Change search
Refine search result
1 - 11 of 11
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Heshmat, Mojgan
    Stockholm University, Faculty of Science, Department of Organic Chemistry. Vrije Universiteit Amsterdam, The Netherlands.
    Unraveling the Origin of Solvent Induced Enantioselectivity in the Henry Reaction with Cinchona Thiourea as Catalyst2018In: Journal of Physical Chemistry A, ISSN 1089-5639, E-ISSN 1520-5215, Vol. 122, no 40, p. 7974-7982Article in journal (Refereed)
    Abstract [en]

    In this work, we report an energy decomposition and electronic structure analysis using DFT calculations for the C-C coupling step in the Henry reaction with cinchona thiourea as catalyst and DMF solvent to unravel the origin of enantioselectivity. We found that the conformation of flexible thiourea moiety is affected by the solvent, and in the preferred conformation of thiourea in strong Lewis basic DMF solvent, the N-H sites are in the opposite direction, i.e., in trans conformation. Hence, the thiourea moiety acts via single hydrogen bonding with substrates. The conformation of the substrates with respect to the forming C-C bond plays critical role to increase orbital interaction between two substrates and enhances hydrogen bond strength between substrates and catalyst, which in turn stabilizes the positive charge developing on the catalyst at the transition state for one of the enantiomers (S). Thus, the enantioselectivity has electronic structure origin. The stronger H-bond formation in the S enantiomer has been confirmed by the calculated IR spectra and is in agreement with thus far experimental and computational results.

  • 2.
    Heshmat, Mojgan
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Privalov, Timofei
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    A Prediction of Proton-Catalyzed Hydrogenation of Ketones in Lewis Basic Solvent through Facile Splitting of Hydrogen Molecules2017In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 23, no 5, p. 1036-1039Article in journal (Refereed)
    Abstract [en]

    A ketone's carbonyl carbon is electrophilic and harbors a part of the lowest unoccupied molecular orbital of the carbonyl group, resembling a Lewis acidic center; under the right circumstances it exhibits very useful chemical reactivity, although the natural electrophilicity of the ketone's carbonyl carbon is often not strong enough on its own to produce such reactivity. Quantum chemical calculations predict that a proton shared between a ketone and the Lewis basic solvent molecule (dioxane or THF) activates carbonyl carbon to the point of enabling a facile heterolytic splitting of H-2. Proton-catalyzed hydrogenation of a ketone in Lewis basic solvent is the result. The mechanism involves the interaction of H-2 with the enhanced Lewis acidity of a carbonyl carbon and the free Lewis basic solvent molecule polarizes H-2 and enables the hydride-type attack on carbonyl carbon, which is very strongly influenced by the proton shared between a ketone and solvent. The hydride-type attack on carbon is reminiscent of the splitting of H-2 by singlet carbenes except that, in this case, a Lewis base from the surrounding environment (solvent) is necessary for polarization of H-2 and acceptance of the proton resulting from the heterolytic splitting of H-2.

  • 3.
    Heshmat, Mojgan
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Privalov, Timofei
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Carbonyl Activation by Borane Lewis Acid Complexation: Transition States of H-2 Splitting at the Activated Carbonyl Carbon Atom in a Lewis Basic Solvent and the Proton-Transfer Dynamics of the Boroalkoxide Intermediate2017In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 23, no 38, p. 9098-9113Article in journal (Refereed)
    Abstract [en]

    By using transition-state (TS) calculations, we examined how Lewis acid (LA) complexation activates carbonyl compounds in the context of hydrogenation of carbonyl compounds by H-2 in Lewis basic (ethereal) solvents containing borane LAs of the type (C6F5)(3)B. According to our calculations, LA complexation does not activate a ketone sufficiently enough for the direct addition of H-2 to the O = C unsaturated bond; but, calculations indicate a possibly facile heterolytic cleavage of H-2 at the activated and thus sufficiently Lewis acidic carbonyl carbon atom with the assistance of the Lewis basic solvent (i.e., 1,4-dioxane or THF). For the solvent-assisted H-2 splitting at the carbonyl carbon atom of (C6F5)(3)B adducts with different ketones, a number of TSs are computed and the obtained results are related to insights from experiment. By using the Born-Oppenheimer molecular dynamics with the DFT for electronic structure calculations, the evolution of the (C6F5)(3)B-alkoxide ionic intermediate and the proton transfer to the alkoxide oxygen atom were investigated. The results indicate a plausible hydrogenation mechanism with a LA, that is, (C6F5)(3)B, as a catalyst, namely, 1) the step of H-2 cleavage that involves a Lewis basic solvent molecule plus the carbonyl carbon atom of thermodynamically stable and experimentally identifiable (C6F5)(3)B-ketone adducts in which (C6F5)(3)B is the Lewis acid promoter, 2) the transfer of the solvent-bound proton to the oxygen atom of the (C6F5)(3)B-alkoxide intermediate giving the (C6F5)(3)B-alcohol adduct, and 3) the S(N)2-style displacement of the alcohol by a ketone or a Lewis basic solvent molecule.

  • 4.
    Heshmat, Mojgan
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Privalov, Timofei
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Computational Elucidation of a Role That Bronsted Acidification of the Lewis Acid-Bound Water Might Play in the Hydrogenation of Carbonyl Compounds with H-2 in Lewis Basic Solvents2017In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 23, no 48, p. 11489-11493Article in journal (Refereed)
    Abstract [en]

    Bronsted acidification of water by Lewis acid (LA) complexation is one of the fundamental principles in chemistry. Using transition-state calculations (TS), herein we investigate the role that Bronsted acidification of the LA-bound water might play in the mechanism of the hydrogenation of carbonyl compounds in Lewis basic solvents under non-anhydrous conditions. The potential energy scans and TS calculations were carried out with a series of eight borane LAs as well as the commonly known strong LA AlCl3 in 1,4-dioxane or THF as Lewis basic solvents. Our molecular model consists of the dative LA-water adduct with hydrogen bonds to acetone and a solvent molecule plus one additional solvent molecule that participates is the TS structure describing the cleavage of H-2 at acetone's carbonyl carbon atom. In all the molecular models applied here, acetone (O=CMe2) is the archetypical carbonyl substrate. We demonstrate that Bronsted acidification of the LA-bound water can indeed lower the barrier height of the solvent-involving H-2-cleavage at the acetone's carbonyl carbon atom. This is significant because at present it is believed that the mechanism of the herein considered reaction is described by the same mechanism regardless of whether the reaction conditions are strictly anhydrous or non-anhydrous. Our results offer an alternative to this belief that warrants consideration and further study.

  • 5.
    Heshmat, Mojgan
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Privalov, Timofei
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    H-2 Cleavage by Frustrated Lewis Pairs Characterized by the Energy Decomposition Analysis of Transition States: An Alternative to the Electron Transfer and Electric Field Models2018In: Journal of Physical Chemistry A, ISSN 1089-5639, E-ISSN 1520-5215, Vol. 122, no 36, p. 7202-7211Article in journal (Refereed)
    Abstract [en]

    Knowing that the Papai's electron transfer (ET) and the Grimme's electric field (EF) models draw attention to somewhat different physical aspects, we are going to systematically (re)examine interactions in the transition states (TSs) of the heterolytic H-2-cleavage by the Frustrated Lewis Pairs (FLPs). Our main vehicle is the quantitative energy decomposition analysis (EDA), a powerful method for elucidation of interactions, plus the analysis of molecular orbitals (MOs). Herein, the Lewis acid (LA) is B(C6F5)(3) and the Lewis bases (LBs) are tBu(3)P, (o-C6H4Me)(3)P, 2,6-lutidine, 2,4,6-lutidine, MeN=C(Ph)Me imine, MeN(H)-C(H)PhMe amine, THF, 1,4-dioxane, and acetone. For a series of the phosphorus-, nitrogen-, and oxygen-bearing LBs plus B(C6F5)(3), we will show that (i) neither the electrostatic nor the orbital interactions dominate but instead both are essential alongside the Pauli repulsion and (ii) the frontier molecular orbitals (FMOs) of a TS can arise not only from the push-pull molecular orbital scheme by Papai et al., which directly involves the occupied sigma and the empty sigma* MOs of H-2, but also from a more intricate but energetically more fitting orbital interactions which have escaped notice thus far.

  • 6.
    Heshmat, Mojgan
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Privalov, Timofei
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Structurally Flexible Oxocarbenium/Borohydride Ion Pair: Dynamics of Hydride Transfer on the Background of Conformational Roaming2018In: Journal of Physical Chemistry A, ISSN 1089-5639, E-ISSN 1520-5215, Vol. 122, no 23, p. 5098-5106Article in journal (Refereed)
    Abstract [en]

    We apply Born-Oppenheimer molecular dynamics to the practically significant [dioxane-H(+)-acetone]-[(C6F5)(3)B-H(-)] and [Et2O-H(+)-OCPr2][(C6F5)(3)B-H(-)] ion pair intermediates. Dynamics of hydride transfer in cation/anion ion pair takes place on the background of large amplitude configurational changes. Geometry of oxocarbenium/borohydride ion pairs is flexible, meaning that we uncover significant actual structural disorder at a finite temperature. Therefore, although the starting structure can be fairly close to the configurational area of the hydride transfer transition state (TS) and despite a low potential energy barrier (ca. 1.5 kcal/mol, according to the literature), already at T approximate to 325 K the system can remain ignorant of the TS region and move round and about (roam) in the configurational space for a period of time in the range between 10 and 100 ps. This indicates structural flexibility of oxocarbenium/borohydride ion pair on apparently a flat potential energy landscape of cation/anion interaction, and this has not been taken into consideration by the free energy estimations in static considerations made thus far. The difference between the dynamics-based representation of the system versus the static representation amounts to the difference between quasi-bimolecular versus unimolecular descriptions of the hydride transfer step.

  • 7.
    Heshmat, Mojgan
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Privalov, Timofei
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Surprisingly Flexible Oxonium/Borohydride Ion Pair Configurations2018In: Journal of Physical Chemistry A, ISSN 1089-5639, E-ISSN 1520-5215, Vol. 122, no 15, p. 3713-3727Article in journal (Refereed)
    Abstract [en]

    We investigate the geometry of oxonium/borohydride ion pairs [ether-H(+) ether] [LA-H(-)] with dioxane, THF, and Et2O as ethers and B(C6F5)(3) as the Lewis acid (LA). The question is about possible location of the disolvated proton [ether -H(+) -ether], with respect to the hydride of the structurally complex [LA -H(-)] anion. Using Born Oppenheimer molecular dynamics and a comparison of the potential and free energies of the optimized configurations, we show that herein considered ion pairs are much more flexible geometrically than previously thought. Conformers with different locations of cations with respect to anions are governed by a flat energy -landscape. We found a novel configuration in which oxonium is below [LA-11((-))], with respect to the direction of borane -> hydride vector, and the proton -hydride distance is ca. 6 A. With calculations of the vibrational spectra of [ether-H(+)-ether][(C6F5)(3)B-H(-)] for dioxane, THF, and Et2O as ethers, we investigate the manifestation of SSLB-type (short, strong, low -barrier) hydrogen bonding in the OHO motif of an oxonium cation.

  • 8.
    Heshmat, Mojgan
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Privalov, Timofei
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Testing the nature of reaction coordinate describing interaction of H-2 with carbonyl carbon, activated by Lewis acid complexation, and the Lewis basic solvent: A Born-Oppenheimer molecular dynamics study with explicit solvent2017In: Journal of Chemical Physics, ISSN 0021-9606, E-ISSN 1089-7690, Vol. 147, no 9, article id 094302Article in journal (Refereed)
    Abstract [en]

    Using Born-Oppenheimer molecular dynamics (BOMD), we explore the nature of interactions between H-2 and the activated carbonyl carbon, C(carbonyl), of the acetone-B(C6F5)(3) adduct surrounded by an explicit solvent (1,4-dioxane). BOMD simulations at finite (non-zero) temperature with an explicit solvent produced long-lasting instances of significant vibrational perturbation of the H-H bond and H2-polarization at C(carbonyl). As far as the characteristics of H2 are concerned, the dynamical transient state approximates the transition-state of the heterolytic H2-cleavage. The culprit is the concerted interactions of H2 with C( carbonyl) and a number of Lewis basic solvent molecules- i. e., the concerted C(carbonyl) ...H2... solvent interactions. On one hand, the results presented herein complement the mechanistic insight gained from our recent transition-state calculations, reported separately from this article. But on the other hand, we now indicate that an idea of the sufficiency of just one simple reaction coordinate in solution-phase reactions can be too simplistic and misleading. This article goes in the footsteps of the rapidly strengthening approach of investigating molecular interactions in large molecular systems via computational experimentation employing, primarily, ab initio molecular dynamics describing reactants-interaction without constraints of the preordained reaction coordinate and/or foreknowledge of the sampling order parameters.

  • 9.
    Heshmat, Mojgan
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Privalov, Timofei
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Theory-Based Extension of the Catalyst Scope in the Base-Catalyzed Hydrogenation of Ketones: RCOOH-Catalyzed Hydrogenation of Carbonyl Compounds with H-2 Involving a Proton Shuttle2017In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 23, no 72, p. 18193-18202Article in journal (Refereed)
    Abstract [en]

    As an extension of the reaction mechanism describing the base-catalyzed hydrogenation of ketones according to Berkessel et al., we use a standard methodology for transition-state (TS) calculations in order to check the possibility of heterolytic cleavage of H-2 at the ketone's carbonyl carbon atom, yielding one-step hydrogenation path with involvement of carboxylic acid as a catalyst. As an extension of the catalyst scope in the base-catalyzed hydrogenation of ketones, our mechanism involves a molecule with a labile proton and a Lewis basic oxygen atom as a catalyst-for example, R-C(= O) OH carboxylic acids-so that the heterolytic cleavage of H-2 could take place between the Lewis basic oxygen atom of a carboxylic acid and the electrophilic (Lewis acidic) carbonyl carbon of a ketone/aldehyde. According to our TS calculations, protonation of a ketone/aldehyde by a proton shuttle (hydrogen bond) facilitates the hydride-type attack on the ketone's carbonyl carbon atom in the process of the heterolytic cleavage of H-2. Ketones with electron-rich and electron-withdrawing substituents in combination with a few carboxylic and amino acids-in total, 41 substrate-catalyst couples-have been computationally evaluated in this article and the calculated reaction barriers are encouragingly moderate for many of the considered substrate-catalyst couples.

  • 10.
    Heshmat, Mojgan
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Privalov, Timofei
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Water and a Borohydride/Hydronium Intermediate in the Borane-Catalyzed Hydrogenation of Carbonyl Compounds with H-2 in Wet Ether: A Computational Study2018In: Journal of Physical Chemistry B, ISSN 1520-6106, E-ISSN 1520-5207, Vol. 122, no 38, p. 8952-8962Article in journal (Refereed)
    Abstract [en]

    We have computationally evaluated water as an active Lewis base (LB) and introduced the borohydride/hydronium intermediate in the mechanism of B(C6F5)(3)-catalyzed hydrogenation of carbonyl compounds with H-2 in wet/moist ether. Our calculations extend the known frustrated Lewis pair mechanism of this reaction toward the inclusion of water as the active participant in all steps. Although the definition of the zero-energy point interweaves in comparison of the scenarios with and without water, we will be able to show that (i) water (hydrogen bonded to its molecular environment) can, in principle, act as a reasonably viable LB in cooperation with the borane Lewis acid such as B(C6F5)(3) but relatively a strong borane-water complexation can be the hindering factor; (ii) the herein-proposed borohydride/hydronium intermediates with the hydronium cation having three OH center dot center dot center dot ether hydrogen bonds or a combination of the OH center dot center dot center dot ether/OH center dot center dot center dot ketone hydrogen bonds appear to be as valid as the previously considered borohydride/oxonium or borohydride/oxocarbenium intermediates; (iii) the proton-coupled hydride transfer from the borohydride/hydronium to a ketone (acetone) has a reasonably low barrier. Our findings could be useful for better mechanistic understanding and further development of the aforementioned reaction.

  • 11. Pu, Maoping
    et al.
    Heshmat, Mojgan
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Privalov, Timofei
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Liberation of H2 from (o-C6H4Me)3P-H(+) + (-)H(-)-B(p-C6F4H)3 ion-pair: A transition-state in the minimum energy path versus the transient species in Born-Oppenheimer molecular dynamics2017In: Journal of Chemical Physics, ISSN 0021-9606, E-ISSN 1089-7690, Vol. 147, no 1, article id 014303Article in journal (Refereed)
    Abstract [en]

    Using Born-Oppenheimer molecular dynamics (BOMD) with density functional theory, transition-state (TS) calculations, and the quantitative energy decomposition analysis (EDA), we examined the mechanism of H-2-liberation from LB-H(+) + H(-)-LA ion-pair, 1, in which the Lewis base (LB) is (o-C6H4Me)(3)P and the Lewis acid (LA) is B(p-C6F4H)(3). BOMD simulations indicate that the path of H-2 liberation from the ion-pair 1 goes via the short-lived transient species, LB center dot center dot center dot H(2 center dot center dot center dot)LA, which are structurally reminiscent of the TS-structure in the minimum-energy-path describing the reversible reaction between H-2 and (o-C6H4Me)(3)P/B(p-C6F4H)(3) frustrated Lewis pair (FLP). With electronic structure calculations performed on graphics processing units, our BOMD data-set covers more than 1 ns of evolution of the ion-pair 1 at temperature T approximate to 400 K. BOMD simulations produced H-2-recombination events with various durations of H-2 remaining fully recombined as a molecule within a LB/LA attractive pocket-from very short vibrational-time scale to time scales in the range of a few hundred femtoseconds. With the help of perturbational approach to trajectory-propagation over a saddle-area, we directly examined dynamics of H-2-liberation. Using EDA, we elucidated interactions between the cationic and anionic fragments in the ion-pair 1 and between the molecular fragments in the TS-structure. We have also considered a model that qualitatively takes into account the potential energy characteristics of H-H recombination and H-2-release plus inertia of molecular motion of the (o-C6H4Me)(3)P/B(p-C6F4H)(3) FLP.

1 - 11 of 11
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf