Change search
Refine search result
1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Nilsson, Mats E.
    et al.
    Stockholm University, Faculty of Social Sciences, Department of Psychology.
    Tirado, Carlos
    Stockholm University, Faculty of Social Sciences, Department of Psychology.
    Szychowska, Malina
    Stockholm University, Faculty of Social Sciences, Department of Psychology.
    Psychoacoustic evidence for stronger discrimination suppression of spatial information conveyed by lag-click interaural time than interaural level differences2019In: Journal of the Acoustical Society of America, ISSN 0001-4966, E-ISSN 1520-8524, Vol. 145, no 1, p. 512-524Article in journal (Refereed)
    Abstract [en]

    Listeners have limited access to spatial information in lagging sound, a phenomenon known as discrimination suppression. It is unclear whether discrimination suppression works differently for interaural time differences (ITDs) and interaural level differences (ILDs). To explore this, three listeners assessed the lateralization (left or right) and detection (present or not) of lag clicks with a large fixed ITD (350 mu s) or ILD (10 dB) following a diotic lead click, with inter-click intervals (ICIs) of 0.125-256 ms. Performance was measured on a common scale for both cues: the lag-lead amplitude ratio [dB] at 75% correct answers. The main finding was that the lateralization thresholds, but not detection thresholds, were more strongly elevated for ITD-only than ILD-only clicks at intermediate ICIs (1-8 ms) in which previous research has found the strongest discrimination suppression effects. Altogether, these findings suggest that discrimination suppression involves mechanisms that make spatial information conveyed by lag-click ITDs less accessible to listeners than spatial information conveyed by lag-click ILDs.

  • 2. Preis, Anna
    et al.
    Hafke-Dys, Honorata
    Szychowska, Malina
    Stockholm University, Faculty of Social Sciences, Department of Psychology, Perception and psychophysics. Adam Mickiewicz University, Poznan, Poland.
    Kocinski, Jedrzej
    Felcyn, Jan
    Audio-visual interaction of environmental noise2016In: Noise Control Engineering Journal, ISSN 0736-2501, E-ISSN 2168-8710, Vol. 64, no 1, p. 34-43Article in journal (Refereed)
    Abstract [en]

    Currently research into the psychological evaluation of noise in daily life is car- ried out without taking into account the sense of sight. The human senses interact with each other; thus some information coming from one sense can be skipped or ignored in favor of information coming from another sense, leading to completely different reactions or behavior. The aim of this paper is to verify, on the basis of psychophysical experiments, how a human being processes audio-visual informa- tion coming from the different environmental noises which can be encountered in daily life. The experiment was divided into three parts: auditory, visual, and audio-visual. In each part of the experiment, the ICBEN scale (0–10) was used to rate the presented stimuli. In the first part only audio stimuli were pre- sented, and subjects were asked to rate their annoyance with the sound. In the second part of the experiment, the participants were asked to rate how pleasant the presented video clips were. Finally, in the last part of the experiment, parti- cipants were presented with a compatible and incompatible mix of audio and visual stimuli and asked to rate their annoyance. We found that several audio stimuli were assessed differently, to a significant extent, by listeners after video clips were added to them. © 2016 Institute of Noise Control Engineering.

  • 3.
    Szychowska, Malina
    et al.
    Stockholm University, Faculty of Social Sciences, Department of Psychology, Perception and psychophysics.
    Eklund, Rasmus
    Stockholm University, Faculty of Social Sciences, Department of Psychology, Perception and psychophysics.
    Nilsson, Mats E.
    Stockholm University, Faculty of Social Sciences, Department of Psychology, Perception and psychophysics.
    Wiens, Stefan
    Stockholm University, Faculty of Social Sciences, Department of Psychology, Perception and psychophysics.
    Effects of sound pressure level and visual perceptual load on the auditory mismatch negativity2017In: Neuroscience Letters, ISSN 0304-3940, E-ISSN 1872-7972, Vol. 640, p. 37-41Article in journal (Refereed)
    Abstract [en]

    Auditory change detection has been studied extensively with mismatch negativity (MMN), an event-related potential. Because it is unresolved if the duration MMN depends on sound pressure level (SPL), we studied effects of different SPLs (56, 66, and 76 dB) on the duration MMN. Further, previous research suggests that the MMN is reduced by a concurrent visual task. Because a recent behavioral study found that high visual perceptual load strongly reduced detection sensitivity to irrelevant sounds, we studied if the duration MMN is reduced by load, and if this reduction is stronger at low SPLs. Although a duration MMN was observed for all SPLs, the MMN was apparently not moderated strongly by SPL, perceptual load, or their interaction, because all 95% CIs overlapped zero. In a contrast analysis of the MMN (across loads) between the 56-dB and 76-dB groups, evidence (BF = 0.31) favored the null hypothesis that duration MMN is unaffected by a 20-dB increase in SPL. Similarly, evidence (BF = 0.19) favored the null hypothesis that effects of perceptual load on the duration MMN do not change with a 20-dB increase in SPL. However, evidence (BF = 3.12) favored the alternative hypothesis that the effect of perceptual load in the present study resembled the overall effect in a recent meta-analysis. When the present findings were combined with the meta-analysis, the effect of load (low minus high) was −0.43 μV, 95% CI [−0.64, −0.22] suggesting that the duration MMN decreases with load. These findings provide support for a sensitive monitoring system of the auditory environment.

  • 4.
    Wiens, Stefan
    et al.
    Stockholm University, Faculty of Social Sciences, Department of Psychology, Perception and psychophysics.
    Szychowska, Malina
    Stockholm University, Faculty of Social Sciences, Department of Psychology, Perception and psychophysics.
    Eklund, Rasmus
    Stockholm University, Faculty of Social Sciences, Department of Psychology, Perception and psychophysics.
    Nilsson, Mats E.
    Stockholm University, Faculty of Social Sciences, Department of Psychology, Perception and psychophysics.
    Data on the auditory duration mismatch negativity for different sound pressure levels and visual perceptual loads2017In: Data in Brief, E-ISSN 2352-3409, Vol. 11, p. 159-164Article in journal (Refereed)
    Abstract [en]

    The data presented in this article are related to our research article entitled “Effects of sound pressure level and visual perceptual load on the auditory mismatch negativity” (M. Szychowska, R. Eklund, M.E. Nilsson, S. Wiens, 2016) [1]. The duration MMN was recorded at three sound pressure levels (SPLs) during two levels of visual perceptual load. In an oddball paradigm (standard=75 ms, deviant=30 ms, within-subjects design), participants were presented with tones at 56, 66, or 76 dB SPL (between-subjects design). At the same time, participants focused on a letter-detection task (find X in a circle of six letters). In separate blocks, perceptual load was either low (the six letters were the same) or high (the six letters differed). In the first data collection, tones had only 76 dB SPL [2]. In a follow-up data collection with exactly the same procedure, tones had 56 and 66 dB SPL [1]. Here, we report the procedure, the recording of electroencephalography (EEG) and its preprocessing in terms of event-related potentials (ERPs), the preprocessing of behavioral data, as well as the grand mean ERPs in figures. For each participant, the reported ERP data include mean amplitudes for standards, deviants, and the difference wave (MMN) at Fz (with tip of nose as a reference), separately for the combinations of SPL and load. Reported behavioral data include the signal-detection measure d’ as an index of detection performance.

  • 5.
    Wiens, Stefan
    et al.
    Stockholm University, Faculty of Social Sciences, Department of Psychology.
    Szychowska, Malina
    Stockholm University, Faculty of Social Sciences, Department of Psychology.
    Eklund, Rasmus
    Stockholm University, Faculty of Social Sciences, Department of Psychology.
    van Berlekom, Erik
    Stockholm University, Faculty of Social Sciences, Department of Psychology.
    Cascade and no-repetition rules are comparable controls for the auditory frequency mismatch negativity in oddball tasks2019In: Psychophysiology, ISSN 0048-5772, E-ISSN 1469-8986, Vol. 56, no 1, article id e13280Article in journal (Refereed)
    Abstract [en]

    The mismatch negativity (MMN) has been widely studied with oddball tasks to index processing of unexpected auditory change. The MMN is computed as the difference of deviant minus standard and is used to capture the pattern violation by the deviant. However, this oddball MMN is confounded because the deviant differs physically from the standard and is presented less often. To improve measurement, the same tone as the deviant is presented in a separate condition. This control tone is equiprobable with other tones and is used to compute a corrected MMN (deviant minus control). Typically, the tones are in random order except that consecutive tones are not identical (no-repetition rule). In contrast, a recent study on frequency MMN presented tones in a regular up-and-down sequence (cascade rule). If the cascade rule is detected more easily than the no-repetition rule, there should be a lower risk of a confounding MMN within the cascade condition. However, in previous research, the cascade and no-repetition conditions differed not only in the regularity of the tone sequence but also in number of tones, frequency range, and proportion of tones. We controlled for these differences to isolate effects of regularity in the tone sequence. Results of our preregistered analyses provided moderate evidence (BF01>6) that the corrected MMN did not differ between cascade and no-repetition conditions. These findings imply that no-repetition and cascade rules are processed similarly and that the no-repetition condition provides an adequate control in frequency MMN.

  • 6.
    Wiens, Stefan
    et al.
    Stockholm University, Faculty of Social Sciences, Department of Psychology, Perception and psychophysics.
    Szychowska, Malina
    Stockholm University, Faculty of Social Sciences, Department of Psychology, Perception and psychophysics. Adam Mickiewicz University, Poznan, Poland.
    Nilsson, Mats E.
    Stockholm University, Faculty of Social Sciences, Department of Psychology, Perception and psychophysics.
    Visual Task Demands and the Auditory Mismatch Negativity: An Empirical Study and a Meta-Analysis2016In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 11, no 1, article id e0146567Article in journal (Refereed)
    Abstract [en]

    Because the auditory system is particularly useful in monitoring the environment, previous research has examined whether task-irrelevant, auditory distracters are processed even if subjects focus their attention on visual stimuli. This research suggests that attentionally demanding visual tasks decrease the auditory mismatch negativity (MMN) to simultaneously presented auditory distractors. Because a recent behavioral study found that high visual perceptual load decreased detection sensitivity of simultaneous tones, we used a similar task (n= 28) to determine if high visual perceptual load would reduce the auditory MMN. Results suggested that perceptual load did not decrease the MMN. At face value, these nonsignificant findings may suggest that effects of perceptual load on the MMN are smaller than those of other demanding visual tasks. If so, effect sizes should differ systematically between the present and previous studies. We conducted a selective meta-analysis of published studies in which the MMN was derived from the EEG, the visual task demands were continuous and varied between high and low within the same task, and the task-irrelevant tones were presented in a typical oddball paradigm simultaneously with the visual stimuli. Because the meta-analysis suggested that the present (null) findings did not differ systematically from previous findings, the available evidence was combined. Results of this meta-analysis confirmed that demanding visual tasks reduce the MMN to auditory distracters. However, because the meta-analysis was based on small studies and because of the risk for publication biases, future studies should be preregistered with large samples (n > 150) to provide confirmatory evidence for the results of the present meta-analysis. These future studies should also use control conditions that reduce confounding effects of neural adaptation, and use load manipulations that are defined independently from their effects on the MMN.

  • 7.
    Wiens, Stefan
    et al.
    Stockholm University, Faculty of Social Sciences, Department of Psychology.
    van Berlekom, Erik
    Stockholm University, Faculty of Social Sciences, Department of Psychology.
    Szychowska, Malina
    Stockholm University, Faculty of Social Sciences, Department of Psychology.
    Eklund, Rasmus
    Stockholm University, Faculty of Social Sciences, Department of Psychology.
    Visual Perceptual Load Does Not Affect the Frequency Mismatch Negativity2019In: Frontiers in Psychology, ISSN 1664-1078, E-ISSN 1664-1078, Vol. 10, article id 1970Article in journal (Refereed)
    Abstract [en]

    The mismatch negativity (MMN) has been of particular interest in auditory perception because of its sensitivity to auditory change. It is typically measured in an oddball task and is computed as the difference of deviant minus standard tones. Previous studies suggest that the oddball MMN can be reduced by crossmodal attention to a concurrent, difficult visual task. However, more recent studies did not replicate this effect. Because previous findings seem to be biased, we preregistered the present study and used Bayesian hypothesis testing to measure the strength of evidence for or against an effect of visual task difficulty. We manipulated visual perceptual load (high and low load). In the task, the visual stimuli were identical for both loads to avoid confounding effects from physical differences of the visual stimuli. We also measured the corrected MMN because the oddball MMN may be confounded by physical differences between deviant and standard tones. The corrected MMN is obtained with a separate control condition in which the same tone as the deviant (critical tone) is equiprobable with other tones. The corrected MMN is computed as deviant minus critical tones. Furthermore, we assessed working memory capacity to examine its moderating role. In our large sample (N = 49), the evidential strength in support of no effect of visual load was moderate for the oddball MMN (9.09 > BF01 > 3.57) and anecdotal to moderate for the corrected MMN (4.55 > BF01 > 2.17). Also, working memory capacity did not correlate with the visual load effect on the oddball MMN and the corrected MMN. The present findings support the robustness of the auditory frequency MMN to manipulations of crossmodal, visual attention and suggest that this relationship is not moderated by working memory capacity.

1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf