Ändra sökning
Avgränsa sökresultatet
1 - 35 av 35
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1. Adam, R.
    et al.
    Aghanim, N.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Ballardini, M.
    Banday, A. J.
    Barreiro, R. B.
    Bartolo, N.
    Basak, S.
    Battye, R.
    Benabed, K.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bock, J. J.
    Bonaldi, A.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Boulanger, F.
    Bucher, M.
    Burigana, C.
    Calabrese, E.
    Cardoso, J. -F.
    Carron, J.
    Chiang, H. C.
    Colombo, L. P. L.
    Combet, C.
    Comis, B.
    Couchot, F.
    Coulais, A.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Davis, R. J.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouille, J.
    Di Valentino, E.
    Dickinson, C.
    Diego, J. M.
    Dore, O.
    Douspis, M.
    Ducout, A.
    Dupac, X.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Falgarone, E.
    Fantaye, Y.
    Finelli, F.
    Forastieri, F.
    Frailis, M.
    Fraisse, A. A.
    Franceschi, E.
    Frolov, A.
    Galeotta, S.
    Galli, S.
    Ganga, K.
    Genova-Santos, R. T.
    Gerbino, Martina
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita). Università La Sapienza, Italy.
    Ghosh, T.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita). Princeton University, USA.
    Hansen, F. K.
    Helou, G.
    Henrot-Versille, S.
    Herranz, D.
    Hivon, E.
    Huang, Z.
    Ilic, S.
    Jaffe, A. H.
    Jones, W. C.
    Keihanen, E.
    Keskitalo, R.
    Kisner, T. S.
    Knox, L.
    Krachmalnicoff, N.
    Kunz, M.
    Kurki-Suonio, H.
    Lagache, G.
    Lahteenmaki, A.
    Lamarre, J. -M.
    Langer, M.
    Lasenby, A.
    Lattanzi, M.
    Lawrence, C. R.
    Le Jeune, M.
    Levrier, F.
    Lewis, A.
    Liguori, M.
    Lilje, P. B.
    Lopez-Caniego, M.
    Ma, Y. -Z.
    Macias-Perez, J. F.
    Maggio, G.
    Mangilli, A.
    Maris, M.
    Martin, P. G.
    Martinez-Gonzalez, E.
    Matarrese, S.
    Mauri, N.
    McEwen, J. D.
    Meinhold, P. R.
    Melchiorri, A.
    Mennella, A.
    Migliaccio, M.
    Miville-Deschenes, M. -A.
    Molinari, D.
    Moneti, A.
    Montier, L.
    Morgante, G.
    Moss, A.
    Naselsky, P.
    Natoli, P.
    Oxborrow, C. A.
    Pagano, L.
    Paoletti, D.
    Partridge, B.
    Patanchon, G.
    Patrizii, L.
    Perdereau, O.
    Perotto, L.
    Pettorino, V.
    Piacentini, F.
    Plaszczynski, S.
    Polastri, L.
    Polenta, G.
    Puget, J. -L
    Rachen, J. P.
    Racine, B.
    Reinecke, M.
    Remazeilles, M.
    Renzi, A.
    Rocha, G.
    Rossetti, M.
    Roudier, G.
    Rubino-Martin, J. A.
    Ruiz-Granados, B.
    Salvati, L.
    Sandri, M.
    Savelainen, M.
    Scott, D.
    Sirri, G.
    Sunyaev, R.
    Suur-Uski, A. -S.
    Tauber, J. A.
    Tenti, M.
    Toffolatti, L.
    Tomasi, M.
    Tristram, M.
    Trombetti, T.
    Valiviita, J.
    Van Tent, F.
    Vielva, P.
    Villa, F.
    Vittorio, N.
    Wandelt, B. D.
    Wehus, I. K.
    White, M.
    Zacchei, A.
    Zonca, A.
    Planck intermediate results XLVII. Planck constraints on reionization history2016Ingår i: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 596, artikel-id A108Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We investigate constraints on cosmic reionization extracted from the Planck cosmic microwave background (CMB) data. We combine the Planck CMB anisotropy data in temperature with the low-multipole polarization data to fit Lambda CDM models with various parameterizations of the reionization history. We obtain a Thomson optical depth tau = 0.058 +/- 0.012 for the commonly adopted instantaneous reionization model. This confirms, with data solely from CMB anisotropies, the low value suggested by combining Planck 2015 results with other data sets, and also reduces the uncertainties. We reconstruct the history of the ionization fraction using either a symmetric or an asymmetric model for the transition between the neutral and ionized phases. To determine better constraints on the duration of the reionization process, we also make use of measurements of the amplitude of the kinetic Sunyaev-Zeldovich (kSZ) effect using additional information from the high-resolution Atacama Cosmology Telescope and South Pole Telescope experiments. The average redshift at which reionization occurs is found to lie between z = 7.8 and 8.8, depending on the model of reionization adopted. Using kSZ constraints and a redshift-symmetric reionization model, we find an upper limit to the width of the reionization period of Delta z < 2.8. In all cases, we find that the Universe is ionized at less than the 10% level at redshifts above z similar or equal to 10. This suggests that an early onset of reionization is strongly disfavoured by the Planck data. We show that this result also reduces the tension between CMB-based analyses and constraints from other astrophysical sources.

  • 2. Adam, R.
    et al.
    Gerbino, Martina
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita). Università La Sapienza, Italy.
    Gudmundsson, Jón E.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita). Princeton University, USA.
    Lawrence, C. R.
    Zonca, A.
    Planck 2015 results I. Overview of products and scientific results2016Ingår i: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 594, artikel-id A1Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The European Space Agency's Planck satellite, which is dedicated to studying the early Universe and its subsequent evolution, was launched on 14 May 2009. It scanned the microwave and submillimetre sky continuously between 12 August 2009 and 23 October 2013. In February 2015, ESA and the Planck Collaboration released the second set of cosmology products based on data from the entire Planck mission, including both temperature and polarization, along with a set of scientific and technical papers and a web-based explanatory supplement. This paper gives an overview of the main characteristics of the data and the data products in the release, as well as the associated cosmological and astrophysical science results and papers. The data products include maps of the cosmic microwave background (CMB), the thermal Sunyaev-Zeldovich effect, diffuse foregrounds in temperature and polarization, catalogues of compact Galactic and extragalactic sources (including separate catalogues of Sunyaev-Zeldovich clusters and Galactic cold clumps), and extensive simulations of signals and noise used in assessing uncertainties and the performance of the analysis methods. The likelihood code used to assess cosmological models against the Planck data is described, along with a CMB lensing likelihood. Scientific results include cosmological parameters derived from CMB power spectra, gravitational lensing, and cluster counts, as well as constraints on inflation, non-Gaussianity, primordial magnetic fields, dark energy, and modified gravity, and new results on low-frequency Galactic foregrounds.

  • 3. Ade, P. A. R.
    et al.
    Efstathiou, G.
    Gerbino, Martina
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita). Università La Sapienza, Italy.
    Gudmundsson, Jón E.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita). Princeton University, USA.
    Zonca, A.
    Planck 2015 results XIII. Cosmological parameters2016Ingår i: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 594, artikel-id A13Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This paper presents cosmological results based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation. Our results are in very good agreement with the 2013 analysis of the Planck nominal-mission temperature data, but with increased precision. The temperature and polarization power spectra are consistent with the standard spatially-flat 6-parameter Lambda CDM cosmology with a power-law spectrum of adiabatic scalar perturbations (denoted base Lambda CDM in this paper). From the Planck temperature data combined with Planck lensing, for this cosmology we find a Hubble constant, H-0 = (67.8 +/- 0.9) km s(-1)Mpc(-1), a matter density parameter Omega(m) = 0.308 +/- 0.012, and a tilted scalar spectral index with ns = 0.968 +/- 0.006, consistent with the 2013 analysis. Note that in this abstract we quote 68% confidence limits on measured parameters and 95% upper limits on other parameters. We present the first results of polarization measurements with the Low Frequency Instrument at large angular scales. Combined with the Planck temperature and lensing data, these measurements give a reionization optical depth of tau = 0.066 +/- 0.016, corresponding to a reionization redshift of z(re) = 8.8(-1.4)(+1.7) These results are consistent with those from WMAP polarization measurements cleaned for dust emission using 353-GHz polarization maps from the High Frequency Instrument. We find no evidence for any departure from base Lambda CDM in the neutrino sector of the theory; for example, combining Planck observations with other astrophysical data we find N-eff = 3.15 +/- 0.23 for the effective number of relativistic degrees of freedom, consistent with the value N-eff = 3.046 of the Standard Model of particle physics. The sum of neutrino masses is constrained to Sigma m(v) < 0.23 eV. The spatial curvature of our Universe is found to be very close to zero, with vertical bar Omega(K)vertical bar < 0.005. Adding a tensor component as a single-parameter extension to base Lambda CDM we find an upper limit on the tensor-to-scalar ratio of r(0.002) < 0.11, consistent with the Planck 2013 results and consistent with the B-mode polarization constraints from a joint analysis of BICEP2, Keck Array, and Planck (BKP) data. Adding the BKP B-mode data to our analysis leads to a tighter constraint of r(0.002) < 0.09 and disfavours inflationary models with a V(phi) proportional to phi(2) potential. The addition of Planck polarization data leads to strong constraints on deviations from a purely adiabatic spectrum of fluctuations. We find no evidence for any contribution from isocurvature perturbations or from cosmic defects. Combining Planck data with other astrophysical data, including Type Ia supernovae, the equation of state of dark energy is constrained to w = -1.006 +/- 0.045, consistent with the expected value for a cosmological constant. The standard big bang nucleosynthesis predictions for the helium and deuterium abundances for the best-fit Planck base Lambda CDM cosmology are in excellent agreement with observations. We also constraints on annihilating dark matter and on possible deviations from the standard recombination history. In neither case do we find no evidence for new physics. The Planck results for base Lambda CDM are in good agreement with baryon acoustic oscillation data and with the JLA sample of Type Ia supernovae. However, as in the 2013 analysis, the amplitude of the fluctuation spectrum is found to be higher than inferred from some analyses of rich cluster counts and weak gravitational lensing. We show that these tensions cannot easily be resolved with simple modifications of the base Lambda CDM cosmology. Apart from these tensions, the base Lambda CDM cosmology provides an excellent description of the Planck CMB observations and many other astrophysical data sets.

  • 4. Aghanim, N.
    et al.
    Akrami, Y.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Ballardini, M.
    Banday, A. J.
    Barreiro, R. B.
    Bartolo, N.
    Basak, S.
    Battye, R.
    Benabed, K.
    Bernard, J-P
    Bersanelli, M.
    Bielewicz, P.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Burigana, C.
    Calabrese, E.
    Carron, J.
    Chiang, H. C.
    Comis, B.
    Contreras, D.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouille, J.
    Di Valentino, E.
    Dickinson, C.
    Diego, J. M.
    Dore, O.
    Ducout, A.
    Dupac, X.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Falgarone, E.
    Fantaye, Y.
    Finelli, F.
    Forastieri, F.
    Frailis, M.
    Fraisse, A. A.
    Franceschi, E.
    Frolov, A.
    Galeotta, S.
    Galli, S.
    Ganga, K.
    Gerbino, Martina
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita). Università La Sapienza, Italy.
    Gorski, K. M.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Princeton University, USA.
    Handley, W.
    Hansen, F. K.
    Herranz, D.
    Hivon, E.
    Huang, Z.
    Jaffe, A. H.
    Keihanen, E.
    Keskitalo, R.
    Kiiveri, K.
    Kim, J.
    Kisner, T. S.
    Krachmalnicoff, N.
    Kunz, M.
    Kurki-Suonio, H.
    Lamarre, J-M
    Lasenby, A.
    Lattanzi, M.
    Lawrence, C. R.
    Le Jeune, M.
    Levrier, F.
    Liguori, M.
    Lilje, P. B.
    Lindholm, V
    Lopez-Caniego, M.
    Lubin, P. M.
    Ma, Y-Z
    Macias-Perez, J. F.
    Maggio, G.
    Maino, D.
    Mandolesi, N.
    Mangilli, A.
    Martin, P. G.
    Martinez-Gonzalez, E.
    Matarrese, S.
    Mauri, N.
    McEwen, J. D.
    Melchiorri, A.
    Mennella, A.
    Migliaccio, M.
    Miville-Deschenes, M-A
    Molinari, D.
    Moneti, A.
    Montier, L.
    Morgante, G.
    Natoli, P.
    Oxborrow, C. A.
    Pagano, L.
    Paoletti, D.
    Partridge, B.
    Perdereau, O.
    Perotto, L.
    Pettorino, V
    Piacentini, F.
    Plaszczynski, S.
    Polastri, L.
    Polenta, G.
    Rachen, J. P.
    Racine, B.
    Reinecke, M.
    Remazeilles, M.
    Renzi, A.
    Rocha, G.
    Roudier, G.
    Ruiz-Granados, B.
    Sandri, M.
    Savelainen, M.
    Scott, D.
    Sirignano, C.
    Sirri, G.
    Spencer, L. D.
    Stanco, L.
    Sunyaev, R.
    Tauber, J. A.
    Tavagnacco, D.
    Tenti, M.
    Toffolatti, L.
    Tomasi, M.
    Tristram, M.
    Trombetti, T.
    Valiviita, J.
    Van Tent, F.
    Vielva, P.
    Villa, F.
    Vittorio, N.
    Wandele, B. D.
    Wehus, I. K.
    Zacchei, A.
    Zonca, A.
    Planck intermediate results LIII. Detection of velocity dispersion from the kinetic Sunyaev-Zeldovich effect2018Ingår i: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 617, artikel-id A48Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Using the Planck full-mission data, we present a detection of the temperature (and therefore velocity) dispersion due to the kinetic Sunyaev-Zeldovich (kSZ) effect from clusters of galaxies. To suppress the primary CMB and instrumental noise we derive a matched filter and then convolve it with the Planck foreground-cleaned 2D- ILC maps. By using the Meta Catalogue of X-ray detected Clusters of galaxies (MCXC), we determine the normalized rms dispersion of the temperature fluctuations at the positions of clusters, finding that this shows excess variance compared with the noise expectation. We then build an unbiased statistical estimator of the signal, determining that the normalized mean temperature dispersion of 1526 clusters is <(Delta T/T)(2))> = (1.64 +/- 0.48) x 10(-11). However, comparison with analytic calculations and simulations suggest that around 0.7 sigma of this result is due to cluster lensing rather than the kSZ effect. By correcting this, the temperature dispersion is measured to be <(Delta T/T)(2))> = (1.35 +/- 0.48) x 10(-11), which gives a detection at the 2.8 sigma level. We further convert uniform-weight temperature dispersion into a measurement of the line-of-sight velocity dispersion, by using estimates of the optical depth of each cluster (which introduces additional uncertainty into the estimate). We find that the velocity dispersion is (v(2)) = (123 000 +/- 71 000) (km s(-1))(2), which is consistent with findings from other large-scale structure studies, and provides direct evidence of statistical homogeneity on scales of 600 h(-1) Mpc. Our study shows the promise of using cross-correlations of the kSZ effect with large-scale structure in order to constrain the growth of structure.

  • 5. Aghanim, N.
    et al.
    Akrami, Y.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Ballardini, M.
    Banday, A. J.
    Barreiro, R. B.
    Bartolo, N.
    Basak, S.
    Benabed, K.
    Bersanelli, M.
    Bielewicz, P.
    Bonaldi, A.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Burigana, C.
    Calabrese, E.
    Cardoso, J. -F.
    Challinor, A.
    Chiang, H. C.
    Colombo, L. P. L.
    Combet, C.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouille, J.
    Di Valentino, E.
    Dickinson, C.
    Diego, J. M.
    Dore, O.
    Ducout, A.
    Dupac, X.
    Dusini, S.
    Efstathiou, G.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Fantaye, Y.
    Finelli, F.
    Forastieri, F.
    Frailis, M.
    Franceschi, E.
    Frolov, A.
    Galeotta, S.
    Galli, S.
    Ganga, K.
    Genova-Santos, R. T.
    Gerbino, Martina
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita). Università La Sapienza, Italy.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gratton, S.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Princeton University, USA.
    Herranz, D.
    Hivon, E.
    Huang, Z.
    Jaffe, A. H.
    Jones, W. C.
    Keihanen, E.
    Keskitalo, R.
    Kiiveri, K.
    Kim, J.
    Kisner, T. S.
    Knox, L.
    Krachmalnicoff, N.
    Kunz, M.
    Kurki-Suonio, H.
    Lagache, G.
    Lamarre, J. -M.
    Lasenby, A.
    Lattanzi, M.
    Lawrence, C. R.
    Le Jeune, M.
    Levrier, F.
    Lewis, A.
    Liguori, M.
    Lilje, P. B.
    Lilley, M.
    Lindholm, V.
    Lopez-Caniego, M.
    Lubin, P. M.
    Ma, Y. -Z.
    Macias-Perez, J. F.
    Maggio, G.
    Maino, D.
    Mandolesi, N.
    Mangilli, A.
    Maris, M.
    Martin, P. G.
    Martinez-Gonzalez, E.
    Matarrese, S.
    Mauri, N.
    McEwen, J. D.
    Meinhold, P. R.
    Mennella, A.
    Migliaccio, M.
    Millea, M.
    Miville-Deschenes, M. -A.
    Molinari, D.
    Moneti, A.
    Montier, L.
    Morgante, G.
    Moss, A.
    Narimani, A.
    Natoli, P.
    Oxborrow, C. A.
    Pagano, L.
    Paoletti, D.
    Partridge, B.
    Patanchon, G.
    Patrizii, L.
    Pettorino, V.
    Piacentini, F.
    Polastri, L.
    Polenta, G.
    Puget, J. -L.
    Rachen, J. P.
    Racine, B.
    Reinecke, M.
    Remazeilles, M.
    Renzi, A.
    Rocha, G.
    Rossetti, M.
    Roudier, G.
    Rubino-Martin, J. A.
    Ruiz-Granados, B.
    Salvati, L.
    Sandri, M.
    Savelainen, M.
    Scott, D.
    Sirignano, C.
    Sirri, G.
    Stanco, L.
    Suur-Uski, A. -S.
    Tauber, J. A.
    Tavagnacco, D.
    Tenti, M.
    Toffolati, L.
    Tomasi, M.
    Tristram, M.
    Trombetti, T.
    Valiviita, J.
    Van Tent, F.
    Vielva, P.
    Villa, F.
    Vittorio, N.
    Wandelt, B. D.
    Wehus, I. K.
    White, M.
    Zacchei, A.
    Zonca, A.
    Planck intermediate results LI. Features in the cosmic microwave background temperature power spectrum and shifts in cosmological parameters2017Ingår i: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 607, artikel-id A95Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The six parameters of the standard Lambda CDM model have best-fit values derived from the Planck temperature power spectrum that are shifted somewhat from the best-fit values derived from WMAP data. These shifts are driven by features in the Planck temperature power spectrum at angular scales that had never before been measured to cosmic-variance level precision. We have investigated these shifts to determine whether they are within the range of expectation and to understand their origin in the data. Taking our parameter set to be the optical depth of the reionized intergalactic medium tau, the baryon density omega(b), the matter density omega(m), the angular size of the sound horizon theta(*), the spectral index of the primordial power spectrum, n(s), and A(s)e(-2 pi) (where As is the amplitude of the primordial power spectrum), we have examined the change in best-fit values between a WMAP-like large angular-scale data set (with multipole moment l < 800 in the Planck temperature power spectrum) and an all angular-scale data set (l < 2500 Planck temperature power spectrum), each with a prior on tau of 0.07 +/- 0.02. We find that the shifts, in units of the 1 sigma expected dispersion for each parameter, are {Delta tau, Delta A(s)e(-2 tau), Delta n(s), Delta omega(m), Delta omega(b), Delta theta(*)} = {-1.7, -2.2, 1.2, 2.0, 1.1, 0.9}, with a chi(2) value of 8.0. We find that this chi(2) value is exceeded in 15% of our simulated data sets, and that a parameter deviates by more than 2.2 sigma in 9% of simulated data sets, meaning that the shifts are not unusually large. Comparing l < 800 instead to l > 800, or splitting at a different multipole, yields similar results. We examined the l < 800 model residuals in the l > 800 power spectrum data and find that the features there that drive these shifts are a set of oscillations across a broad range of angular scales. Although they partly appear similar to the effects of enhanced gravitational lensing, the shifts in Lambda CDM parameters that arise in response to these features correspond to model spectrum changes that are predominantly due to non-lensing effects; the only exception is tau, which, at fixed A(s)e(-2 tau), affects the l > 800 temperature power spectrum solely through the associated change in As and the impact of that on the lensing potential power spectrum. We also ask, what is it about the power spectrum at l < 800 that leads to somewhat different best-fit parameters than come from the full l range? We find that if we discard the data at l < 30, where there is a roughly 2 sigma downward fluctuation in power relative to the model that best fits the full l range, the l < 800 best-fit parameters shift significantly towards the l < 2500 best-fit parameters. In contrast, including l < 30, this previously noted low-l deficit drives ns up and impacts parameters correlated with ns, such as omega(m) and H-0. As expected, the l < 30 data have a much greater impact on the l < 800 best fit than on the l < 2500 best fit. So although the shifts are not very significant, we find that they can be understood through the combined effects of an oscillatory-like set of high-l residuals and the deficit in low-l power, excursions consistent with sample variance that happen to map onto changes in cosmological parameters. Finally, we examine agreement between Planck TT data and two other CMB data sets, namely the Planck lensing reconstruction and the TT power spectrum measured by the South Pole Telescope, again finding a lack of convincing evidence of any significant deviations in parameters, suggesting that current CMB data sets give an internally consistent picture of the Lambda CDM model.

  • 6. Aghanim, N.
    et al.
    Alves, M. I. R.
    Arzoumanian, D.
    Aumont, J.
    Baccigalupi, C.
    Ballardini, M.
    Banday, A. J.
    Barreiro, R. B.
    Bartolo, N.
    Basak, S.
    Benabed, K.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Boulanger, F.
    Bracco, A.
    Bucher, M.
    Burigana, C.
    Calabrese, E.
    Cardoso, J. -F.
    Chiang, H. C.
    Colombo, L. P. L.
    Combet, C.
    Comis, B.
    Couchot, F.
    Coulais, A.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Davis, R. J.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouille, J.
    Delouis, J. -M.
    Di Valentino, E.
    Dickinson, C.
    Diego, J. M.
    Dore, O.
    Douspis, M.
    Ducout, A.
    Dupac, X.
    Dusini, S.
    Efstathiou, G.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Falgarone, E.
    Fantaye, Y.
    Ferriere, K.
    Finelli, F.
    Frailis, M.
    Fraisse, A. A.
    Franceschi, E.
    Frolov, A.
    Galeotta, S.
    Galli, S.
    Ganga, K.
    Genova-Santos, R. T.
    Gerbino, Martina
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita). Università La Sapienza, Italy.
    Ghosh, T.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gratton, S.
    Gregorio, A.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita). Princeton University, USA.
    Guillet, V.
    Hansen, F. K.
    Helou, G.
    Henrot-Versille, S.
    Herranz, D.
    Hivon, E.
    Huang, Z.
    Jaffe, A. H.
    Jaffe, T. R.
    Jones, W. C.
    Keihanen, E.
    Keskitalo, R.
    Kisner, T. S.
    Krachmalnicoff, N.
    Kunz, M.
    Kurki-Suonio, H.
    Lagache, G.
    Lahteenmaki, A.
    Lamarre, J. -M.
    Langer, M.
    Lasenby, A.
    Lattanzi, M.
    Le Jeune, M.
    Levrier, F.
    Liguori, M.
    Lilje, P. B.
    Lopez-Caniego, M.
    Lubin, P. M.
    Macias-Perez, J. F.
    Maggio, G.
    Maino, D.
    Mandolesi, N.
    Mangilli, A.
    Maris, M.
    Martin, P. G.
    Martinez-Gonzalez, E.
    Matarrese, S.
    Mauri, N.
    McEwen, J. D.
    Melchiorri, A.
    Mennella, A.
    Migliaccio, M.
    Miville-Deschenes, M. -A.
    Molinari, D.
    Moneti, A.
    Montier, L.
    Morgante, G.
    Moss, A.
    Naselsky, P.
    Natoli, P.
    Neveu, J.
    Norgaard-Nielsen, H. U.
    Oppermann, N.
    Oxborrow, C. A.
    Pagano, L.
    Paoletti, D.
    Partridge, B.
    Perdereau, O.
    Perotto, L.
    Pettorino, V.
    Piacentini, F.
    Plaszczynski, S.
    Polenta, G.
    Rachen, J. P.
    Rebolo, R.
    Reinecke, M.
    Remazeilles, M.
    Renzi, A.
    Ristorcelli, I.
    Rocha, G.
    Rossetti, M.
    Roudier, G.
    Ruiz-Granados, B.
    Salvati, L.
    Sandri, M.
    Savelainen, M.
    Scott, D.
    Sirignano, C.
    Soler, J. D.
    Suur-Uski, A. -S.
    Tauber, J. A.
    Tavagnacco, D.
    Tenti, M.
    Toffolatti, L.
    Tomasi, M.
    Tristram, M.
    Trombetti, T.
    Valiviita, J.
    Vansyngel, F.
    Van Tent, F.
    Vielva, P.
    Villa, F.
    Wandelt, B. D.
    Wehus, I. K.
    Zacchei, A.
    Zonca, A.
    Planck intermediate results XLIV. Structure of the Galactic magnetic field from dust polarization maps of the southern Galactic cap2016Ingår i: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 596, artikel-id A105Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Using data from the Planck satellite, we study the statistical properties of interstellar dust polarization at high Galactic latitudes around the south pole (b < -60 degrees). Our aim is to advance the understanding of the magnetized interstellar medium (ISM), and to provide a modelling framework of the polarized dust foreground for use in cosmic microwave background (CMB) component-separation procedures. We examine the Stokes I, Q, and U maps at 353 GHz, and particularly the statistical distribution of the polarization fraction (p) and angle (Psi), in order to characterize the ordered and turbulent components of the Galactic magnetic field (GMF) in the solar neighbourhood. The Q and U maps show patterns at large angular scales, which we relate to the mean orientation of the GMF towards Galactic coordinates (l(0); b(0)) = (70 degrees +/- 5 degrees, 24 degrees +/- 5 degrees). The histogram of the observed p values shows a wide dispersion up to 25%. The histogram Psi of has a standard deviation of 12 degrees about the regular pattern expected from the ordered GMF. We build a phenomenological model that connects the distributions of p and Psi to a statistical description of the turbulent component of the GMF, assuming a uniform effective polarization fraction (p(0)) of dust emission. To compute the Stokes parameters, we approximate the integration along the line of sight (LOS) as a sum over a set of N independent polarization layers, in each of which the turbulent component of the GMF is obtained from Gaussian realizations of a power-law power spectrum. We are able to reproduce the observed p and distributions using a p0 value of 26%, a ratio of 0.9 between the strengths of the turbulent and mean components of the GMF, and a small value of N. The mean value of p (inferred from the fit of the large-scale patterns in the Stokes maps) is 12 +/- 1%. We relate the polarization layers to the density structure and to the correlation length of the GMF along the LOS. We emphasize the simplicity of our model (involving only a few parameters), which can be easily computed on the celestial sphere to produce simulated maps of dust polarization. Our work is an important step towards a model that can be used to assess the accuracy of component-separation methods in present and future CMB experiments designed to search the B mode CMB polarization from primordial gravity waves.

  • 7. Aghanim, N.
    et al.
    Arnaud, M.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Banday, A. J.
    Barreiro, R. B.
    Bartlett, J. G.
    Bartolo, N.
    Battaner, E.
    Benabed, K.
    Benoit, A.
    Benoit-Levy, A.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bock, J. J.
    Bonaldi, A.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Boulanger, F.
    Bucher, M.
    Burigana, C.
    Butler, R. C.
    Calabrese, E.
    Cardoso, J. -F.
    Catalano, A.
    Challinor, A.
    Chiang, H. C.
    Christensen, P. R.
    Clements, D. L.
    Colombo, L. P. L.
    Combet, C.
    Coulais, A.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Danese, L.
    Davies, R. D.
    Davis, R. J.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouille, J.
    Desert, F. -X.
    Di Valentino, E.
    Dickinson, C.
    Diego, J. M.
    Dolag, K.
    Dole, H.
    Donzelli, S.
    Dore, O.
    Douspis, M.
    Ducout, A.
    Dunkley, J.
    Dupac, X.
    Efstathiou, G.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Fergusson, J.
    Finelli, F.
    Forni, O.
    Frailis, M.
    Fraisse, A. A.
    Franceschi, E.
    Frejsel, A.
    Galeotta, S.
    Galli, S.
    Ganga, K.
    Gauthier, C.
    Gerbino, Martina
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita). Università La Sapienza, Italy.
    Giard, M.
    Gjerlow, E.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gratton, S.
    Gregorio, A.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita). Princeton University, USA.
    Hamann, J.
    Hansen, F. K.
    Harrison, D. L.
    Helou, G.
    Henrot-Versille, S.
    Hernandez-Monteagudo, C.
    Herranz, D.
    Hildebrandt, S. R.
    Hivon, E.
    Holmes, W. A.
    Hornstrup, A.
    Huffenberger, K. M.
    Hurier, G.
    Jaffe, A. H.
    Jones, W. C.
    Juvela, M.
    Keihanen, E.
    Keskitalo, R.
    Kiiveri, K.
    Knoche, J.
    Knox, L.
    Kunz, M.
    Kurki-Suonio, H.
    Lagache, G.
    Lahteenmaki, A.
    Lamarre, J. -M.
    Lasenby, A.
    Lattanzi, M.
    Lawrence, C. R.
    Le Jeune, M.
    Leonardi, R.
    Lesgourgues, J.
    Levrier, F.
    Lewis, A.
    Liguori, M.
    Lilje, P. B.
    Lilley, M.
    Linden-Vornle, M.
    Lindholm, V.
    Lopez-Caniego, M.
    Macias-Perez, J. F.
    Maffei, B.
    Maggio, G.
    Maino, D.
    Mandolesi, N.
    Mangilli, A.
    Maris, M.
    Martin, P. G.
    Martinez-Gonzalez, E.
    Masi, S.
    Matarrese, S.
    Meinhold, P. R.
    Melchiorri, A.
    Migliaccio, M.
    Millea, M.
    Mitra, S.
    Miville-Deschenes, M. -A.
    Moneti, A.
    Montier, L.
    Morgante, G.
    Mortlock, D.
    Mottet, S.
    Munshi, D.
    Murphy, J. A.
    Narimani, A.
    Naselsky, P.
    Nati, F.
    Natoli, P.
    Noviello, F.
    Novikov, D.
    Novikov, I.
    Oxborrow, C. A.
    Paci, F.
    Pagano, L.
    Pajot, F.
    Paoletti, D.
    Partridge, B.
    Pasian, F.
    Patanchon, G.
    Pearson, T. J.
    Perdereau, O.
    Perotto, L.
    Pettorino, V.
    Piacentini, F.
    Piat, M.
    Pierpaoli, E.
    Pietrobon, D.
    Plaszczynski, S.
    Pointecouteau, E.
    Polenta, G.
    Ponthieu, N.
    Pratt, G. W.
    Prunet, S.
    Puget, J. -L.
    Rachen, J. P.
    Reinecke, M.
    Remazeilles, M.
    Renault, C.
    Renzi, A.
    Ristorcelli, I.
    Rocha, G.
    Rossetti, M.
    Roudier, G.
    d'Orfeuil, B. Rouille
    Rubino-Martin, J. A.
    Rusholme, B.
    Salvati, L.
    Sandri, M.
    Santos, D.
    Savelainen, M.
    Savini, G.
    Scott, D.
    Serra, P.
    Spencer, L. D.
    Spinelli, M.
    Stolyarov, V.
    Stompor, R.
    Sunyaev, R.
    Sutton, D.
    Suur-Uski, A. -S.
    Sygnet, J. -F.
    Tauber, J. A.
    Terenzi, L.
    Toffolatti, L.
    Tomasi, M.
    Tristram, M.
    Trombetti, T.
    Tucci, M.
    Tuovinen, J.
    Umana, G.
    Valenziano, L.
    Valiviita, J.
    Van Tent, F.
    Vielva, P.
    Villa, F.
    Wade, L. A.
    Wandelt, B. D.
    Wehus, I. K.
    Yvon, D.
    Zacchei, A.
    Zonca, A.
    Planck 2015 results XI. CMB power spectra, likelihoods, and robustness of parameters2016Ingår i: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 594, artikel-id A11Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This paper presents the Planck 2015 likelihoods, statistical descriptions of the 2-point correlation functions of the cosmic microwave background (CMB) temperature and polarization fluctuations that account for relevant uncertainties, both instrumental and astrophysical in nature. They are based on the same hybrid approach used for the previous release, i.e., a pixel-based likelihood at low multipoles (l < 30) and a Gaussian approximation to the distribution of cross-power spectra at higher multipoles. The main improvements are the use of more and better processed data and of Planck polarization information, along with more detailed models of foregrounds and instrumental uncertainties. The increased redundancy brought by more than doubling the amount of data analysed enables further consistency checks and enhanced immunity to systematic effects. It also improves the constraining power of Planck, in particular with regard to small-scale foreground properties. Progress in the modelling of foreground emission enables the retention of a larger fraction of the sky to determine the properties of the CMB, which also contributes to the enhanced precision of the spectra. Improvements in data processing and instrumental modelling further reduce uncertainties. Extensive tests establish the robustness and accuracy of the likelihood results, from temperature alone, from polarization alone, and from their combination. For temperature, we also perform a full likelihood analysis of realistic end-to-end simulations of the instrumental response to the sky, which were fed into the actual data processing pipeline; this does not reveal biases from residual low-level instrumental systematics. Even with the increase in precision and robustness, the Lambda CDM cosmological model continues to offer a very good fit to the Planck data. The slope of the primordial scalar fluctuations, n(s), is confirmed smaller than unity at more than 5 sigma from Planck alone. We further validate the robustness of the likelihood results against specific extensions to the baseline cosmology, which are particularly sensitive to data at high multipoles. For instance, the effective number of neutrino species remains compatible with the canonical value of 3.046. For this first detailed analysis of Planck polarization spectra, we concentrate at high multipoles on the E modes, leaving the analysis of the weaker B modes to future work. At low multipoles we use temperature maps at all Planck frequencies along with a subset of polarization data. These data take advantage of Planck's wide frequency coverage to improve the separation of CMB and foreground emission. Within the baseline Lambda CDM cosmology this requires tau = 0.078 +/- 0.019 for the reionization optical depth, which is significantly lower than estimates without the use of high-frequency data for explicit monitoring of dust emission. At high multipoles we detect residual systematic errors in E polarization, typically at the mu K-2 level; we therefore choose to retain temperature information alone for high multipoles as the recommended baseline, in particular for testing non-minimal models. Nevertheless, the high-multipole polarization spectra from Planck are already good enough to enable a separate high-precision determination of the parameters of the Lambda CDM model, showing consistency with those established independently from temperature information alone.

  • 8. Aghanim, N.
    et al.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Ballardini, M.
    Banday, A. J.
    Barreiro, R. B.
    Bartolo, N.
    Basak, S.
    Battye, R.
    Benabed, K.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bock, J. J.
    Bonaldi, A.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Boulanger, F.
    Bucher, M.
    Burigana, C.
    Butler, R. C.
    Calabrese, E.
    Cardoso, J. -F.
    Carron, J.
    Challinor, A.
    Chiang, H. C.
    Colombo, L. P. L.
    Combet, C.
    Comis, B.
    Coulais, A.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Davis, R. J.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouille, J.
    Delouis, J. -M.
    Di Valentino, E.
    Dickinson, C.
    Diego, J. M.
    Dore, O.
    Douspis, M.
    Ducout, A.
    Dupac, X.
    Efstathiou, G.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Falgarone, E.
    Fantaye, Y.
    Finelli, F.
    Forastieri, F.
    Frailis, M.
    Fraisse, A. A.
    Franceschi, E.
    Frolov, A.
    Galeotta, S.
    Galli, S.
    Ganga, K.
    Genova-Santos, R. T.
    Gerbino, Martina
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita). Università La Sapienza, Italy.
    Ghosh, T.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gratton, S.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita). Princeton University, USA.
    Hansen, F. K.
    Helou, G.
    Henrot-Versille, S.
    Herranz, D.
    Hivon, E.
    Huang, Z.
    Ilic, S.
    Jaffe, A. H.
    Jones, W. C.
    Keihanen, E.
    Keskitalo, R.
    Kisner, T. S.
    Knox, L.
    Krachmalnicoff, N.
    Kunz, M.
    Kurki-Suonio, H.
    Lagache, G.
    Lamarre, J. -M.
    Langer, M.
    Lasenby, A.
    Lattanzi, M.
    Lawrence, C. R.
    Le Jeune, M.
    Leahy, J. P.
    Levrier, F.
    Liguori, M.
    Lilje, P. B.
    Lopez-Caniego, M.
    Ma, Y. -Z.
    Macias-Perez, J. F.
    Maggio, G.
    Mangilli, A.
    Maris, M.
    Martin, P. G.
    Martinez-Gonzalez, E.
    Matarrese, S.
    Mauri, N.
    McEwen, J. D.
    Meinhold, P. R.
    Melchiorri, A.
    Mennella, A.
    Migliaccio, M.
    Miville-Deschenes, M. -A.
    Molinari, D.
    Moneti, A.
    Montier, L.
    Morgante, G.
    Moss, A.
    Mottet, S.
    Naselsky, P.
    Natoli, P.
    Oxborrow, C. A.
    Pagano, L.
    Paoletti, D.
    Partridge, B.
    Patanchon, G.
    Patrizii, L.
    Perdereau, O.
    Perotto, L.
    Pettorino, V.
    Piacentini, F.
    Plaszczynski, S.
    Polastri, L.
    Polenta, G.
    Puget, J. -L.
    Rachen, J. P.
    Racine, B.
    Reinecke, M.
    Remazeilles, M.
    Renzi, A.
    Rocha, G.
    Rossetti, M.
    Roudier, G.
    Rubino-Martin, J. A.
    Ruiz-Granados, B.
    Salvati, L.
    Sandri, M.
    Savelainen, M.
    Scott, D.
    Sirri, G.
    Sunyaev, R.
    Suur-Uski, A. -S.
    Tauber, J. A.
    Tenti, M.
    Toffolatti, L.
    Tomasi, M.
    Tristram, M.
    Trombetti, T.
    Valiviita, J.
    Van Tent, F.
    Vibert, L.
    Vielva, P.
    Villa, F.
    Vittorio, N.
    Wandelt, B. D.
    Watson, R.
    Wehus, I. K.
    White, M.
    Zacchei, A.
    Zonca, A.
    Planck intermediate results XLVI. Reduction of large-scale systematic effects in HFI polarization maps and estimation of the reionization optical depth2016Ingår i: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 596, artikel-id A107Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This paper describes the identification, modelling, and removal of previously unexplained systematic effects in the polarization data of the Planck High Frequency Instrument (HFI) on large angular scales, including new mapmaking and calibration procedures, new and more complete end-to-end simulations, and a set of robust internal consistency checks on the resulting maps. These maps, at 100, 143, 217, and 353 GHz, are early versions of those that will be released in final form later in 2016. The improvements allow us to determine the cosmic reionization optical depth tau using, for the first time, the low-multipole EE data from HFI, reducing significantly the central value and uncertainty, and hence the upper limit. Two different likelihood procedures are used to constrain tau from two estimators of the CMB E- and B-mode angular power spectra at 100 and 143 GHz, after debiasing the spectra from a small remaining systematic contamination. These all give fully consistent results. A further consistency test is performed using cross-correlations derived from the Low Frequency Instrument maps of the Planck 2015 data release and the new HFI data. For this purpose, end-to-end analyses of systematic effects from the two instruments are used to demonstrate the near independence of their dominant systematic error residuals. The tightest result comes from the HFI-based tau posterior distribution using the maximum likelihood power spectrum estimator from EE data only, giving a value 0.055 +/- 0.009. In a companion paper these results are discussed in the context of the best-fit Planck Lambda CDM cosmological model and recent models of reionization.

  • 9. Aghanim, N.
    et al.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Ballardini, M.
    Banday, A. J.
    Barreiro, R. B.
    Bartolo, N.
    Basak, S.
    Benabed, K.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bonaldi, A.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Boulanger, F.
    Bracco, A.
    Burigana, C.
    Calabrese, E.
    Cardoso, J. -F.
    Chiang, H. C.
    Colombo, L. P. L.
    Combet, C.
    Comis, B.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Davis, R. J.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouille, J.
    Delouis, J. -M.
    Di Valentino, E.
    Dickinson, C.
    Diego, J. M.
    Dore, O.
    Douspis, M.
    Ducout, A.
    Dupac, X.
    Dusini, S.
    Efstathiou, G.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Falgarone, E.
    Fantaye, Y.
    Finelli, F.
    Frailis, M.
    Fraisse, A. A.
    Franceschi, E.
    Frolov, A.
    Galeotta, S.
    Galli, S.
    Ganga, K.
    Genova-Santos, R. T.
    Gerbino, Martina
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita). Università La Sapienza, Italy.
    Ghosh, T.
    Giard, M.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gregorio, A.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita). Princeton University, USA.
    Hansen, F. K.
    Helou, G.
    Herranz, D.
    Hivon, E.
    Huang, Z.
    Jaffe, A. H.
    Jones, W. C.
    Keihanen, E.
    Keskitalo, R.
    Kisner, T. S.
    Krachmalnicoff, N.
    Kunz, M.
    Kurki-Suonio, H.
    Lagache, G.
    Lahteenmaki, A.
    Lamarre, J. -M.
    Lasenby, A.
    Lattanzi, M.
    Lawrence, C. R.
    Le Jeune, M.
    Levrier, F.
    Liguori, M.
    Lilje, P. B.
    Lopez-Caniego, M.
    Lubin, P. M.
    Macias-Perez, J. F.
    Maggio, G.
    Maino, D.
    Mandolesi, N.
    Mangilli, A.
    Maris, M.
    Martin, P. G.
    Martinez-Gonzalez, E.
    Matarrese, S.
    Mauri, N.
    McEwen, J. D.
    Melchiorri, A.
    Mennella, A.
    Migliaccio, M.
    Mitra, S.
    Miville-Deschenes, M. -A.
    Molinari, D.
    Moneti, A.
    Montier, L.
    Morgante, G.
    Moss, A.
    Naselsky, P.
    Norgaard-Nielsen, H. U.
    Oxborrow, C. A.
    Pagano, L.
    Paoletti, D.
    Partridge, B.
    Patrizii, L.
    Perdereau, O.
    Perotto, L.
    Pettorino, V.
    Piacentini, F.
    Plaszczynski, S.
    Polenta, G.
    Puget, J. -L.
    Rachen, J. P.
    Reinecke, M.
    Remazeilles, M.
    Renzi, A.
    Rocha, G.
    Rossetti, M.
    Roudier, G.
    Rubino-Martin, J. A.
    Ruiz-Granados, B.
    Salvati, L.
    Sandri, M.
    Savelainen, M.
    Scott, D.
    Sirignano, C.
    Sirri, G.
    Stanco, L.
    Suur-Uski, A. -S.
    Tauber, J. A.
    Tenti, M.
    Toffolatti, L.
    Tomasi, M.
    Tristram, M.
    Trombetti, T.
    Valiviita, J.
    Vansyngel, F.
    Van Tent, F.
    Vielva, P.
    Wandelt, B. D.
    Wehus, I. K.
    Zacchei, A.
    Zonca, A.
    Planck intermediate results L. Evidence of spatial variation of the polarized thermal dust spectral energy distribution and implications for CMB B-mode analysis2017Ingår i: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 599, artikel-id A51Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The characterization of the Galactic foregrounds has been shown to be the main obstacle in the challenging quest to detect primordial B-modes in the polarized microwave sky. We make use of the Planck-HFI 2015 data release at high frequencies to place new constraints on the properties of the polarized thermal dust emission at high Galactic latitudes. Here, we specifically study the spatial variability of the dust polarized spectral energy distribution (SED), and its potential impact on the determination of the tensor-to-scalar ratio, r. We use the correlation ratio of the CBB `angular power spectra between the 217 and 353 GHz channels as a tracer of these potential variations, computed on different high Galactic latitude regions, ranging from 80% to 20% of the sky. The new insight from Planck data is a departure of the correlation ratio from unity that cannot be attributed to a spurious decorrelation due to the cosmic microwave background, instrumental noise, or instrumental systematics. The effect is marginally detected on each region, but the statistical combination of all the regions gives more than 99% confidence for this variation in polarized dust properties. In addition, we show that the decorrelation increases when there is a decrease in the mean column density of the region of the sky being considered, and we propose a simple power-law empirical model for this dependence, which matches what is seen in the Planck data. We explore the effect that this measured decorrelation has on simulations of the BICEP2-Keck Array/Planck analysis and show that the 2015 constraints from these data still allow a decorrelation between the dust at 150 and 353 GHz that is compatible with our measured value. Finally, using simplified models, we show that either spatial variation of the dust SED or of the dust polarization angle are able to produce decorrelations between 217 and 353 GHz data similar to the values we observe in the data.

  • 10. Aghanim, N.
    et al.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Ballardini, M.
    Banday, A. J.
    Barreiro, R. B.
    Bartolo, N.
    Basak, S.
    Benabed, K.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Boulanger, F.
    Burigana, C.
    Calabrese, E.
    Cardoso, J. -F.
    Carron, J.
    Chiang, H. C.
    Colombo, L. P. L.
    Comis, B.
    Couchot, F.
    Coulais, A.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    de Bernardis, P.
    de Zotti, G.
    Delabrouille, J.
    Di Valentino, E.
    Dickinson, C.
    Diego, J. M.
    Dore, O.
    Douspis, M.
    Ducout, A.
    Dupac, X.
    Dusini, S.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Falgarone, E.
    Fantaye, Y.
    Finelli, F.
    Forastieri, F.
    Frailis, M.
    Fraisse, A. A.
    Franceschi, E.
    Frolov, A.
    Galeotta, S.
    Galli, S.
    Ganga, K.
    Genova-Santos, R. T.
    Gerbino, Martina
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita). Università La Sapienza, Italy.
    Ghosh, T.
    Giraud-Heraud, Y.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita). Princeton University, USA.
    Hansen, F. K.
    Helou, G.
    Henrot-Versille, S.
    Herranz, D.
    Hivon, E.
    Huang, Z.
    Jaffe, A. H.
    Jones, W. C.
    Keihanen, E.
    Keskitalo, R.
    Kiiveri, K.
    Kisner, T. S.
    Krachmalnicoff, N.
    Kunz, M.
    Kurki-Suonio, H.
    Lamarre, J. -M.
    Langer, M.
    Lasenby, A.
    Lattanzi, M.
    Lawrence, C. R.
    Le Jeune, M.
    Levrier, F.
    Lilje, P. B.
    Lilley, M.
    Lindholm, V.
    Lopez-Caniego, M.
    Ma, Y. -Z.
    Macias-Perez, J. F.
    Maggio, G.
    Maino, D.
    Mandolesi, N.
    Mangilli, A.
    Maris, M.
    Martin, P. G.
    Martinez-Gonzalez, E.
    Matarrese, S.
    Mauri, N.
    McEwen, J. D.
    Melchiorri, A.
    Mennella, A.
    Migliaccio, M.
    Miville-Deschenes, M. -A.
    Molinari, D.
    Moneti, A.
    Montier, L.
    Morgante, G.
    Moss, A.
    Natoli, P.
    Oxborrow, C. A.
    Pagano, L.
    Paoletti, D.
    Patanchon, G.
    Perdereau, O.
    Perotto, L.
    Pettorino, V.
    Piacentini, F.
    Plaszczynski, S.
    Polastri, L.
    Polenta, G.
    Puget, J. -L.
    Rachen, J. P.
    Racine, B.
    Reinecke, M.
    Remazeilles, M.
    Renzi, A.
    Rocha, G.
    Rosset, C.
    Rossetti, M.
    Roudier, G.
    Rubino-Martin, J. A.
    Ruiz-Granados, B.
    Salvati, L.
    Sandri, M.
    Savelainen, M.
    Scott, D.
    Sirignano, C.
    Sirri, G.
    Soler, J. D.
    Spencer, L. D.
    Suur-Uski, A. -S.
    Tauber, J. A.
    Tavagnacco, D.
    Tenti, M.
    Toffolatti, L.
    Tomasi, M.
    Tristram, M.
    Trombetti, T.
    Valiviita, J.
    Van Tent, F.
    Vielva, P.
    Villa, F.
    Vittorio, N.
    Wandelt, B. D.
    Wehus, I. K.
    Zacchei, A.
    Zonca, A.
    Planck intermediate results XLVIII. Disentangling Galactic dust emission and cosmic infrared background anisotropies2016Ingår i: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 596, artikel-id A109Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Using the Planck 2015 data release (PR2) temperature maps, we separate Galactic thermal dust emission from cosmic infrared background (CIB) anisotropies. For this purpose, we implement a specifically tailored component-separation method, the so-called generalized needlet internal linear combination (GNILC) method, which uses spatial information (the angular power spectra) to disentangle the Galactic dust emission and CIB anisotropies. We produce significantly improved all-sky maps of Planck thermal dust emission, with reduced CIB contamination, at 353, 545, and 857 GHz. By reducing the CIB contamination of the thermal dust maps, we provide more accurate estimates of the local dust temperature and dust spectral index over the sky with reduced dispersion, especially at high Galactic latitudes above b = +/- 20 degrees. We find that the dust temperature is T = (19.4 +/- 1.3) K and the dust spectral index is beta = 1.6 +/- 0.1 averaged over the whole sky, while T = (19.4 +/- 1.5) K and beta = 1.6 +/- 0.2 on 21% of the sky at high latitudes. Moreover, subtracting the new CIB-removed thermal dust maps from the CMB-removed Planck maps gives access to the CIB anisotropies over 60% of the sky at Galactic latitudes vertical bar b vertical bar > 20 degrees. Because they are a significant improvement over previous Planck products, the GNILC maps are recommended for thermal dust science. The new CIB maps can be regarded as indirect tracers of the dark matter and they are recommended for exploring cross-correlations with lensing and large-scale structure optical surveys. The reconstructed GNILC thermal dust and CIB maps are delivered as Planck products.

  • 11. Aghanim, N.
    et al.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Ballardini, M.
    Banday, A. J.
    Barreiro, R. B.
    Bartolo, N.
    Basak, S.
    Benabed, K.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Burigana, C.
    Calabrese, E.
    Cardoso, J. -F.
    Carron, J.
    Chiang, H. C.
    Colombo, L. P. L.
    Comis, B.
    Contreras, D.
    Couchot, F.
    Coulais, A.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouille, J.
    Desert, F. -X.
    Di Valentino, E.
    Dickinson, C.
    Diego, J. M.
    Dore, O.
    Ducout, A.
    Dupac, X.
    Dusini, S.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Fantaye, Y.
    Finelli, F.
    Forastieri, F.
    Frailis, M.
    Franceschi, E.
    Frolov, A.
    Galeotta, S.
    Galli, S.
    Ganga, K.
    Genova-Santos, R. T.
    Gerbino, Martina
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita). Università La Sapienza, Italy.
    Giraud-Heraud, Y.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita). Princeton University, USA.
    Hansen, F. K.
    Henrot-Versille, S.
    Herranz, D.
    Hivon, E.
    Huang, Z.
    Jaffe, A. H.
    Jones, W. C.
    Keihanen, E.
    Keskitalo, R.
    Kiiveri, K.
    Krachmalnicoff, N.
    Kunz, M.
    Kurki-Suonio, H.
    Lamarre, J. -M.
    Langer, M.
    Lasenby, A.
    Lattanzi, M.
    Lawrence, C. R.
    Le Jeune, M.
    Leahy, J. P.
    Levrier, F.
    Liguori, M.
    Lilje, P. B.
    Lindholm, V.
    Lopez-Caniego, M.
    Ma, Y. -Z.
    Macias-Perez, J. F.
    Maggio, G.
    Maino, D.
    Mandolesi, N.
    Maris, M.
    Martin, P. G.
    Martinez-Gonzalez, E.
    Matarrese, S.
    Mauri, N.
    McEwen, J. D.
    Meinhold, P. R.
    Melchiorri, A.
    Mennella, A.
    Migliaccio, M.
    Miville-Deschenes, M. -A.
    Molinari, D.
    Moneti, A.
    Morgante, G.
    Moss, A.
    Natoli, P.
    Pagano, L.
    Paoletti, D.
    Patanchon, G.
    Patrizii, L.
    Perotto, L.
    Pettorino, V.
    Piacentini, F.
    Polastri, L.
    Polenta, G.
    Rachen, J. P.
    Racine, B.
    Reinecke, M.
    Remazeilles, M.
    Renzi, A.
    Rocha, G.
    Rosset, C.
    Rossetti, M.
    Roudier, G.
    Rubino-Martin, J. A.
    Ruiz-Granados, B.
    Sandri, M.
    Savelainen, M.
    Scott, D.
    Sirignano, C.
    Sirri, G.
    Spencer, L. D.
    Suur-Uski, A. -S.
    Tauber, J. A.
    Tavagnacco, D.
    Tenti, M.
    Toffolatti, L.
    Tomasi, M.
    Tristram, M.
    Trombetti, T.
    Valiviita, J.
    Van Tent, F.
    Vielva, P.
    Villa, F.
    Vittorio, N.
    Wandelt, B. D.
    Wehus, I. K.
    Zacchei, A.
    Zonca, A.
    Planck intermediate results XLIX. Parity-violation constraints from polarization data2016Ingår i: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 596, artikel-id A110Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Parity-violating extensions of the standard electromagnetic theory cause in vacuo rotation of the plane of polarization of propagating photons. This effect, also known as cosmic birefringence, has an impact on the cosmic microwave background (CMB) anisotropy angular power spectra, producing non-vanishing T-B and E-B correlations that are otherwise null when parity is a symmetry. Here we present new constraints on an isotropic rotation, parametrized by the angle alpha, derived from Planck 2015 CMB polarization data. To increase the robustness of our analyses, we employ two complementary approaches, in harmonic space and in map space, the latter based on a peak stacking technique. The two approaches provide estimates for alpha that are in agreement within statistical uncertainties and are very stable against several consistency tests. Considering the T-B and E-B information jointly, we find alpha = 0 degrees: 31 +/- 0 degrees.05 (stat:) +/- 0 degrees:28 (syst:) from the harmonic analysis and alpha = 0 degrees.35 +/- 0 degrees.05 (stat :) 0 degrees.28 (syst :) from the stacking approach. These constraints are compatible with no parity violation and are dominated by the systematic uncertainty in the orientation of Planck's polarization-sensitive bolometers.

  • 12. Akrami, Y.
    et al.
    Argueso, F.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Ballardini, M.
    Banday, A. J.
    Barreiro, R. B.
    Bartolo, N.
    Basak, S.
    Benabed, K.
    Bernard, J-P
    Bersanelli, M.
    Bielewicz, P.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Burigana, C.
    Butler, R. C.
    Calabrese, E.
    Carron, J.
    Chiang, H. C.
    Combet, C.
    Crill, B. P.
    Cuttaia, F.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouille, J.
    Delouis, J-M
    Di Valentino, E.
    Dickinson, C.
    Diego, J. M.
    Ducout, A.
    Dupac, X.
    Efstathiou, G.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Fantaye, Y.
    Finelli, F.
    Frailis, M.
    Fraisse, A. A.
    Franceschi, E.
    Frolov, A.
    Galeotta, S.
    Galli, S.
    Ganga, K.
    Genova-Santos, R. T.
    Gerbino, Martina
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Ghosh, T.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gratton, S.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Princeton University, USA.
    Handley, W.
    Hansen, F. K.
    Herranz, D.
    Hivon, E.
    Huang, Z.
    Jaffe, A. H.
    Jones, W. C.
    Keihanen, E.
    Keskitalo, R.
    Kiiveri, K.
    Kim, J.
    Kisner, T. S.
    Krachmalnicoff, N.
    Kunz, M.
    Kurki-Suonio, H.
    Lahteenmaki, A.
    Lamarre, J-M
    Lasenby, A.
    Lattanzi, M.
    Lawrence, C. R.
    Levrier, F.
    Liguori, M.
    Lilje, P. B.
    Lindholm, V
    Lopez-Caniego, M.
    Ma, Y-Z
    Macias-Perez, J. F.
    Maggio, G.
    Maino, D.
    Mandolesi, N.
    Mangilli, A.
    Maris, M.
    Martin, P. G.
    Martinez-Gonzalez, E.
    Matarrese, S.
    McEwen, J. D.
    Meinhold, P. R.
    Melchiorri, A.
    Mennella, A.
    Migliaccio, M.
    Miville-Deschenes, M-A
    Molinari, D.
    Moneti, A.
    Montier, L.
    Morgante, G.
    Natoli, P.
    Oxborrow, C. A.
    Pagano, L.
    Paoletti, D.
    Partridge, B.
    Patanchon, G.
    Pearson, T. J.
    Pettorino, V
    Piacentini, F.
    Polenta, G.
    Puget, J-L
    Rachen, J. P.
    Racine, B.
    Reinecke, M.
    Remazeilles, M.
    Renzi, A.
    Rocha, G.
    Roudier, G.
    Rubino-Martin, J. A.
    Salvati, L.
    Sandri, M.
    Savelainen, M.
    Scott, D.
    Suur-Uski, A-S
    Tauber, J. A.
    Tavagnacco, D.
    Toffolatti, L.
    Tomasi, M.
    Trombetti, T.
    Tucci, M.
    Valiviita, J.
    Van Tent, B.
    Vielva, P.
    Villa, F.
    Vittorio, N.
    Wehus, I. K.
    Zacchei, A.
    Zonca, A.
    Planck intermediate results LIV. The Planck multi-frequency catalogue of non-thermal sources2018Ingår i: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 619, artikel-id A94Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This paper presents the Planck Multi-frequency Catalogue of Non-thermal (i.e. synchrotron-dominated) Sources (PCNT) observed between 30 and 857 GHz by the ESA Planck mission. This catalogue was constructed by selecting objects detected in the full mission all-sky temperature maps at 30 and 143 GHz, with a signal-to-noise ratio (S/N) > 3 in at least one of the two channels after filtering with a particular Mexican hat wavelet. As a result, 29 400 source candidates were selected. Then, a multi-frequency analysis was performed using the Matrix Filters methodology at the position of these objects, and flux densities and errors were calculated for all of them in the nine Planck channels. This catalogue was built using a different methodology than the one adopted for the Planck Catalogue of Compact Sources (PCCS) and the Second Planck Catalogue of Compact Sources (PCCS2), although the initial detection was done with the same pipeline that was used to produce them. The present catalogue is the first unbiased, full-sky catalogue of synchrotron-dominated sources published at millimetre and submillimetre wavelengths and constitutes a powerful database for statistical studies of non-thermal extragalactic sources, whose emission is dominated by the central active galactic nucleus. Together with the full multi-frequency catalogue, we also define the Bright Planck Multi-frequency Catalogue of Non-thermal Sources (PCNTb), where only those objects with a S/N > 4 at both 30 and 143 GHz were selected. In this catalogue 1146 compact sources are detected outside the adopted Planck GAL070 mask; thus, these sources constitute a highly reliable sample of extragalactic radio sources. We also flag the high-significance subsample (PCNThs), a subset of 151 sources that are detected with S/N > 4 in all nine Planck channels, 75 of which are found outside the Planck mask adopted here. The remaining 76 sources inside the Galactic mask are very likely Galactic objects.

  • 13. Akrami, Y.
    et al.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Ballardini, M.
    Banday, A. J.
    Barreiro, R. B.
    Bartolo, N.
    Basak, S.
    Benabed, K.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Boulanger, F.
    Bucher, M.
    Burigana, C.
    Butler, R. C.
    Calabrese, E.
    Cardoso, J. -F.
    Carron, J.
    Chiang, H. C.
    Colombo, L. P. L.
    Comis, B.
    Couchot, F.
    Coulais, A.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouille, J.
    Di Valentino, E.
    Dickinson, C.
    Diego, J. M.
    Dore, O.
    Ducout, A.
    Dupac, X.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Falgarone, E.
    Fantaye, Y.
    Finelli, F.
    Frailis, M.
    Fraisse, A. A.
    Franceschi, E.
    Frolov, A.
    Galeotta, S.
    Galli, S.
    Ganga, K.
    Genova-Santos, R. T.
    Gerbino, Martina
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita). Università La Sapienza, Italy.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Princeton University, USA.
    Hansen, F. K.
    Helou, G.
    Henrot-Versille, S.
    Herranz, D.
    Hivon, E.
    Jaffe, A. H.
    Jones, W. C.
    Keihanen, E.
    Keskitalo, R.
    Kiiveri, K.
    Kim, J.
    Kisner, T. S.
    Krachmalnicoff, N.
    Kunz, M.
    Kurki-Suonio, H.
    Lagache, G.
    Lamarre, J. -M.
    Lasenby, A.
    Lattanzi, M.
    Lawrence, C. R.
    Le Jeune, M.
    Lellouch, E.
    Levrier, F.
    Liguori, M.
    Lilje, P. B.
    Lindholm, V.
    Lopez-Caniego, M.
    Ma, Y. -Z.
    Macias-Perez, J. F.
    Maggio, G.
    Maino, D.
    Mandolesi, N.
    Maris, M.
    Martin, P. G.
    Martinez-Gonzalez, E.
    Matarrese, S.
    Mauri, N.
    McEwen, J. D.
    Melchiorri, A.
    Mennella, A.
    Migliaccio, M.
    Miville-Deschenes, M. -A.
    Molinari, D.
    Moneti, A.
    Montier, L.
    Moreno, R.
    Morgante, G.
    Natoli, P.
    Oxborrow, C. A.
    Paoletti, D.
    Partridge, B.
    Patanchon, G.
    Patrizii, L.
    Perdereau, O.
    Piacentini, F.
    Plaszczynski, S.
    Polenta, G.
    Rachen, J. P.
    Racine, B.
    Reinecke, M.
    Remazeilles, M.
    Renzi, A.
    Rocha, G.
    Romelli, E.
    Rosset, C.
    Roudier, G.
    Rubino-Martin, J. A.
    Ruiz-Granados, B.
    Salvati, L.
    Sandri, M.
    Savelainen, M.
    Scott, D.
    Sirri, G.
    Spencer, L. D.
    Suur-Uski, A. -S.
    Tauber, J. A.
    Tavagnacco, D.
    Tenti, M.
    Toffolatti, L.
    Tomasi, M.
    Tristram, M.
    Trombetti, T.
    Valiviita, J.
    Van Tent, F.
    Vielva, P.
    Villa, F.
    Wehus, I. K.
    Zacchei, A.
    Planck intermediate results LII. Planet flux densities2017Ingår i: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 607, artikel-id A122Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Measurements of flux density are described for five planets, Mars, Jupiter, Saturn, Uranus, and Neptune, across the six Planck High Frequency Instrument frequency bands (100-857 GHz) and these are then compared with models and existing data. In our analysis, we have also included estimates of the brightness of Jupiter and Saturn at the three frequencies of the Planck Low Frequency Instrument (30, 44, and 70 GHz). The results provide constraints on the intrinsic brightness and the brightness time-variability of these planets. The majority of the planet flux density estimates are limited by systematic errors, but still yield better than 1% measurements in many cases. Applying data from Planck HFI, the Wilkinson Microwave Anisotropy Probe (WMAP), and the Atacama Cosmology Telescope (ACT) to a model that incorporates contributions from Saturn's rings to the planet's total flux density suggests a best fit value for the spectral index of Saturn's ring system of beta(ring) = 2 : 30 +/- 0 : 03 over the 30-1000 GHz frequency range. Estimates of the polarization amplitude of the planets have also been made in the four bands that have polarization-sensitive detectors (100-353 GHz); this analysis provides a 95% confidence level upper limit on Mars's polarization of 1.8, 1.7, 1.2, and 1.7% at 100, 143, 217, and 353 GHz, respectively. The average ratio between the Planck-HFI measurements and the adopted model predictions for all five planets (excluding Jupiter observations for 353 GHz) is 1.004, 1.002, 1.021, and 1.033 for 100, 143, 217, and 353 GHz, respectively. Model predictions for planet thermodynamic temperatures are therefore consistent with the absolute calibration of Planck-HFI detectors at about the three-percent level. We compare our measurements with published results from recent cosmic microwave background experiments. In particular, we observe that the flux densities measured by Planck HFI and WMAP agree to within 2%. These results allow experiments operating in the mm-wavelength range to cross-calibrate against Planck and improve models of radiative transport used in planetary science.

  • 14. Burigana, C.
    et al.
    Carvalho, C. S.
    Trombetti, T.
    Notari, A.
    Quartin, M.
    Gasperis, G. D.
    Buzzelli, A.
    Vittorio, N.
    De Zotti, G.
    de Bernardis, P.
    Chluba, J.
    Bilicki, M.
    Danese, L.
    Delabrouille, J.
    Toffolatti, L.
    Lapi, A.
    Negrello, M.
    Mazzotta, P.
    Scott, D.
    Contreras, D.
    Achucarro, A.
    Ade, P.
    Allison, R.
    Ashdown, M.
    Ballardini, M.
    Banday, A. J.
    Banerji, R.
    Bartlett, J.
    Bartolo, N.
    Basak, S.
    Bersanelli, M.
    Bonaldi, A.
    Bonato, M.
    Borrill, J.
    Bouchet, F.
    Boulanger, F.
    Brinckmann, T.
    Bucher, M.
    Cabella, P.
    Cai, Z. -Y.
    Calvo, M.
    Castellano, M. G.
    Challinor, A.
    Clesse, S.
    Colantoni, I.
    Coppolecchia, A.
    Crook, M.
    D'Alessandro, G.
    Diego, J. -M.
    Di Marco, A.
    Di Valentino, E.
    Errard, J.
    Feeney, S.
    Fernandez-Cobos, R.
    Ferraro, S.
    Finelli, F.
    Forastieri, F.
    Galli, S.
    Genova-Santos, R.
    Gerbino, Martina
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Gonzalez-Nuevo, J.
    Grandis, S.
    Greenslade, J.
    Hagstotz, S.
    Hanany, S.
    Handley, W.
    Hernandez-Monteagudo, C.
    Hervias-Caimapo, C.
    Hills, M.
    Hivon, E.
    Kiiveri, K.
    Kisner, T.
    Kitching, T.
    Kunz, M.
    Kurki-Suonio, H.
    Lamagna, L.
    Lasenby, A.
    Lattanzi, M.
    Lesgourgues, J.
    Liguori, M.
    Lindholm, V.
    Lopez-Caniego, M.
    Luzziio, G.
    Maffei, B.
    Mandolesi, N.
    Martinez-Gonzalez, E.
    Martins, C. J. A. P.
    Masi, S.
    Matarrese, S.
    McCarthy, D.
    Melchiorri, A.
    Melin, J. -B.
    Molinari, D.
    Monfardini, A.
    Natoli, P.
    Paiellam, A.
    Paoletti, D.
    Patanchon, G.
    Piat, M.
    Pisano, G.
    Polastri, L.
    Polenta, G.
    Pollo, A.
    Poulin, V.
    Remazeilles, M.
    Roman, M.
    Rubino-Martin, J. -A.
    Salvati, L.
    Tartari, A.
    Tomasi, M.
    Tramonte, D.
    Trappe, N.
    Tucker, C.
    Valiviita, J.
    Van de Weijgaert, R.
    van Tent, B.
    Vennin, V.
    Vielva, P.
    Young, K.
    Zannoni, M.
    Exploring cosmic origins with CORE: Effects of observer peculiar motion2018Ingår i: Journal of Cosmology and Astroparticle Physics, ISSN 1475-7516, E-ISSN 1475-7516, nr 4, artikel-id 021Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We discuss the effects on the cosmic microwave background (CMB), cosmic infrared background (CIB), and thermal Sunyaev-Zeldovich effect due to the peculiar motion of an observer with respect to the CMB rest frame, which induces boosting effects. After a brief review of the current observational and theoretical status, we investigate the scientific perspectives opened by future CMB space missions, focussing on the Cosmic Origins Explorer (CORE) proposal. The improvements in sensitivity offered by a mission like CORE, together with its high resolution over a wide frequency range, will provide a more accurate estimate of the CMB dipole. The extension of boosting effects to polarization and cross-correlations will enable a more robust determination of purely velocity-driven effects that are not degenerate with the intrinsic CMB dipole, allowing us to achieve an overall signal-to-noise ratio of 13; this improves on the Planck detection and essentially equals that of an ideal cosmic variance-limited experiment up to a multipole l similar or equal to 2000. Precise inter-frequency calibration will offer the opportunity to constrain or even detect CMB spectral distortions, particularly from the cosmological reionization epoch, because of the frequency dependence of the dipole spectrum, without resorting to precise absolute calibration. The expected improvement with respect to COBE-FIRAS in the recovery of distortion parameters (which could in principle be a factor of several hundred for an ideal experiment with the CORE configuration) ranges from a factor of several up to about 50, depending on the quality of foreground removal and relative calibration. Even in the case of similar or equal to 1% accuracy in both foreground removal and relative calibration at an angular scale of 1 degrees, we find that dipole analyses for a mission like CORE will be able to improve the recovery of the CIB spectrum amplitude by a factor similar or equal to 17 in comparison with current results based on COBE-FIRAS. In addition to the scientific potential of a mission like CORE for these analyses, synergies with other planned and ongoing projects are also discussed.

  • 15. Burigana, Carlo
    et al.
    Battistelli, Elia Stefano
    Benetti, Micol
    Cabass, Giovanni
    De Bernardis, Paolo
    Alighieri, Sperello Di Serego
    Di Valentino, Eleonora
    Gerbino, Martina
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita). Università di Roma “La Sapienza”, Italy.
    Giusarma, Elena
    Gruppuso, Alessandro
    Liguori, Michele
    Masi, Silvia
    Norgaard-Nielsen, Hans Ulrik
    Rosati, Piero
    Salvati, Laura
    Trombetti, Tiziana
    Vielva, Patricio
    Recent results and perspectives on cosmology and fundamental physics from microwave surveys2016Ingår i: International Journal of Modern Physics D, ISSN 0218-2718, Vol. 25, nr 6, artikel-id 1630016Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    Recent cosmic microwave background (CMB) data in temperature and polarization have reached high precision in estimating all the parameters that describe the current so-called standard cosmological model. Recent results about the integrated Sachs-Wolfe (ISW) effect from CMB anisotropies, galaxy surveys, and their cross-correlations are presented. Looking at fine signatures in the CMB, such as the lack of power at low multipoles, the primordial power spectrum (PPS) and the bounds on non-Gaussianities, complemented by galaxy surveys, we discuss inflationary physics and the generation of primordial perturbations in the early universe. Three important topics in particle physics, the bounds on neutrinos masses and parameters, on thermal axion mass and on the neutron lifetime derived from cosmological data are reviewed, with attention to the comparison with laboratory experiment results. Recent results from cosmic polarization rotation (CPR) analyses aimed at testing the Einstein equivalence principle (EEP) are presented. Finally, we discuss the perspectives of next radio facilities for the improvement of the analysis of future CMB spectral distortion experiments.

  • 16. Cabass, Giovanni
    et al.
    Pagano, Luca
    Salvati, Laura
    Gerbino, Martina
    Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita). Università di Roma “La Sapienza”, Italy.
    Giusarma, Elena
    Melchiorri, Alessandro
    Updated constraints and forecasts on primordial tensor modes2016Ingår i: Physical Review D, ISSN 2470-0010, Vol. 93, nr 6, artikel-id 063508Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We present new, tight, constraints on the cosmological background of gravitational waves (GWs) using the latest measurements of CMB temperature and polarization anisotropies provided by the Planck, BICEP2 and Keck Array experiments. These constraints are further improved when the GW contribution N-eff(GW) to the effective number of relativistic degrees of freedom N-eff is also considered. Parametrizing the tensor spectrum as a power law with tensor-to-scalar ratio r, tilt n(t) and pivot 0.01 Mpc(-1), and assuming a minimum value of r = 0.001, we find r < 0.089, n(t) = 1.7(-2.0+)(2.1) (95% CL, no N-eff(Gw)) and r < 0.082, n(t) = -0.05(-0.87)(+0.58) (95% CL, with N-eff(GW)). When the recently released 95 GHz data from Keck Array are added to the analysis, the constraints on r are improved to r < 0.067 (95% CL, no N-eff(GW)), r < 0.061 (95% CL, with N-eff(GW)). We discuss the limits coming from direct detection experiments such as LIGO-Virgo, pulsar timing (European Pulsar Timing Array) and CMB spectral distortions (FIRAS). Finally, we show future constraints achievable from a COrE-like mission: if the tensor-to-scalar ratio is of order 10(-2) and the inflationary consistency relation n(t) = -r/8 holds, COrE will be able to constrain nt with an error of 0.16 at 95% CL. In the case that lensing B-modes can be subtracted to 10% of their power, a feasible goal for COrE, these limits will be improved to 0.11 at (95% CL).

  • 17. Challinor, A.
    et al.
    Allison, R.
    Carron, J.
    Errard, J.
    Feeney, S.
    Kitching, T.
    Lesgourgues, J.
    Lewis, A.
    Zubeldia, I.
    Achucarro, A.
    Ade, P.
    Ashdown, M.
    Ballardini, M.
    Banday, A. J.
    Banerji, R.
    Bartlett, J.
    Bartolo, N.
    Basak, S.
    Baumann, D.
    Bersanelli, M.
    Bonaldi, A.
    Bonato, M.
    Borri, J.
    Bouchet, F.
    Boulanger, F.
    Brinckmann, T.
    Bucher, M.
    Burigana, C.
    Buzzelli, A.
    Cai, Z. -Y.
    Calvo, M.
    Carvalho, C. -S.
    Castellano, G.
    Chluba, J.
    Clesse, S.
    Colantoni, I.
    Coppolecchia, A.
    Crook, M.
    d'Alessandro, G.
    de Bernardis, P.
    de Gasperis, G.
    De Zotti, G.
    Delabrouille, J.
    Di Valentino, E.
    Diego, J. -M.
    Fernandez-Cobos, R.
    Ferraro, S.
    Finelli, F.
    Forastieri, F.
    Galli, S.
    Genova-Santos, R.
    Gerbino, Martina
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita).
    Gonzalez-Nuevo, J.
    Grandis, S.
    Greenslade, J.
    Hagstotz, S.
    Hanany, S.
    Handley, W.
    Hernandez-Monteagudo, C.
    Hervias-Caimapo, C.
    Hills, M.
    Hivon, E.
    Kiiveri, K.
    Kisner, T.
    Kunz, M.
    Kurki-Suonio, H.
    Lamagna, L.
    Lasenby, A.
    Lattanzi, M.
    Liguori, M.
    Lindholm, V.
    Lopez-Caniego, M.
    Luzzi, G.
    Maffei, B.
    Martinez-Gonzalez, E.
    Martins, C. J. A. P.
    Masi, S.
    Matarrese, S.
    McCarthy, D.
    Melchiorri, A.
    Melin, J. -B.
    Molinari, D.
    Monfardini, A.
    Natoli, P.
    Negrello, M.
    Notari, A.
    Paiella, A.
    Paoletti, D.
    Patanchon, G.
    Piat, M.
    Pisano, G.
    Polastri, L.
    Polenta, G.
    Polio, A.
    Poulin, V.
    Quartin, M.
    Remazeilles, M.
    Roman, M.
    Rubino-Martin, J. -A.
    Salvati, L.
    Tartari, A.
    Tomasi, M.
    Tramonte, D.
    Trappe, N.
    Trombetti, T.
    Tucker, C.
    Valiviita, J.
    Van de Weijgaert, R.
    van Tent, B.
    Vennin, V.
    Vielva, P.
    Vittorio, N.
    Young, K.
    Zannoni, M.
    Exploring cosmic origins with CORE: Gravitational lensing of the CMB2018Ingår i: Journal of Cosmology and Astroparticle Physics, ISSN 1475-7516, E-ISSN 1475-7516, nr 4, artikel-id 018Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Lensing of the cosmic microwave background (CMB) is now a well-developed probe of the clustering of the large-scale mass distribution over a broad range of redshifts. By exploiting the non-Gaussian imprints of lensing in the polarization of the CMB, the CORE mission will allow production of a clean map of the lensing deflections over nearly the full-sky. The number of high-SAN modes in this map will exceed current CMB lensing maps by a factor of 40, and the measurement will be sample-variance limited on all scales where linear theory is valid. Here, we summarise this mission product and discuss the science that will follow from its power spectrum and the cross-correlation with other clustering data. For example, the summed mass of neutrinos will be determined to an accuracy of 17 meV combining CORE lensing and CMB two-point information with contemporaneous measurements of the baryon acoustic oscillation feature in the clustering of galaxies, three times smaller than the minimum total mass allowed by neutrino oscillation measurements. Lensing has applications across many other science goals of CORE, including the search for B-mode polarization from primordial gravitational waves. Here, lens-induced B-modes will dominate over instrument noise, limiting constraints on the power spectrum amplitude of primordial gravitational waves. With lensing reconstructed by CORE, one can delens the observed polarization internally, reducing the lensing B-mode power by 60 %. This can be improved to 70 % by combining lensing and measurements of the cosmic infrared background from CORE, leading to an improvement of a factor of 2.5 in the error on the amplitude of primordial gravitational waves compared to no delensing (in the null hypothesis of no primordial B-modes). Lensing measurements from CORE will allow calibration of the halo masses of the tens of thousands of galaxy clusters that it will find, with constraints dominated by the clean polarization-based estimators. The 19 frequency channels proposed for CORE will allow accurate removal of Galactic emission from CMB maps. We present initial findings that show that residual Galactic foreground contamination will not be a significant source of bias for lensing power spectrum measurements with CORE.

  • 18. De Zotti, G.
    et al.
    Gonzalez-Nuevo, J.
    Lopez-Caniego, M.
    Negrello, M.
    Greenslade, J.
    Hernandez-Monteagudo, C.
    Delabrouille, J.
    Cai, Z-Y.
    Bonato, M.
    Achucarro, A.
    Ade, P.
    Allison, R.
    Ashdown, M.
    Ballardini, M.
    Banday, A. J.
    Banerji, R.
    Bartlett, J. G.
    Bartolo, N.
    Basak, S.
    Bersanelli, M.
    Biesiada, M.
    Bilicki, M.
    Bonaldi, A.
    Bonavera, L.
    Borrill, J.
    Bouchet, F.
    Boulanger, F.
    Brinckmann, T.
    Bucher, M.
    Burigana, C.
    Buzzelli, A.
    Calvo, M.
    Carvalho, C. S.
    Castellano, M. G.
    Challinor, A.
    Chluba, J.
    Clements, D. L.
    Clesse, S.
    Colafrancesco, S.
    Colantoni, I.
    Coppolecchia, A.
    Crook, M.
    D'Alessandro, G.
    de Bernardis, P.
    de Gasperis, G.
    Diego, J. M.
    Di Valentino, E.
    Errard, J.
    Feeney, S. M.
    Fernandez-Cobos, R.
    Ferraro, S.
    Finelli, F.
    Forastieri, F.
    Galli, S.
    Genova-Santos, R. T.
    Gerbino, Martina
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Grandis, S.
    Hagstotz, S.
    Hanany, S.
    Handley, W.
    Hervias-Caimapo, C.
    Hills, M.
    Hivon, E.
    Kiiveri, K.
    Kisner, T.
    Kitching, T.
    Kunz, M.
    Kurki-Suonio, H.
    Lagache, G.
    Lamagna, L.
    Lasenby, A.
    Lattanzi, M.
    Le Brun, A.
    Lesgourgues, J.
    Lewis, A.
    Liguori, M.
    Lindholm, V.
    Luzzi, G.
    Maffei, B.
    Mandolesi, N.
    Martinez-Gonzalez, E.
    Martins, C. J. A. P.
    Masi, S.
    Massardi, M.
    Matarrese, S.
    McCarthy, D.
    Melchiorri, A.
    Melin, J-B.
    Molinari, D.
    Monfardini, A.
    Natoli, P.
    Notari, A.
    Paiella, A.
    Paoletti, D.
    Partridge, R. B.
    Patanchon, G.
    Piat, M.
    Pisano, G.
    Polastri, L.
    Polenta, G.
    Pollo, A.
    Poulin, V.
    Quartin, M.
    Remazeilles, M.
    Roman, M.
    Rossi, G.
    Roukema, B. F.
    Rubino-Martin, J-A.
    Salvati, L.
    Scott, D.
    Serjeant, S.
    Tartari, A.
    Toffolatti, L.
    Tomasi, M.
    Trappe, N.
    Triqueneaux, S.
    Trombetti, T.
    Tucci, M.
    Tucker, C.
    Valiviita, J.
    van de Weygaert, R.
    Van Tent, B.
    Vennin, V.
    Vielva, P.
    Vittorio, N.
    Young, K.
    Zannoni, M.
    Exploring cosmic origins with CORE: Extragalactic sources in cosmic microwave background maps2018Ingår i: Journal of Cosmology and Astroparticle Physics, ISSN 1475-7516, E-ISSN 1475-7516, nr 4, artikel-id 020Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We discuss the potential of a next generation space-borne Cosmic Microwave Background (CMB) experiment for studies of extragalactic sources. Our analysis has particular bearing on the definition of the future space project, CORE, that has been submitted in response to ESA's call for a Medium-size mission opportunity as the successor of the Planck satellite. Even though the effective telescope size will be somewhat smaller than that of Planck, CORE will have a considerably better angular resolution at its highest frequencies, since, in contrast with Planck, it will be diffraction limited at all frequencies. The improved resolution implies a considerable decrease of the source confusion, i.e. substantially fainter detection limits. In particular, CORE will detect thousands of strongly lensed high-z galaxies distributed over the full sky. The extreme brightness of these galaxies will make it possible to study them, via follow-up observations, in extraordinary detail. Also, the CORE resolution matches the typical sizes of high-z galaxy proto-clusters much better than the Planck resolution, resulting in a much higher detection efficiency; these objects will be caught in an evolutionary phase beyond the reach of surveys in other wavebands. Furthermore, CORE will provide unique information on the evolution of the star formation in virialized groups and clusters of galaxies up to the highest possible redshifts. Finally, thanks to its very high sensitivity, CORE will detect the polarized emission of thousands of radio sources and, for the first time, of dusty galaxies, at mm and sub-mm wavelengths, respectively.

  • 19. Delabrouille, J.
    et al.
    de Bernardis, P.
    Bouchet, F. R.
    Achucarro, A.
    Ade, P. A. R.
    Allison, R.
    Arroja, F.
    Artal, E.
    Ashdown, M.
    Baccigalupi, C.
    Ballardini, M.
    Banday, A. J.
    Banerji, R.
    Barbosa, D.
    Bartlett, J.
    Bartolo, N.
    Basak, S.
    Baselmans, J. J. A.
    Basu, K.
    Battistelli, E. S.
    Battye, R.
    Baumann, D.
    Benoit, A.
    Bersanelli, M.
    Bideaud, A.
    Biesiada, M.
    Bilicki, M.
    Bonaldi, A.
    Bonato, M.
    Borrill, J.
    Boulanger, F.
    Brinckmann, T.
    Brown, M. L.
    Bucher, M.
    Burigana, C.
    Buzzelli, A.
    Cabass, G.
    Cai, Z. -Y.
    Calvo, M.
    Caputo, A.
    Carvalho, C. -S.
    Casas, F. J.
    Castellano, G.
    Catalano, A.
    Challinor, A.
    Charles, I.
    Chluba, J.
    Clements, D. L.
    Clesse, S.
    Colafrancesco, S.
    Colantoni, I.
    Contreras, D.
    Coppolecchia, A.
    Crook, M.
    D'Alessandro, G.
    D'Amico, G.
    da Silva, A.
    de Avillez, M.
    de Gasperis, G.
    De Petris, M.
    de Zotti, G.
    Danese, L.
    Desert, F. -X.
    Desjacques, V.
    Di Valentino, E.
    Dickinson, C.
    Diego, J. M.
    Doyle, S.
    Durrer, R.
    Dvorkin, C.
    Eriksen, H. K.
    Errard, J.
    Feeney, S.
    Fernandez-Cobos, R.
    FineIli, F.
    Forastieri, F.
    Franceschet, C.
    Fuskeland, U.
    Galli, S.
    Genova-Santos, R. T.
    Gerbino, Martina
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Giusarma, E.
    Gomez, A.
    Gonzalez-Nuevo, J.
    Grandis, S.
    Greenslade, J.
    Goupy, J.
    Hagstotz, S.
    Hanany, S.
    Handley, W.
    Henrot-Versille, S.
    Hernandez-Monteagudo, C.
    Hervias-Caimapo, C.
    Hills, M.
    Hindmarsh, M.
    Hivon, E.
    Hoang, D. T.
    Hooper, D. C.
    Hu, B.
    Keihanen, E.
    Keskitalo, R.
    Kiiveri, K.
    Kisner, T.
    Kitching, T.
    Kunz, M.
    Kurki-Suonio, H.
    Lagache, G.
    Lamagna, L.
    Lapi, A.
    Lasenby, A.
    Lattanzi, M.
    Le Brun, A. M. C.
    Lesgourgues, J.
    Liguori, M.
    Lindholm, V.
    Lizarraga, J.
    Luzzi, G.
    Macias-Perez, J. F.
    Maffei, B.
    Mandolesi, N.
    Martin, S.
    Martinez-Gonzalez, E.
    Martins, C. J. A. P.
    Masi, S.
    Massardi, M.
    Matarrese, S.
    Mazzotta, P.
    McCarthy, D.
    Melchiorri, A.
    Melin, J. -B.
    Mennella, A.
    Mohr, J.
    Molinari, D.
    Monfardini, A.
    Montier, L.
    Natoli, P.
    Negrello, M.
    Notari, A.
    Noviello, F.
    Oppizzi, F.
    O'Sullivan, C.
    Pagano, L.
    Paiella, A.
    Pajer, E.
    Paoletti, D.
    Paradiso, S.
    Partridge, R. B.
    Patanchon, G.
    Patil, S. P.
    Perdereau, O.
    Piacentini, F.
    Piat, M.
    Pisano, G.
    Polastri, L.
    Polenta, G.
    Pollo, A.
    Ponthieu, N.
    Poulin, V.
    Prele, D.
    Quartin, M.
    Ravenni, A.
    Remazeilles, M.
    Renzi, A.
    Ringeval, C.
    Roest, D.
    Roman, M.
    Roukema, B. F.
    Rubino-Martin, J. -A.
    Salvati, L.
    Scott, D.
    Serjeant, S.
    Signorelli, G.
    Starobinsky, A. A.
    Sunyaev, R.
    Tan, C. Y.
    Tartari, A.
    Tasinato, G.
    Toffolatti, L.
    Tomasi, M.
    Torrado, J.
    Tramonte, D.
    Trappe, N.
    Triqueneaux, S.
    Tristram, M.
    Trombetti, T.
    Tucci, M.
    Tucker, C.
    Urrestilla, J.
    Valiviita, J.
    Van de Weygaert, R.
    Van Tent, B.
    Vennin, V.
    Verde, L.
    Vermeulen, G.
    Vielva, P.
    Vittorio, N.
    Voisin, F.
    Wallis, C.
    Wandelt, B.
    Wehus, I. K.
    Weller, J.
    Young, K.
    Zannoni, M.
    Exploring cosmic origins with CORE: Survey requirements and mission design2018Ingår i: Journal of Cosmology and Astroparticle Physics, ISSN 1475-7516, E-ISSN 1475-7516, nr 4, artikel-id 014Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Future observations of cosmic microwave background (CMB) polarisation have the potential to answer some of the most fundamental questions of modern physics and cosmology, including: what physical process gave birth to the Universe we see today? What are the dark matter and dark energy that seem to constitute 95% of the energy density of the Universe? Do we need extensions to the standard model of particle physics and fundamental interactions? Is the ACDM cosmological scenario correct, or are we missing an essential piece of the puzzle? In this paper, we list the requirements for a future CMB polarisation survey addressing these scientific objectives, and discuss the design drivers of the CORE space mission proposed to ESA in answer to the M5 call for a medium-sized mission. The rationale and options, and the methodologies used to assess the mission's performance, are of interest to other future CMB mission design studies. CORE has 19 frequency channels, distributed over a broad frequency range, spanning the 60-600 GHz interval, to control astrophysical foreground emission. The angular resolution ranges from 2' to 18', and the aggregate CMB sensitivity is about 2 mu K.arcmin. The observations are made with a single integrated focal-plane instrument, consisting of an array of 2100 cryogenically-cooled, linearly-polarised detectors at the focus of a 1.2-m aperture cross-Dragone telescope. The mission is designed to minimise all sources of systematic effects, which must be controlled so that no more than 10(-4) of the intensity leaks into polarisation maps, and no more than about 1% of E-type polarisation leaks into B-type modes. CORE observes the sky from a large Lissajous orbit around the Sun-Earth L2 point on an orbit that offers stable observing conditions and avoids contamination from sidelobe pick-up of stray radiation originating from the Sun, Earth, and Moon. The entire sky is observed repeatedly during four years of continuous scanning, with a combination of three rotations of the spacecraft over different timescales. With about 50% of the sky covered every few days, this scan strategy provides the mitigation of systematic effects and the internal redundancy that are needed to convincingly extract the primordial B-mode signal on large angular scales, and check with adequate sensitivity the consistency of the observations in several independent data subsets. CORE is designed as a near-ultimate CMB polarisation mission which, for optimal complementarity with ground-based observations, will perform the observations that are known to be essential to CMB polarisation science and cannot be obtained by any other means than a dedicated space mission. It will provide well-characterised, highly-redundant multi-frequency observations of polarisation at all the scales where foreground emission and cosmic variance dominate the final uncertainty for obtaining precision CMB science, as well as 2' angular resolution maps of high-frequency foreground emission in the 300-600 GHz frequency range, essential for complementarity with future ground-based observations with large telescopes that can observe the CMB with the same beamsize.

  • 20. Di Valentino, E.
    et al.
    Brinckmann, T.
    Gerbino, Martina
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Poulin, V.
    Bouchet, F. R.
    Lesgourgues, J.
    Melchiorri, A.
    Chluba, J.
    Clesse, S.
    Delabrouille, J.
    Dvorkin, C.
    Forastieri, F.
    Galli, S.
    Hooper, D. C.
    Lattanzi, M.
    Martins, C. J. A. P.
    Salvati, L.
    Cabass, G.
    Caputo, A.
    Giusarma, E.
    Hivon, E.
    Natoli, P.
    Pagano, L.
    Paradiso, S.
    Rubino-Martin, J. A.
    Achucarro, A.
    Ade, P.
    Allison, R.
    Arroja, F.
    Ashdown, M.
    Ballardini, M.
    Banday, A. J.
    Banerji, R.
    Bartolo, N.
    Bartlett, J. G.
    Basak, S.
    Baumann, D.
    de Bernardis, P.
    Bersanelli, M.
    Bonaldi, A.
    Bonato, M.
    Borrill, J.
    Boulanger, F.
    Bucher, M.
    Burigana, C.
    Buzzelli, A.
    Cai, Z. -Y.
    Calvo, M.
    Carvalho, C. S.
    Castellano, G.
    Challinor, A.
    Charles, I.
    Colantoni, I.
    Coppolecchia, A.
    Crook, M.
    D'Alessandro, G.
    De Petris, M.
    De Zotti, G.
    Diego, J. M.
    Errard, J.
    Feeney, S.
    Fernandez-Cobos, R.
    Ferraro, S.
    Finelli, F.
    de Gasperis, G.
    Genova-Santos, R. T.
    Gonzalez-Nuevo, J.
    Grandis, S.
    Greenslade, J.
    Hagstotz, S.
    Hanany, S.
    Handley, W.
    Hazra, D. K.
    Hernandez-Monteagudo, C.
    Hervias-Caimapo, C.
    Hills, M.
    Kiiveri, K.
    Kisner, T.
    Kitching, T.
    Kunz, M.
    Kurki-Suonio, H.
    Lamagna, L.
    Lasenby, A.
    Lewis, A.
    Liguori, M.
    Lindholm, V.
    Lopez-Caniego, M.
    Luzzi, G.
    Maffei, B.
    Martin, S.
    Martinez-Gonzalez, E.
    Masi, S.
    Matarrese, S.
    McCarthy, D.
    Melin, J. -B.
    Mohr, J. J.
    Molinari, D.
    Monfardini, A.
    Negrello, M.
    Notari, A.
    Paiella, A.
    Paoletti, D.
    Patanchon, G.
    Piacentini, F.
    Piat, M.
    Pisano, G.
    Polastri, L.
    Polenta, G.
    Pollo, A.
    Quartin, M.
    Remazeilles, M.
    Roman, M.
    Ringeval, C.
    Tartari, A.
    Tomasi, M.
    Tramonte, D.
    Trappe, N.
    Trombetti, T.
    Tucker, C.
    Valiviita, J.
    van de Weygaert, R.
    Van Tent, B.
    Vennin, V.
    Vermeulen, G.
    Vielva, P.
    Vittorio, N.
    Young, K.
    Zannoni, M.
    Exploring cosmic origins with CORE: Cosmological parameters2018Ingår i: Journal of Cosmology and Astroparticle Physics, ISSN 1475-7516, E-ISSN 1475-7516, nr 4, artikel-id 017Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We forecast the main cosmological parameter constraints achievable with the CORE space mission which is dedicated to mapping the polarisation of the Cosmic Microwave Background (CMB). CORE was recently submitted in response to ESA's fifth call for medium-sized mission proposals (M5). Here we report the results from our pre-submission study of the impact of various instrumental options, in particular the telescope size and sensitivity level, and review the great, transformative potential of the mission as proposed. Specifically, we assess the impact on a broad range of fundamental parameters of our Universe as a function of the expected CMB characteristics, with other papers in the series focusing on controlling astrophysical and instrumental residual systematics. In this paper, we assume that only a few central CORE frequency channels are usable for our purpose, all others being devoted to the cleaning of astrophysical contaminants. On the theoretical side, we assume ACDM as our general framework and quantify the improvement provided by CORE over the current constraints from the Planck 2015 release. We also study the joint sensitivity of CORE and of future Baryon Acoustic Oscillation and Large Scale Structure experiments like DESI and Euclid. Specific constraints on the physics of inflation are presented in another paper of the series. In addition to the six parameters of the base ACDM, which describe the matter content of a spatially flat universe with adiabatic and scalar primordial fluctuations from inflation, we derive the precision achievable on parameters like those describing curvature, neutrino physics, extra light relics, primordial helium abundance, dark matter annihilation, recombination physics, variation of fundamental constants, dark energy, modified gravity, reionization and cosmic birefringence. In addition to assessing the improvement on the precision of individual parameters, we also forecast the post-CORE overall reduction of the allowed parameter space with figures of merit for various models increasing by as much as similar to 10(7) as compared to Planck 2015, and 10(5) with respect to Planck 2015 + future BAO measurements.

  • 21. Di Valentino, Eleonora
    et al.
    Gariazzo, Stefano
    Gerbino, Martina
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita). Università di Roma “La Sapienza”, Italy.
    Giusarma, Elena
    Mena, Olga
    Dark radiation and inflationary freedom after Planck 20152016Ingår i: Physical Review D, ISSN 2470-0010, Vol. 93, nr 8, artikel-id 083523Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The simplest inflationary models predict a primordial power spectrum (PPS) of the curvature fluctuations that can be described by a power-law function that is nearly scale invariant. It has been shown, however, that the low-multipole spectrum of the cosmic microwave background anisotropies may hint at the presence of some features in the shape of the scalar PPS, which could deviate from its canonical power-law form. We study the possible degeneracies of this nonstandard PPS with the active neutrino masses, the effective number of relativistic species, and a sterile neutrino or a thermal axion mass. The limits on these additional parameters are less constraining in a model with a nonstandard PPS when including only the temperature autocorrelation spectrum measurements in the data analyses. The inclusion of the polarization spectra noticeably helps in reducing the degeneracies, leading to results that typically show no deviation from the Lambda CDM model with a standard power-law PPS. These findings are robust against changes in the function describing the noncanonical PPS. Albeit current cosmological measurements seem to prefer the simple power-law PPS description, the statistical significance to rule out other possible parametrizations is still very poor. Future cosmological measurements are crucial to improve the present PPS uncertainties.

  • 22. Finelli, F.
    et al.
    Bucher, M.
    Achucarro, A.
    Ballardini, M.
    Bartolo, N.
    Baumann, D.
    Clesse, S.
    Errard, J.
    Handley, W.
    Hindmarsh, M.
    Kiiveri, K.
    Kunz, M.
    Lasenby, A.
    Liguori, M.
    Paoletti, D.
    Ringeval, C.
    Valiviita, J.
    van Tent, B.
    Vennin, V.
    Ade, P.
    Allison, R.
    Arroja, F.
    Ashdown, M.
    Banday, A. J.
    Banerji, R.
    Bartlett, J. G.
    Basak, S.
    de Bernardis, P.
    Bersanelli, M.
    Bonaldi, A.
    Borril, J.
    Bouchet, F. R.
    Boulanger, F.
    Brinckmann, T.
    Burigana, C.
    Buzzelli, A.
    Cai, Z. -Y.
    Calvo, M.
    Carvalho, C. S.
    Castellano, G.
    Challinor, A.
    Chluba, J.
    Colantoni, I.
    Coppolecchia, A.
    Crook, M.
    D'Alessandro, G.
    D'Amico, G.
    Delabrouille, J.
    Desjacques, V.
    De Zotti, G.
    Diego, J. M.
    Di Valentino, E.
    Feeney, S.
    Fergusson, J. R.
    Fernandez-Cobos, R.
    Ferraro, S.
    Forastieri, F.
    Galli, S.
    Garcia-Bellido, J.
    de Gasperis, G.
    Genova-Santos, R. T.
    Gerbino, Martina
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Gonzalez-Nuevo, J.
    Grandis, S.
    Greenslade, J.
    Hagstotz, S.
    Hanany, S.
    Hazra, D. K.
    Hernandez-Monteagudo, C.
    Hervias-Caimapo, C.
    Hills, M.
    Hivon, E.
    Hu, B.
    Kisner, T.
    Kitching, T.
    Kovetz, E. D.
    Kurki-Suonio, H.
    Lamagna, L.
    Lattanzi, M.
    Lesgourgues, J.
    Lewis, A.
    Lindholm, V.
    Lizarraga, J.
    Lopez-Caniego, M.
    Luzzi, G.
    Maffei, B.
    Mandolesi, N.
    Martinez-Gonzalez, E.
    Martins, C. J. A. P.
    Masi, S.
    McCarthy, D.
    Matarrese, S.
    Melchiorri, A.
    Melin, J. -B.
    Molinari, D.
    Monfardini, A.
    Natoli, P.
    Negrello, M.
    Notari, A.
    Oppizzi, F.
    Paiella, A.
    Pajer, E.
    Patanchon, G.
    Patil, S. P.
    Piat, M.
    Pisano, G.
    Polastri, L.
    Polenta, G.
    Pollo, A.
    Poulin, V.
    Quartin, M.
    Ravenni, A.
    Remazeilles, M.
    Renzi, A.
    Roest, D.
    Roman, M.
    Rubino-Martin, J. A.
    Salvati, L.
    Starobinsky, A. A.
    Tartari, A.
    Tasinato, G.
    Tomasi, M.
    Torrado, J.
    Trappe, N.
    Trombetti, T.
    Tucci, M.
    Tucker, C.
    Urrestilla, J.
    van de Weygaert, R.
    Vielva, P.
    Vittorio, N.
    Young, K.
    Zannoni, M.
    Exploring cosmic origins with CORE: Inflation2018Ingår i: Journal of Cosmology and Astroparticle Physics, ISSN 1475-7516, E-ISSN 1475-7516, Vol. 2018, nr 4, artikel-id 016Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We forecast the scientific capabilities to improve our understanding of cosmic inflation of CORE, a proposed CMB space satellite submitted in response to the ESA fifth call for a medium-size mission opportunity. The CORE satellite will map the CMB anisotropies in temperature and polarization in 19 frequency channels spanning the range 60-600 GHz. CORE will have an aggregate noise sensitivity of 1.7 mu K.arcmin and an angular resolution of 5' at 200 GHz. We explore the impact of telescope size and noise sensitivity on the inflation science return by making forecasts for several instrumental configurations. This study assumes that the lower and higher frequency channels suffice to remove foreground contaminations and complements other related studies of component separation and systematic effects, which will be reported in other papers of the series Exploring Cosmic Origins with CORE. We forecast the capability to determine key inflationary parameters, to lower the detection limit for the tensor-to-scalar ratio down to the 10(-3) level, to chart the landscape of single field slow-roll inflationary models, to constrain the epoch of reheating, thus connecting inflation to the standard radiation-matter dominated Big Bang era, to reconstruct the primordial power spectrum, to constrain the contribution from isocurvature perturbations to the 10(-3) level, to improve constraints on the cosmic string tension to a level below the presumptive GUT scale, and to improve the current measurements of primordial non-Gaussianities down to the f(NL)(local) < 1 level. For all the models explored, CORE alone will improve significantly on the present constraints on the physics of inflation. Its capabilities will be further enhanced by combining with complementary future cosmological observations.

  • 23.
    Gerbino, Martina
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita).
    Freese, Katherine
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita). University of Michigan, USA.
    Vagnozzi, Sunny
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita).
    Lattanzi, Massimiliano
    Mena, Olga
    Giusarma, Elena
    Ho, Shirley
    Impact of neutrino properties on the estimation of inflationary parameters from current and future observations2017Ingår i: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 95, nr 4, artikel-id 043512Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We study the impact of assumptions about neutrino properties on the estimation of inflationary parameters from cosmological data, with a specific focus on the allowed contours in the n(s)/r plane, where n(s) is the scalar spectral index and r is the tensor-to-scalar ratio. We study the following neutrino properties: (i) the total neutrino mass M-i = Sigma(i)m(i) (where the index i = 1, 2, 3 runs over the three neutrino mass eigenstates); (ii) the number of relativistic degrees of freedom N-eff at the time of recombination; and (iii) the neutrino hierarchy. Whereas previous literature assumed three degenerate neutrino masses or two massless neutrino species (approximations that clearly do not match neutrino oscillation data), we study the cases of normal and inverted hierarchy. Our basic result is that these three neutrino properties induce < 1 sigma shift of the probability contours in the n(s)/r plane with both current or upcoming data. We find that the choice of neutrino hierarchy (normal, inverted, or degenerate) has a negligible impact. However, the minimal cutoff on the total neutrino mass M-v,M-min = 0 that accompanies previous works using the degenerate hierarchy does introduce biases in the n(s)/r plane and should be replaced by M-v,M-min = 0.059 eV as required by oscillation data. Using current cosmic microwave background (CMB) data from Planck and Bicep/Keck, marginalizing over the total neutrino mass M-v and over r can lead to a shift in the mean value of ns of similar to 0.3 sigma toward lower values. However, once baryon acoustic oscillation measurements are included, the standard contours in the n(s)/r plane are basically reproduced. Larger shifts of the contours in the n(s)/r plane (up to 0.8 sigma) arise for nonstandard values of N-eff. We also provide forecasts for the future CMB experiments Cosmic Origins Explorer (COrE, satellite) and Stage-IV (ground-based) and show that the incomplete knowledge of neutrino properties, taken into account by a marginalization over M-v, could induce a shift of similar to 0.4 sigma toward lower values in the determination of ns (or a similar to 0.8 sigma shift if one marginalizes over N-eff). Comparison to specific inflationary models is shown. Imperfect knowledge of neutrino properties must be taken into account properly, given the desired precision in determining whether or not inflationary models match the future data.

  • 24.
    Gerbino, Martina
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita).
    Gruppuso, Alessandro
    Natoli, Paolo
    Shiraishi, Maresuke
    Melchiorri, Alessandro
    Testing chirality of primordial gravitational waves with Planck and future CMB data: no hope from angular power spectra2016Ingår i: Journal of Cosmology and Astroparticle Physics, ISSN 1475-7516, E-ISSN 1475-7516, nr 7, artikel-id 044Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We use the 2015 Planck likelihood in combination with the Bicep2/Keck likelihood (BKP and BK14) to constrain the chirality, chi, of primordial gravitational waves in a scale invariant scenario. In this framework, the parameter chi enters theory always coupled to the tensor -to -scalar ratio, r, e.g. in combination of the form chi . r. Thus, the capability to detect chi critically depends on the value of r. We find that with present data sets chi is de facto unconstrained. We also provide forecasts for chi from future CMB experiments, including COrE+, exploring several fiducial values of r. We find that the current limit on r is tight enough to disfavor a neat detection of chi. For example, in the unlikely case in which r similar to 0.1(0.05), the maximal chirality case, i.e. chi = +/- 1, could be detected with a significance of similar to 2.5(1.5)sigma at best. We conclude that the two-point statistics at the basis of CMB likelihood functions is currently unable to constrain chirality and may only provide weak limits on chi in the most optimistic scenarios. Hence, it is crucial to investigate the use of other observables, e.g. provided by higher order statistics, to constrain these kinds of parity violating theories with the CMB.

  • 25.
    Gerbino, Martina
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Lattanzi, Massimiliano
    Status of Neutrino Properties and Future Prospects-Cosmological and Astrophysical Constraints2018Ingår i: Frontiers in Physics, E-ISSN 2296-424X, Vol. 5, artikel-id 70Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    Cosmological observations are a powerful probe of neutrino properties, and in particular of their mass. In this review, we first discuss the role of neutrinos in shaping the cosmological evolution at both the background and perturbation level, and describe their effects on cosmological observables such as the cosmic microwave background and the distribution of matter at large scale. We then present the state of the art concerning the constraints on neutrino masses from those observables, and also review the prospects for future experiments. We also briefly discuss the prospects for determining the neutrino hierarchy from cosmology, the complementarity with laboratory experiments, and the constraints on neutrino properties beyond their mass.

  • 26.
    Gerbino, Martina
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Lattanzi, Massimiliano
    Mena, Olga
    Freese, Katherine
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita). University of Michigan, USA.
    A novel approach to quantifying the sensitivity of current and future cosmological datasets to the neutrino mass ordering through Bayesian hierarchical modeling2017Ingår i: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 775, s. 239-250Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We present a novel approach to derive constraints on neutrino masses, as well as on other cosmological parameters, from cosmological data, while taking into account our ignorance of the neutrino mass ordering. We derive constraints from a combination of current as well as future cosmological datasets on the total neutrino mass M-nu and on the mass fractions f(nu),i = m(i)/M-nu (where the index i = 1, 2, 3 indicates the three mass eigenstates) carried by each of the mass eigenstates m(i), after marginalizing over the (unknown) neutrino mass ordering, either normal ordering (NH) or inverted ordering (IH). The bounds on all the cosmological parameters, including those on the total neutrino mass, take therefore into account the uncertainty related to our ignorance of the mass hierarchy that is actually realized in nature. This novel approach is carried out in the framework of Bayesian analysis of a typical hierarchical problem, where the distribution of the parameters of the model depends on further parameters, the hyperparameters. In this context, the choice of the neutrino mass ordering is modeled via the discrete hyperparameter h(type), which we introduce in the usual Markov chain analysis. The preference from cosmological data for either the NH or the IH scenarios is then simply encoded in the posterior distribution of the hyper-parameter itself. Current cosmic microwave background (CMB) measurements assign equal odds to the two hierarchies, and are thus unable to distinguish between them. However, after the addition of baryon acoustic oscillation (BAO) measurements, a weak preference for the normal hierarchical scenario appears, with odds of 4 : 3 from Planck temperature and large-scale polarization in combination with BAO (3 : 2 if small-scale polarization is also included). Concerning next-generation cosmological experiments, forecasts suggest that the combination of upcoming CMB (COrE) and BAO surveys (DESI) may determine the neutrino mass hierarchy at a high statistical significance if the mass is very close to the minimal value allowed by oscillation experiments, as for NH and a fiducial value of M-nu = 0.06 eV there is a 9 : 1 preference of normal versus inverted hierarchy. On the contrary, if the sum of the masses is of the order of 0.1 eV or larger, even future cosmological observations will be inconclusive. The innovative statistical strategy exploited here represents a very simple, efficient and robust tool to study the sensitivity of present and future cosmological data to the neutrino mass hierarchy, and a sound competitor to the standard Bayesian model comparison. The unbiased limit on M-nu we obtain is crucial for ongoing and planned neutrinoless double beta decay searches.

  • 27. Giusarma, Elena
    et al.
    Gerbino, Martina
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita).
    Mena, Olga
    Vagnozzi, Sunny
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita).
    Ho, Shirley
    Freese, Katherine
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita). University of Michigan, USA.
    Improvement of cosmological neutrino mass bounds2016Ingår i: Physical Review D, ISSN 2470-0010, Vol. 94, nr 8, artikel-id 083522Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The most recent measurements of the temperature and low-multipole polarization anisotropies of the cosmic microwave background from the Planck satellite, when combined with galaxy clustering data from the Baryon Oscillation Spectroscopic Survey in the form of the full shape of the power spectrum, and with baryon acoustic oscillation measurements, provide a 95% confidence level (C.L.) upper bound on the sum of the three active neutrinos Sigma m(nu) < 0.183 eV, among the tightest neutrino mass bounds in the literature, to date, when the same data sets are taken into account. This very same data combination is able to set, at similar to 70% C.L., an upper limit on Sigma m(nu) of 0.0968 eV, a value that approximately corresponds to the minimal mass expected in the inverted neutrino mass hierarchy scenario. If high-multipole polarization data from Planck is also considered, the 95% C.L. upper bound is tightened to Sigma m(nu) < 0.176 eV. Further improvements are obtained by considering recent measurements of the Hubble parameter. These limits are obtained assuming a specific nondegenerate neutrino mass spectrum; they slightly worsen when considering other degenerate neutrino mass schemes. Low-redshift quantities, such as the Hubble constant or the reionization optical depth, play a very important role when setting the neutrino mass constraints. We also comment on the eventual shifts in the cosmological bounds on Sigma m(nu) when possible variations in the former two quantities are addressed.

  • 28. Lattanzi, Massimiliano
    et al.
    Burigana, Carlo
    Gerbino, Martina
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita).
    Gruppuso, Alessandro
    Mandolesi, Nazzareno
    Natoli, Paolo
    Polenta, Gianluca
    Salvati, Laura
    Trombetti, Tiziana
    On the impact of large angle CMB polarization data on cosmological parameters2017Ingår i: Journal of Cosmology and Astroparticle Physics, ISSN 1475-7516, E-ISSN 1475-7516, nr 2, s. 1-18, artikel-id 041Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We study the impact of the large-angle CMB polarization datasets publicly released by the WMAP and Planck satellites on the estimation of cosmological parameters of the Lambda CDM model. To complement large-angle polarization, we consider the high resolution (or high-l) CMB datasets from either WMAP or Planck as well as CMB lensing as traced by Planck's measured four point correlation function. In the case of WMAP, we compute the large-angle polarization likelihood starting over from low resolution frequency maps and their covariance matrices, and perform our own foreground mitigation technique, which includes as a possible alternative Planck 353 GHz data to trace polarized dust. We find that the latter choice induces a downward shift in the optical depth tau, roughly of order 2 sigma, robust to the choice of the complementary high resolution dataset. When the Planck 353 GHz is consistently used to minimize polarized dust emission, WMAP and Planck 70 GHz large-angle polarization data are in remarkable agreement: by combining them we find tau = 0.066(-0.013) (+0.012) , again very stable against the particular choice for high-l data. We find that the amplitude of primordial fluctuations A(s), notoriously degenerate with tau, is the parameter second most affected by the assumptions on polarized dust removal, but the other parameters are also affected, typically between 0.5 and 1 sigma. In particular, cleaning dust with Planck's 353 GHz data imposes a 1 sigma downward shift in the value of the Hubble constant H-0, significantly contributing to the tension reported between CMB based and direct measurements of the present expansion rate. On the other hand, we find that the appearance of the so-called low l anomaly, a well-known tension between the high-and low-resolution CMB anisotropy amplitude, is not significantly affected by the details of large-angle polarization, or by the particular high-l dataset employed.

  • 29. Nati, Federico
    et al.
    Devlin, Mark J.
    Gerbino, Martina
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Johnson, Bradley R.
    Keating, Brian
    Pagano, Luca
    Teply, Grant
    POLOCALC: A Novel Method to Measure the Absolute Polarization Orientation of the Cosmic Microwave Background2017Ingår i: Journal of Astronomical Instrumentation, ISSN 2251-1717, Vol. 6, nr 2, artikel-id UNSP 1740008Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We describe a novel method to measure the absolute orientation of the polarization plane of the Cosmic Microwave Background (CMB) photons with arcsecond accuracy, enabling unprecedented measurements for cosmology and fundamental physics. Existing and planned CMB polarization instruments looking for primordial B-mode signals need an independent, experimental method for systematics control on the absolute polarization orientation. The lack of such a method limits the accuracy of the detection of inflationary gravitational waves, the constraining power on the neutrino sector through measurements of gravitational lensing of the CMB, the possibility of detecting Cosmic Birefringence (CB), and the ability to measure primordial magnetic fields. Sky signals used for calibration and direct measurements of the detector orientation cannot provide an accuracy better than 1 degrees. Self-calibration methods provide better accuracy, but may be affected by foreground signals and rely heavily on model assumptions, losing constraining power on fundamental processes, like CB, Faraday Rotation and chiral gravity models. The POLarization Orientation CALibrator for Cosmology, POLOCALC, will dramatically improve instrumental accuracy by means of an artificial calibration source flying on high-altitude balloons and aerial drones. Polarization angle calibration requires observation of a well-characterized distant source at high elevation angles. A balloon-borne calibrator will provide a source in the far field of larger telescopes, while an aerial drone can be used for tests and smaller polarimeters. POLOCALC will also allow a unique method to measure the telescopes' polarized beam. Even a two-hour balloon flight will allow enough time to perform polarization angle calibration and polarized beam function measurements. The source will make use of both narrow and broadband microwave emitters between 40GHz and 150GHz coupled to precise polarizing filters. The orientation of the source polarization plane will be registered to absolute celestial coordinates by star cameras and gyroscopes with arcsecond accuracy. This project can become a rung in the calibration ladder for the field: any existing or future CMB polarization experiment observing our novel polarization calibrator will enable measurements of the polarization angle for each detector with respect to absolute sky coordinates.

  • 30. Natoli, P.
    et al.
    Ashdown, M.
    Banerji, R.
    Borrill, J.
    Buzzelli, A.
    de Gasperis, G.
    Delabrouille, J.
    Hivon, E.
    Molinari, D.
    Patanchon, G.
    Polastri, L.
    Tomasi, M.
    Bouchet, F. R.
    Henrot-Versille, S.
    Hoang, D. T.
    Keskitalo, R.
    Kiiveri, K.
    Kisner, T.
    Lindholm, V.
    McCarthy, D.
    Piacentini, F.
    Perdereau, O.
    Polenta, G.
    Tristram, M.
    Achucarro, A.
    Ade, P.
    Allison, R.
    Baccigalupi, C.
    Ballardini, M.
    Banday, A. J.
    Bartlett, J.
    Bartolo, N.
    Basak, S.
    Baumann, D.
    Bersanelli, M.
    Bonaldi, A.
    Bonato, M.
    Boulanger, F.
    Brinckmann, T.
    Bucher, M.
    Burigana, C.
    Cai, Z-Y.
    Calvo, M.
    Carvalho, C-S.
    Castellano, M. G.
    Challinor, A.
    Chluba, J.
    Clesse, S.
    Colantoni, I.
    Coppolecchia, A.
    Crook, M.
    D'Alessandro, G.
    de Bernardis, P.
    De Zotti, G.
    Di Valentino, E.
    Diego, J-M.
    Errard, J.
    Feeney, S.
    Fernandez-Cobos, R.
    Finelli, F.
    Forastieri, F.
    Galli, S.
    Genova-Santos, R.
    Gerbino, Martina
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita).
    Gonzalez-Nuevo, J.
    Grandis, S.
    Greenslade, J.
    Gruppuso, A.
    Hagstotz, S.
    Hanany, S.
    Handley, W.
    Hernandez-Monteagudo, C.
    Hervias-Caimapo, C.
    Hills, M.
    Keihanen, E.
    Kitching, T.
    Kunz, M.
    Kurki-Suonio, H.
    Lamagna, L.
    Lasenby, A.
    Lattanzi, M.
    Lesgourgues, J.
    Lewis, A.
    Liguori, M.
    Lopez-Caniego, M.
    Luzzi, G.
    Maffei, B.
    Mandolesi, N.
    Martinez-Gonzalez, E.
    Martins, C. J. A. P.
    Masi, S.
    Matarrese, S.
    Melchiorri, A.
    Melin, J-B.
    Migliaccio, M.
    Monfardini, A.
    Negrello, M.
    Notari, A.
    Pagano, L.
    Paiella, A.
    Paoletti, D.
    Piat, M.
    Pisano, G.
    Pollo, A.
    Poulin, V.
    Quartin, M.
    Remazeilles, M.
    Roman, M.
    Rossi, G.
    Rubino-Martin, J-A.
    Salvati, L.
    Signorelli, G.
    Tartari, A.
    Tramonte, D.
    Trappe, N.
    Trombetti, T.
    Tucker, C.
    Valiviita, J.
    Van de Weijgaert, R.
    van Tent, B.
    Vennin, V.
    Vielva, P.
    Vittorio, N.
    Wallis, C.
    Young, K.
    Zannoni, M.
    Exploring cosmic origins with CORE: Mitigation of systematic effects2018Ingår i: Journal of Cosmology and Astroparticle Physics, ISSN 1475-7516, E-ISSN 1475-7516, nr 4, artikel-id 022Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We present an analysis of the main systematic effects that could impact the measurement of CMB polarization with the proposed CORE space mission. We employ timeline to-map simulations to verify that the CORE instrumental set-up and scanning strategy allow us to measure sky polarization to a level of accuracy adequate to the mission science goals. We also show how the CORE observations can be processed to mitigate the level of contamination by potentially worrying systematics, including intensity-to-polarization leakage due to bandpass mismatch, asymmetric main beams, pointing errors and correlated noise. We use analysis techniques that are well validated on data from current missions such as Planck to demonstrate how the residual contamination of the measurements by these effects can be brought to a level low enough not to hamper the scientific capability of the mission, nor significantly increase the overall error budget. We also present a prototype of the CORE photometric calibration pipeline, based on that used for Planck, and discuss its robustness to systematics, showing how CORE can achieve its calibration requirements. While a fine-grained assessment of the impact of systematics requires a level of knowledge of the system that can only be achieved in a future study phase, the analysis presented here strongly suggests that the main areas of concern for the CORE mission can be addressed using existing knowledge, techniques and algorithms.

  • 31. Remazeilles, M.
    et al.
    Banday, A. J.
    Baccigalupi, C.
    Basak, S.
    Bonaldi, A.
    De Zotti, G.
    Delabrouille, J.
    Dickinson, C.
    Eriksen, H. K.
    Errard, J.
    Fernandez-Cobos, R.
    Fuskeland, U.
    Hervias-Caimapo, C.
    Lopez-Caniego, M.
    Martinez-Gonzalez, E.
    Roman, M.
    Vielva, P.
    Wehus, I.
    Achucarro, A.
    Ade, P.
    Allison, R.
    Ashdown, M.
    Ballardini, M.
    Banerji, R.
    Bartlett, J.
    Bartolo, N.
    Baumann, D.
    Bersanelli, M.
    Bonato, M.
    Borrill, J.
    Bouchet, F.
    Boulanger, F.
    Brinckmann, T.
    Bucher, M.
    Burigana, C.
    Buzzelli, A.
    Cai, Z. -Y.
    Calvo, M.
    Carvalho, C. -S.
    Castellano, G.
    Challinor, A.
    Chluba, J.
    Clesse, S.
    Colantoni, I.
    Coppolecchia, A.
    Crook, M.
    D'Alessandro, G.
    de Bernardis, P.
    de Gasperis, G.
    Diego, J. -M.
    Di Valentino, E.
    Feeney, S.
    Ferraro, S.
    Finelli, F.
    Forastieri, F.
    Galli, S.
    Genova-Santos, R.
    Gerbino, Martina
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita).
    Gonzalez-Nuevo, J.
    Grandis, S.
    Greenslade, J.
    Hagstotz, S.
    Hanany, S.
    Handley, W.
    Hernandez-Monteagudo, C.
    Hills, M.
    Hivon, E.
    Kiiveri, K.
    Kisner, T.
    Kitching, T.
    Kunz, M.
    Kurki-Suonio, H.
    Lamagna, L.
    Lasenby, A.
    Lattanzi, M.
    Lesgourgues, J.
    Lewis, A.
    Liguori, M.
    Lindholm, V.
    Luzzi, G.
    Maffei, B.
    Martins, C. J. A. P.
    Masi, S.
    Matarrese, S.
    McCarthy, D.
    Melin, J. -B.
    Melchiorri, A.
    Molinari, D.
    Monfardini, A.
    Natoli, P.
    Negrello, M.
    Notari, A.
    Paiella, A.
    Paoletti, D.
    Patanchon, G.
    Piat, M.
    Pisano, G.
    Polastri, L.
    Polenta, G.
    Pollo, A.
    Poulin, V.
    Quartin, M.
    Rubino-Martin, J. -A.
    Salvati, L.
    Tartari, A.
    Tomasi, M.
    Tramonte, D.
    Trappe, N.
    Trombetti, T.
    Tucker, C.
    Valiviita, J.
    Van de Weijgaert, R.
    van Tent, B.
    Vennin, V.
    Vittorio, N.
    Young, K.
    Zannoni, M.
    Exploring cosmic origins with CORE: B-mode component separation2018Ingår i: Journal of Cosmology and Astroparticle Physics, ISSN 1475-7516, E-ISSN 1475-7516, nr 4, artikel-id 023Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We demonstrate that, for the baseline design of the CORE satellite mission, the polarized foregrounds can be controlled at the level required to allow the detection of the primordial cosmic microwave background (CMB) B-mode polarization with the desired accuracy at both reionization and recombination scales, for tensor-to-scalar ratio values of r greater than or similar to 5 x 10(-3). We consider detailed sky simulations based on state-of-the-art CMB observations that consist of CMB polarization with tau = 0.055 and tensor-to-scalar values ranging from r = 10(-2) to 10(-3), Galactic synchrotron, and thermal dust polarization with variable spectral indices over the sky, polarized anomalous microwave emission, polarized infrared and radio sources, and gravitational lensing effects. Using both parametric and blind approaches, we perform full component separation and likelihood analysis of the simulations, allowing us to quantify both uncertainties and biases on the reconstructed primordial B-modes. Under the assumption of perfect control of lensing effects, CORE would measure an unbiased estimate of r = (5 +/- 0.4) x 10(-3) after foreground cleaning. In the presence of both gravitational lensing effects and astrophysical foregrounds, the significance of the detection is lowered, with CORE achieving a 4 sigma-measurement of r = 5 x 10(-3) after foreground cleaning and 60% de lensing. For lower tensor-to-scalar ratios (r = 10(-3)) the overall uncertainty on r is dominated by foreground residuals, not by the 40% residual of lensing cosmic variance. Moreover, the residual contribution of unprocessed polarized point-sources can be the dominant foreground contamination to primordial B-modes at this r level, even on relatively large angular scales, l similar to 50. Finally, we report two sources of potential bias for the detection of the primordial B-modes by future CMB experiments: (i) the use of incorrect foreground models, e.g. a modelling error of Delta beta(s) = 0.02 on the synchrotron spectral indices may result in an excess in the recovered reionization peak corresponding to an effective Delta r > 10(-3); (ii) the average of the foreground line-of-sight spectral indices by the combined effects of pixelization and beam convolution, which adds an effective curvature to the foreground spectral energy distribution and may cause spectral degeneracies with the CMB in the frequency range probed by the experiment.

  • 32. Salvati, L.
    et al.
    Pagano, L.
    Lattanzi, M.
    Gerbino, Martina
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita).
    Melchiorri, A.
    Breaking Be: a sterile neutrino solution to the cosmological lithium problem2016Ingår i: Journal of Cosmology and Astroparticle Physics, ISSN 1475-7516, E-ISSN 1475-7516, nr 8, artikel-id 022Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The possibility that the so-called lithium problem, i.e., the disagreement between the theoretical abundance predicted for primordial Li-7 assuming standard nucleosynthesis and the value inferred from astrophysical measurements, can be solved through a non-thermal Big Bang Nucleosynthesis (BBN) mechanism has been investigated by several authors. In particular, it has been shown that the decay of a MeV-mass particle, like, e.g., a sterile neutrino, decaying after BBN not only solves the lithium problem, but also satisfies cosmological and laboratory bounds, making such a scenario worth to be investigated in further detail. In this paper, we constrain the parameters of the model with the combination of current data, including Planck 2015 measurements of temperature and polarization anisotropies of the Cosmic Microwave Background (CMB), FIRAS limits on CMB spectral distortions, astrophysical measurements of primordial abundances and laboratory constraints. We find that a sterile neutrino with mass M-S = 4.35(-0.17)(+0.13) MeV (at 95% c.l.), a decay time tau(S) = 1.8(-1.3)(+2.5) 10(5) s (at 95% c.l.) and an initial density n(S)/n(cmb) = 1.7(-0.17)(+0.13) 10(-4) (at 95% c.1.) in units of the number density of CMB photons, perfectly accounts for the difference between predicted and observed Li-7 primordial abundance. This model also predicts an increase of the effective number of relativistic degrees of freedom at the time of CMB decoupling Delta N-eff(cmb) equivalent to Delta N-eff(cmb) -3.046 = 0.34(-0.14)(+0.16) at 95% c.l.. The required abundance of sterile neutrinos is incompatible with the standard thermal history of the Universe, but could be realized in a low reheating temperature scenario. We also provide forecasts for future experiments finding that the combination of measurements from the COrE+ and PIXIE missions will allow to significantly reduce the permitted region for the sterile lifetime and density.

  • 33.
    Vagnozzi, Sunny
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita).
    Brinckmann, Thejs
    Archidiacono, Maria
    Freese, Katherine
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita). University of Michigan, USA.
    Gerbino, Martina
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Lesgourgues, Julien
    Sprenger, Tim
    Bias due to neutrinos must not uncorrect'd go2018Ingår i: Journal of Cosmology and Astroparticle Physics, ISSN 1475-7516, E-ISSN 1475-7516, nr 9, artikel-id 001Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    It is a well known fact that galaxies are biased tracers of the distribution of matter in the Universe. The galaxy bias is usually factored as a function of redshift and scale, and approximated as being scale-independent on large, linear scales. In cosmologies with massive neutrinos, the galaxy bias defined with respect to the total matter field (cold dark matter, baryons, and non-relativistic neutrinos) also depends on the sum of the neutrino masses M-nu, and becomes scale-dependent even on large scales. This effect has been usually neglected given the sensitivity of current surveys. However, it becomes a severe systematic for future surveys aiming to provide the first detection of non-zero M-nu. The effect can be corrected for by defining the bias with respect to the density field of cold dark matter and baryons, rather than the total matter field. In this work, we provide a simple prescription for correctly mitigating the neutrino-induced scale-dependent bias effect in a practical way. We clarify a number of subtleties regarding how to properly implement this correction in the presence of redshift-space distortions and non-linear evolution of perturbations. We perform a Markov Chain Monte Carlo analysis on simulated galaxy clustering data that match the expected sensitivity of the Euclid survey. We find that the neutrino-induced scale-dependent bias can lead to important shifts in both the inferred mean value of M-nu, as well as its uncertainty, and provide an analytical explanation for the magnitude of the shifts. We show how these shifts propagate to the inferred values of other cosmological parameters correlated with M-nu, such as the cold dark matter physical density Omega(cdm)h(2) and the scalar spectral index n(s). In conclusion, we find that correctly accounting for the neutrino-induced scale-dependent bias will be of crucial importance for future galaxy clustering analyses. We encourage the cosmology community to correctly account for this effect using the simple prescription we present in our work. The tools necessary to easily correct for the neutrino-induced scale-dependent bias will be made publicly available in an upcoming release of the Boltzmann solver CLASS.

  • 34.
    Vagnozzi, Sunny
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita).
    Dhawan, Suhail
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Gerbino, Martina
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Freese, Katherine
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita). University of Michigan, USA.
    Goobar, Ariel
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Mena, Olga
    Constraints on the sum of the neutrino masses in dynamical dark energy models with w(z) >=-1 are tighter than those obtained in Lambda CDM2018Ingår i: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 98, nr 8, artikel-id 083501Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We explore cosmological constraints on the sum of the three active neutrino masses M-v in the context of dynamical dark energy (DDE) models with equation of state (EoS) parametrized as a function of redshift z by w(z) = w(0) + w(a)z/ (1 + z), and satisfying w(z) >= -1 for all z. We make use of cosmic microwave background data from the Planck satellite, baryon acoustic oscillation measurements, and supernovae la luminosity distance measurements, and perform a Bayesian analysis. We show that, within these models, the bounds on M-v do not degrade with respect to those obtained in the Lambda CDM case; in fact, the bounds arc slightly tighter, despite the enlarged parameter space. We explain our results based on the observation that, for fixed choices of w(0), w(a) such that w(z) >= -1 (but not w = -1 for all z), the upper limit on M-v is tighter than the Lambda CDM limit because of the well-known degeneracy between w and M-v. The Bayesian analysis we have carried out then integrates over the possible values of w(0)-w(a) such that w(z) >= -1, all of which correspond to tighter limits on M-v than the Lambda CDM limit. We find a 95% credible interval (C.I.) upper bound of M-v < 0.13 eV. This bound can be compared with the 95% C.I. upper bounds of M-v < 0.16 eV, obtained within the Lambda CDM model, and M-v < 0.41 eV, obtained in a DDE model with arbitrary EoS (which allows values of w < -1). Contrary to the results derived for DDE models with arbitrary EoS, we find that a dark energy component with w(z) >= -1 is unable to alleviate the tension between high-redshift observables and direct measurements of the Hubble constant H o . Finally, in light of the results of this analysis, we also discuss the implications for DDE models of a possible determination of the neutrino mass ordering by laboratory searches.

  • 35.
    Vagnozzi, Sunny
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Giusarma, Elena
    Mena, Olga
    Freese, Katherine
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). University of Michigan, USA.
    Gerbino, Martina
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Ho, Shirley
    Lattanzi, Massimiliano
    Unveiling nu secrets with cosmological data: Neutrino masses and mass hierarchy2017Ingår i: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 96, nr 12, artikel-id 123503Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Using some of the latest cosmological data sets publicly available, we derive the strongest bounds in the literature on the sum of the three active neutrino masses, M-nu, within the assumption of a background flat Lambda CDM cosmology. In the most conservative scheme, combining Planck cosmic microwave background temperature anisotropies and baryon acoustic oscillations (BAO) data, as well as the up-to-date constraint on the optical depth to reionization (tau), the tightest 95% confidence level upper bound we find is M-nu < 0.151 eV. The addition of Planck high-l polarization data, which, however, might still be contaminated by systematics, further tightens the bound to M-nu < 0.118 eV. A proper model comparison treatment shows that the two aforementioned combinations disfavor the inverted hierarchy at similar to 64% C.L. and similar to 71% C.L., respectively. In addition, we compare the constraining power of measurements of the full- shape galaxy power spectrum versus the BAO signature, from the BOSS survey. Even though the latest BOSS full-shape measurements cover a larger volume and benefit from smaller error bars compared to previous similar measurements, the analysis method commonly adopted results in their constraining power still being less powerful than that of the extracted BAO signal. Our work uses only cosmological data; imposing the constraint M-nu > 0.06 eV from oscillations data would raise the quoted upper bounds by O(0.1 sigma) and would not affect our conclusions.

1 - 35 av 35
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf