Endre søk
Begrens søket
1 - 9 of 9
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Achtert, Peggy
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Meteorologiska institutionen (MISU).
    Khaplanov, Mikhail
    Stockholms universitet, Naturvetenskapliga fakulteten, Meteorologiska institutionen (MISU).
    Khosrawi, Farahnaz
    Stockholms universitet, Naturvetenskapliga fakulteten, Meteorologiska institutionen (MISU).
    Gumbel, Jörg
    Stockholms universitet, Naturvetenskapliga fakulteten, Meteorologiska institutionen (MISU).
    Pure rotational-Raman channels of the Esrange lidar for temperature and particle extinction measurements in the troposphere and lower stratosphere2013Inngår i: Atmospheric Measurement Techniques, ISSN 1867-1381, E-ISSN 1867-8548, Vol. 6, nr 1, s. 91-98Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The Department of Meteorology at Stockholm University operates the Esrange Rayleigh/Raman lidar at Esrange(68° N, 21° E) near the Swedish city of Kiruna. This paper describes the design and first measurements of the newpure rotational-Raman channel of the Esrange lidar. The Esrange lidar uses a pulsed Nd:YAG solid-state laser operating at 532 nm as light source with a repetition rate of 20 Hz and a pulse energy of 350 mJ. The minimum vertical resolution is 150m and the integration time for one profile is 5000 shots. The newly implemented channel allows for measurements of atmospheric temperature at altitudes below 35 km and is currently optimized for temperature measurements between 180 and 200 K. This corresponds to conditions in the lower Arctic stratosphere during winter. In addition to the temperature measurements, the aerosol extinction coefficientand the aerosol backscatter coefficient at 532 nm can be measured in dependently. Our filter-based design minimizes the systematic error in the obtained temperature profile to less than 0.51 K. By combining rotational-Raman measurements (5–35 km height) and the integration technique (30–80 kmheight), the Esrange lidar is now capable of measuring atmospheric temperature profiles from the upper troposphere up to the mesosphere. With the improved setup, the system can be used to validate current lidar-based polar stratospheric cloud classification schemes. The new capability of the instrument measuring temperature and aerosol extinction furthermore enables studies of the thermal structure and variability of the upper troposphere/lower stratosphere. Although several lidars are operated at polar latitudes, there are few instruments that are capable of measuring temperature profiles in the troposphere, stratosphere, and mesosphere, as well as aerosols extinction in the troposphere and lower stratospherewith daylight capability.

  • 2. Eberhart, Martin
    et al.
    Löhle, Stefan
    Strelnikov, Boris
    Hedin, Jonas
    Stockholms universitet, Naturvetenskapliga fakulteten, Meteorologiska institutionen (MISU).
    Khaplanov, Mikhail
    Stockholms universitet, Naturvetenskapliga fakulteten, Meteorologiska institutionen (MISU).
    Fasoulas, Stefanos
    Gumbel, Jörg
    Stockholms universitet, Naturvetenskapliga fakulteten, Meteorologiska institutionen (MISU).
    Lübken, Franz-Josef
    Rapp, Markus
    Atomic oxygen number densities in the mesosphere-lower thermosphere region measured by solid electrolyte sensors on WADIS-22019Inngår i: Atmospheric Measurement Techniques, ISSN 1867-1381, E-ISSN 1867-8548, Vol. 12, nr 4, s. 2445-2461Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Absolute profiles of atomic oxygen number densities with high vertical resolution have been determined in the mesosphere-lower thermosphere (MLT) region from in situ measurements by several rocket-borne solid electrolyte sensors. The amperometric sensors were operated in both controlled and uncontrolled modes and with various orientations on the foredeck and aft deck of the payload. Calibration was based on mass spectrometry in a molecular beam containing atomic oxygen produced in a microwave discharge. The sensor signal is proportional to the number flux onto the electrodes, and the mass flow rate in the molecular beam was additionally measured to derive this quantity from the spectrometer reading. Numerical simulations provided aerodynamic correction factors to derive the atmospheric number density of atomic oxygen from the sensor data. The flight results indicate a preferable orientation of the electrode surface perpendicular to the rocket axis. While unstable during the upleg, the density profiles measured by these sensors show an excellent agreement with the atmospheric models and photometer results during the downleg of the trajectory. The high spatial resolution of the measurements allows for the identification of small-scale variations in the atomic oxygen concentration.

  • 3. Enell, Carl-Fredrik
    et al.
    Hedin, Jonas
    Stockholms universitet, Naturvetenskapliga fakulteten, Meteorologiska institutionen (MISU).
    Stegman, Jacek
    Stockholms universitet, Naturvetenskapliga fakulteten, Meteorologiska institutionen (MISU).
    Witt, Georg
    Stockholms universitet, Naturvetenskapliga fakulteten, Meteorologiska institutionen (MISU).
    Friedrich, Martin
    Singer, Werner
    Baumgarten, Gerd
    Kaifler, Bernd
    Hoppe, Ulf-Peter
    Gustavsson, Björn
    Brandström, Urban
    Khaplanov, Mikhail
    Stockholms universitet, Naturvetenskapliga fakulteten, Meteorologiska institutionen (MISU).
    Kero, Antti
    Ulich, Thomas
    Turunen, Esa
    The Hotel Payload 2 campaign: Overview of NO, O and electron density measurements in the upper mesosphere and lower thermosphere2011Inngår i: Journal of Atmospheric and Solar-Terrestrial Physics, ISSN 1364-6826, E-ISSN 1879-1824, Vol. 73, nr 14-15, s. 2228-2236Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The ALOMAR eARI Hotel Payload 2 (HotPay 2) rocket campaign took place at Andoya Rocket Range, Norway, in January 2008. The rocket was launched on January 31, 2008 at 19:14 UT, when auroral activity appeared after a long geomagnetically quiet period. In this paper we present an overview of the HotPay 2 measurements of upper mesospheric and lower thermospheric (UMLT) electron, atomic oxygen (O) and nitric oxide (NO) densities. [O] and [NO] were retrieved from a set of three photometers, Night-Time Emissions from the Mesosphere and Ionosphere (NEMI). Faraday rotation receivers on the rocket and the EISCAT UHF incoherent scatter radar provided simultaneous electron density profiles, whereas the ALOMAR Na lidar and meteor radar measured the temperature profile and wind. The aurora was also observed with ground-based imagers. The retrieved oxygen number density profile has a maximum at 89 km, some 10 km lower than expected from earlier measurements and modelled profiles based on climatological averages (such as the MSIS model), and the retrieved NO densities are also lower than the expected. Satellite measurements indicate that subsidence over the winter pole controlled the densities. Quantitative chemistry model results based on climatological average atmospheric density and temperature profiles were, therefore, not in good agreement with the measured profiles. The Hotel Payload 2 measurements thus confirm the importance of downward transport from the thermosphere into the winter polar vortex.

  • 4. Guineva, V.
    et al.
    Witt, Georg
    Stockholms universitet, Naturvetenskapliga fakulteten, Meteorologiska institutionen (MISU).
    Gumbel, Jörg
    Stockholms universitet, Naturvetenskapliga fakulteten, Meteorologiska institutionen (MISU).
    Khaplanov, Mikhail
    Stockholms universitet, Naturvetenskapliga fakulteten, Meteorologiska institutionen (MISU).
    Werner, R.
    Hedin, Jonas
    Stockholms universitet, Naturvetenskapliga fakulteten, Meteorologiska institutionen (MISU).
    Neichev, S.
    Kirov, B.
    Bankov, L.
    Gramatikov, P.
    Tashev, V.
    Popov, M.
    Hauglund, K.
    Hansen, G.
    Ilstad, J.
    Wold, H.
    O-2 density and temperature profiles retrieving from direct solar Lyman-alpha radiation measurements2009Inngår i: Geomagnetism and Aeronomy, ISSN 0016-7932, E-ISSN 1555-645X, Vol. 49, nr 8, s. 1292-1295Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The resonance transition P-2-S-2 of the atomic hydrogen (Lyman-alpha emission) is the strongest and most conspicuous feature in the solar EUV spectrum. The Lyman-alpha radiation transfer depends on the resonance scattering from the hydrogen atoms in the atmosphere and on the O-2 absorption. Since the Lyman-alpha extinction in the atmosphere is a measure for the column density of the oxygen molecules, the atmospheric O-2 density and temperature profiles can be calculated thereof. A detector of solar Lyman-alpha radiation was manufactured in the Stara Zagora Department of the Solar-Terrestrial Influences Laboratory (STIL). Its basic part is an ionization camera, filled in with NO. A 60 V power supply is applied to the chamber. The produced photoelectric current from the sensor is fed to a two-channel amplifier, providing analog signal. The characteristics of the Lyman-alpha detector were studied. It passed successfully all tests and the results showed that the so-designed instrument could be used in rocket experiments to measure the Lymanalpha flux. From the measurements of the detector, the Lyman-alpha vertical profile can be obtained. Programs are created to compute the O-2 density, atmospheric power and temperature profiles based on Lymanalpha data. The detector design appertained to ASLAF project (Attenuation of the Solar Lyman-Alpha Flux), a scientific cooperation between STIL-Bul.Acad.Sci., Stara Zagora Department and the Atmospheric Physics Group at the Department of Meteorology (MISU), Stockholm University, Sweden. The joint project was part of the rocket experiment HotPay I, in the ALOMAR eARI Project, EU's 6th Framework Programme, Andoya Rocket Range, Andenes, Norway. The project is partly financed by the Bulgarian Ministry of Science and Education.

  • 5.
    Hedin, Jonas
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Meteorologiska institutionen (MISU).
    Rapp, Markus
    Deutsches Zentrum für Luft und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany.
    Khaplanov, Mikhail
    Stockholms universitet, Naturvetenskapliga fakulteten, Meteorologiska institutionen (MISU).
    Stegman, Jacek
    Stockholms universitet, Naturvetenskapliga fakulteten, Meteorologiska institutionen (MISU).
    Witt, Georg
    Stockholms universitet, Naturvetenskapliga fakulteten, Meteorologiska institutionen (MISU).
    Observations of NO in the upper mesosphere and lower thermosphere during ECOMA 20102012Inngår i: Annales Geophysicae, ISSN 0992-7689, E-ISSN 1432-0576, Vol. 30, s. 1611-1621Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In December 2010 the last campaign of the German-Norwegian sounding rocket project ECOMA (Existence and Charge state Of Meteoric smoke particles in the middle Atmosphere) was conducted from Andøya Rocket Range in northern Norway (69° N, 16° E) in connection with the Geminid meteor shower. The main instrument on board the rocket payloads was the ECOMA detector for studying meteoric smoke particles (MSPs) by active photoionization and subsequent detection of the produced charges (particles and photoelectrons). In addition to photoionizing MSPs, the energy of the emitted photons from the ECOMA flash-lamp is high enough to also photoionize nitric oxide (NO). Thus, around the peak of the NO layer, at and above the main MSP layer, photoelectrons produced by the photoionization of NO are expected to contribute to, or even dominate above the main MSP-layer, the total measured photoelectron current. Among the other instruments on board was a set of two photometers to study the O2(b1Σg+X3Σg-) Atmospheric band and NO2 continuum nightglow emissions. In the absence of auroral emissions, these two nightglow features can be used together to infer NO number densities. This will provide a way to quantify the contribution of NO photoelectrons to the photoelectron current measured by the ECOMA instrument and, above the MSP layer, a simultaneous measurement of NO with two different and independent techniques. This work is still on-going due to the uncertainties, especially in the effort to quantitatively infer NO densities from the ECOMA photoelectron current, and the lack of simultaneous measurements of temperature and density for the photometric study. In this paper we describe these two techniques to infer NO densities and discuss the uncertainties. The peak NO number density inferred from the two photometers on ascent was 3.9 × 108 cm−3 at an altitude of about 99 km, while the concentration inferred from the ECOMA photoelectron measurement at this altitude was a factor of 5 smaller.

  • 6.
    Lossow, Stefan
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Meteorologiska institutionen (MISU).
    Khaplanov, Mikhail
    Stockholms universitet, Naturvetenskapliga fakulteten, Meteorologiska institutionen (MISU).
    Gumbel, Jörg
    Stockholms universitet, Naturvetenskapliga fakulteten, Meteorologiska institutionen (MISU).
    Stegman, Jacek
    Stockholms universitet, Naturvetenskapliga fakulteten, Meteorologiska institutionen (MISU).
    Witt, Georg
    Stockholms universitet, Naturvetenskapliga fakulteten, Meteorologiska institutionen (MISU).
    Dalin, P.
    Swedish Institute of Space Physics.
    Kirkwood, S.
    Swedish Institute of Space Physics.
    Schmidlin, F.J.
    NASA Goddard Space Flight Center, Wallops Island, VA.
    Fricke, K. H.
    Physikalisches Institut der Universität Bonn.
    Blum, U.
    Physikalisches Institut der Universität Bonn.
    Middle atmospheric water vapour and dynamics in the vicinity of the polar vortex during the Hygrosonde-2 campaign2009Inngår i: Atmospheric Chemistry And Physics, ISSN 1680-7316, E-ISSN 1680-7324, Vol. 9, s. 4407-4417Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The Hygrosonde-2 campaign took place on 16 December 2001 at Esrange/Sweden (68° N, 21° E) with the aim to investigate the small scale distribution of water vapour in the middle atmosphere in the vicinity of the Arctic polar vortex. In situ balloon and rocket-borne measurements of water vapour were performed by means of OH fluorescence hygrometry. The combined measurements yielded a high resolution water vapour profile up to an altitude of 75 km. Using the characteristic of water vapour being a dynamical tracer it was possible to directly relate the water vapour data to the location of the polar vortex edge, which separates air masses of different character inside and outside the polar vortex. The measurements probed extra-vortex air in the altitude range between 45 km and 60 km and vortex air elsewhere. Transitions between vortex and extra-vortex usually coincided with wind shears caused by gravity waves which advect air masses with different water vapour volume mixing ratios. From the combination of the results from the Hygrosonde-2 campaign and the first flight of the optical hygrometer in 1994 (Hygrosonde-1) a clear picture of the characteristic water vapour distribution inside and outside the polar vortex can be drawn. Systematic differences in the water vapour concentration between the inside and outside of the polar vortex can be observed all the way up into the mesosphere. It is also evident that in situ measurements with high spatial resolution are needed to fully account for the small-scale exchange processes in the polar winter middle atmosphere.

  • 7.
    Megner, Linda
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Meteorologiska institutionen (MISU).
    Khaplanov, Mikhail
    Stockholms universitet, Naturvetenskapliga fakulteten, Meteorologiska institutionen (MISU).
    Baumgarten, G.
    Leibniz-Institute of Atmospheric Physics.
    Gumbel, Jörg
    Stockholms universitet, Naturvetenskapliga fakulteten, Meteorologiska institutionen (MISU).
    Stegman, Jacek
    Stockholms universitet, Naturvetenskapliga fakulteten, Meteorologiska institutionen (MISU).
    Strelnikov, B.
    Leibniz-Institute of Atmospheric Physics.
    Robertson, S.
    University of Colorado. Department of Physics .
    Large mesospheric ice particles at exceptionally high altitudes2009Inngår i: Annales Geophysicae, ISSN 0992-7689, E-ISSN 1432-0576, Vol. 27, s. 943-951Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We here report on the characteristics of exceptionally high Noctilucent clouds (NLC) that were detected with rocket photometers during the ECOMA/MASS campaign at Andøya, Norway 2007. The results from three separate flights are shown and discussed in connection to lidar measurements. Both the lidar measurements and the large difference between various rocket passages through the NLC show that the cloud layer was inhomogeneous on large scales. Two passages showed a particularly high, bright and vertically extended cloud, reaching to approximately 88 km. Long time series of lidar measurements show that NLC this high are very rare, only one NLC measurement out of thousand reaches above 87 km. The NLC is found to consist of three distinct layers. All three were bright enough to allow for particle size retrieval by phase function analysis, even though the lowest layer proved too horizontally inhomogeneous to obtain a trustworthy result. Large particles, corresponding to an effective radius of 50 nm, were observed both in the middle and top of the NLC. The present cloud does not comply with the conventional picture that NLC ice particles nucleate near the temperature minimum and grow to larger sizes as they sediment to lower altitudes. Strong up-welling, likely caused by gravity wave activity, is required to explain its characteristics.

  • 8. Plane, John M. C.
    et al.
    Saunders, Russell W.
    Hedin, Jonas
    Stockholms universitet, Naturvetenskapliga fakulteten, Meteorologiska institutionen (MISU).
    Stegman, Jacek
    Stockholms universitet, Naturvetenskapliga fakulteten, Meteorologiska institutionen (MISU).
    Khaplanov, Misha
    Stockholms universitet, Naturvetenskapliga fakulteten, Meteorologiska institutionen (MISU).
    Gumbel, Jörg
    Stockholms universitet, Naturvetenskapliga fakulteten, Meteorologiska institutionen (MISU).
    Lynch, Kristina A.
    Bracikowski, Phillip J.
    Gelinas, Lynette J.
    Friedrich, Martin
    Blindheim, Sandra
    Gausa, Michael
    Williams, Bifford P.
    A combined rocket-borne and ground-based study of the sodium layer and charged dust in the upper mesosphere2014Inngår i: Journal of Atmospheric and Solar-Terrestrial Physics, ISSN 1364-6826, E-ISSN 1879-1824, Vol. 118, s. 151-160Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The Hotel Payload 2 rocket was launched on January 31st 2008 at 20.14 LT from the Andoya Rocket Range in northern Norway (69.31 degrees N, 16.01 degrees E). Measurements in the 75-105 km region of atomic O, negatively-charged dust, positive ions and electrons with a suite of instruments on the payload were complemented by lidar measurements of atomic Na and temperature from the nearby ALOMAR observatory. The payload passed within 2.58 km of the lidar at an altitude of 90 km. A series of coupled models is used to explore the observations, leading to two significant conclusions. First, the atomic Na layer and the vertical profiles of negatively-charged dust (assumed to be meteoric smoke particles), electrons and positive ions, can be modelled using a self-consistent meteoric input flux. Second, electronic structure calculations and Rice-Ramsperger-Kassel-Markus theory are used to show that even small Fe-Mg-silicates are able to attach electrons rapidly and form stable negatively-charged particles, compared with electron attachment to O-2 and O-3. This explains the substantial electron depletion between 80 and 90 km, where the presence of atomic O at concentrations in excess of 10(10) cm(-3) prevents the formation of stable negative ions.

  • 9. Stevens, Michael H.
    et al.
    Gattinger, R. L.
    Gumbel, Jörg
    Stockholms universitet, Naturvetenskapliga fakulteten, Meteorologiska institutionen (MISU).
    Llewellyn, E. J.
    Degenstein, D. A.
    Khaplanov, Mikhail
    Stockholms universitet, Naturvetenskapliga fakulteten, Meteorologiska institutionen (MISU).
    Witt, Georg
    Stockholms universitet, Naturvetenskapliga fakulteten, Meteorologiska institutionen (MISU).
    First UV satellite observations of mesospheric water vapor2008Inngår i: Journal of geophysical research. Atmospheres, Vol. 113, nr D12, s. D12304-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We report the first UV satellite observations of mesospheric water vapor. The measurements are of nonthermal OH prompt emission between 300–330 nm produced directly from the photodissociation of water vapor by H Lyman-α. This technique is most sensitive to water vapor concentrations between 70–90 km altitude. We present OH data from two limb scanning experiments: the Middle Atmosphere High Resolution Spectrograph Investigation (MAHRSI) and the Optical Spectrograph and Infra-Red Imager System (OSIRIS). Interpretation of the lower resolution (∼1 nm) OSIRIS spectra requires the rotational emission rate factors for OH(1,1) solar fluorescence between 313–318 nm, which we present for the first time herein. Comparison of water vapor concentration profiles with the most coincident profiles from the Halogen Occultation Experiment on the Upper Atmosphere Research Satellite shows agreement to within 30% between 75–80 km for both MAHRSI and OSIRIS. We discuss the benefits of this promising new approach to measuring upper mesospheric water vapor and the need for new laboratory measurements to improve the analysis.

1 - 9 of 9
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf