, Department of Physics.
    Cederquist, Henrik
    Stockholm University, Faculty of Science, Department of Physics.
    The double electrostatic ion ring experiment: A unique cryogenic electrostatic storage ring for merged ion-beams studies2011In: Review of Scientific Instruments, ISSN 0034-6748, E-ISSN 1089-7623, Vol. 82, no 6, p. 065112-Article in journal (Refereed)
    Abstract [en]

    We describe the design of a novel type of storage device currently under construction at Stockholm University, Sweden, using purely electrostatic focussing and deflection elements, in which ion beams of opposite charges are confined under extreme high vacuum cryogenic conditions in separate rings and merged over a common straight section. The construction of this double electrostatic ion ring experiment uniquely allows for studies of interactions between cations and anions at low and well-defined internal temperatures and centre-of-mass collision energies down to about 10 K and 10 meV, respectively. Position sensitive multi-hit detector systems have been extensively tested and proven to work in cryogenic environments and these will be used to measure correlations between reaction products in, for example, electron-transfer processes. The technical advantages of using purely electrostatic ion storage devices over magnetic ones are many, but the most relevant are: electrostatic elements which are more compact and easier to construct; remanent fields, hysteresis, and eddy-currents, which are of concern in magnetic devices, are no longer relevant; and electrical fields required to control the orbit of the ions are not only much easier to create and control than the corresponding magnetic fields, they also set no upper mass limit on the ions that can be stored. These technical differences are a boon to new areas of fundamental experimental research, not only in atomic and molecular physics but also in the boundaries of these fields with chemistry and biology. For examples, studies of interactions with internally cold molecular ions will be particular useful for applications in astrophysics, while studies of solvated ionic clusters will be of relevance to aeronomy and biology.

  • 27.
    Thomas, Richard D.
    et al.
    Stockholm University, Faculty of Science, Department of Physics.
    Schmidt, Henning T.
    Stockholm University, Faculty of Science, Department of Physics.
    Gatchell, Michael
    Stockholm University, Faculty of Science, Department of Physics.
    Rosén, Sara
    Stockholm University, Faculty of Science, Department of Physics.
    Reinhed, Peter
    Stockholm University, Faculty of Science, Department of Physics.
    Löfgren, Patrik
    Stockholm University, Faculty of Science, Department of Physics.
    Brännholm, Lars
    Stockholm University, Faculty of Science, Department of Physics.
    Blom, Mikael
    Stockholm University, Faculty of Science, Department of Physics.
    Björkhage, Mikael
    Stockholm University, Faculty of Science, Department of Physics.
    Bäckström, Erik
    Stockholm University, Faculty of Science, Department of Physics.
    Alexander, John D.
    Stockholm University, Faculty of Science, Department of Physics.
    Leontein, Sven
    Stockholm University, Faculty of Science, Department of Physics.
    Hanstorp, D.
    Zettergren, Henning
    Stockholm University, Faculty of Science, Department of Physics.
    Kaminska, Magdalena
    Stockholm University, Faculty of Science, Department of Physics.
    Nascimento, Rodrigo
    Stockholm University, Faculty of Science, Department of Physics.
    Liljeby, Leif
    Stockholm University, Faculty of Science, Department of Physics.
    Källberg, Anders
    Stockholm University, Faculty of Science, Department of Physics.
    Simonsson, Ansgar
    Stockholm University, Faculty of Science, Department of Physics.
    Hellberg, Fredrik
    Stockholm University, Faculty of Science, Department of Physics.
    Mannervik, Sven
    Stockholm University, Faculty of Science, Department of Physics.
    Larsson, Mats
    Stockholm University, Faculty of Science, Department of Physics.
    Geppert, Wolf D.
    Stockholm University, Faculty of Science, Department of Physics.
    Rensfelt, Karl-Gunnar
    Stockholm University, Faculty of Science, Department of Physics.
    Paál, Andras
    Stockholm University, Faculty of Science, Department of Physics.
    Masuda, Masaharu
    Stockholm University, Faculty of Science, Department of Physics.
    Halldén, Per
    Stockholm University, Faculty of Science, Department of Physics.
    Andler, Guillermo
    Stockholm University, Faculty of Science, Department of Physics.
    Stockett, Mark H.
    Stockholm University, Faculty of Science, Department of Physics.
    Chen, Tao
    Stockholm University, Faculty of Science, Department of Physics.
    Källersjö, Gunnar
    Stockholm University, Faculty of Science, Department of Physics.
    Weimer, Jan
    Stockholm University, Faculty of Science, Department of Physics.
    Hansen, K.
    Hartman, H.
    Cederquist, Henrik
    Stockholm University, Faculty of Science, Department of Physics.
    DESIREE: Physics with cold stored ion beams2015In: DR2013: Ninth international conference on dissociative recombination: theory, experiment, and applications, 2015, Vol. 84, article id 01004Conference paper (Refereed)
    Abstract [en]

    Here we will briefly describe the commissioning of the Double ElectroStatic Ion Ring ExpEriment (DESIREE) facility at Stockholm University, Sweden. This device uses purely electrostatic focussing and deflection elements and allows ion beams of opposite charge to be confined under extreme high vacuum and cryogenic conditions in separate rings and then merged over a common straight section. This apparatus allows for studies of interactions between cations and anions at very low and well-defined centre-of-mass energies (down to a few meV) and at very low internal temperatures (down to a few K).

1 - 27 of 27
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf