Change search
Refine search result
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Gatchell, Michael
    et al.
    Stockholm University, Faculty of Science, Department of Physics.
    Stockett, Mark
    Stockholm University, Faculty of Science, Department of Physics.
    Rousseau, P.
    Chen, Tao
    Stockholm University, Faculty of Science, Department of Physics.
    Kulyk, Kostiantyn
    Stockholm University, Faculty of Science, Department of Physics.
    Schmidt, Henning
    Stockholm University, Faculty of Science, Department of Physics.
    Chesnel, J. Y.
    Domaracka, A.
    Méry, A.
    Maclot, S.
    Adoui, L.
    Stöchkel, K.
    Hvelplund, P.
    Wang, Y.
    Alcamí, M.
    Huber, B. A.
    Martín, F.
    Zettergren, Henning
    Stockholm University, Faculty of Science, Department of Physics.
    Cederquist, Henrik
    Stockholm University, Faculty of Science, Department of Physics.
    Non-statistical fragmentation of PAHs and fullerenes in collisions with atoms2014In: International Journal of Mass Spectrometry, ISSN 1387-3806, E-ISSN 1873-2798, Vol. 365, p. 260-265Article in journal (Refereed)
    Abstract [en]

    Non-statistical fragmentation processes may be important when Polycyclic Aromatic Hydrocarbon molecules (PAHs), fullerenes, or other large complex molecules collide with atoms and atomic ions. For collisions with hydrogen or helium this occurs for center-of-mass energies between a few tens to a few hundreds of electron volts and typically results in losses of single atoms. In such processes one forms much more reactive fragments than in statistical fragmentation, which instead are dominated by losses of C2- or C2H2-molecules (H-atoms) from fullerenes and PAHs, respectively. An enhanced reactivity has recently been demonstrated for van der Waals clusters of C60 molecules where prompt knockouts of single C-atoms from one of the fullerenes yield highly reactive C59+ fragments, which easily form covalent bonds with a C60 molecule inside the clusters

  • 2.
    Gatchell, Michael
    et al.
    Stockholm University, Faculty of Science, Department of Physics.
    Zettergren, Henning
    Stockholm University, Faculty of Science, Department of Physics.
    Seitz, Fabian
    Stockholm University, Faculty of Science, Department of Physics.
    Chen, Tao
    Stockholm University, Faculty of Science, Department of Physics.
    Alexander, John D.
    Stockholm University, Faculty of Science, Department of Physics.
    Stocket, Mark H.
    Stockholm University, Faculty of Science, Department of Physics.
    Schmidt, Henning T.
    Stockholm University, Faculty of Science, Department of Physics.
    Lawicki, A.
    Rangama, J.
    Rousseau, P.
    Capron, M.
    Maclot, S.
    Maisonny, R.
    Domaracka, A.
    Adoui, L.
    Mery, A.
    Chesnel, J-Y
    Manil, B.
    Huber, B. A.
    Cederquist, Henrik
    Stockholm University, Faculty of Science, Department of Physics.
    Ions colliding with polycyclic aromatic hydrocarbon clusters2013In: Physica Scripta, ISSN 0031-8949, E-ISSN 1402-4896, Vol. T156, p. 014062-Article in journal (Refereed)
    Abstract [en]

    We have measured the ionization and fragmentation of polycyclic aromatic hydrocarbon (PAH) molecules and their clusters. We find that PAH clusters containing up to roughly 100 individual molecules fragment strongly following collisions with keV ions in low or high charge states (q). For both types of collisions, singly charged PAH molecules are found to be the dominant products but for very different reasons. A high-q ion projectile charge leads to strong multiple ionization of the PAH clusters and subsequent Coulomb explosions. A low-q ion projectile charge often leads to single ionization but stronger internal heating and long evaporation sequences with a singly charged PAH monomer as the end product. We have developed a Monte Carlo method for collision-induced heating of PAH clusters and present an evaporation model where the clusters cool slowly as most of the internal energies are stored in intramolecular vibrations and not in molecule-molecule vibrations.

  • 3.
    Zettergren, Henning
    et al.
    Stockholm University, Faculty of Science, Department of Physics.
    Rousseau, P.
    Wang, Y.
    Seitz, Fabian
    Stockholm University, Faculty of Science, Department of Physics.
    Chen, Tao
    Stockholm University, Faculty of Science, Department of Physics.
    Gatchell, Michael
    Stockholm University, Faculty of Science, Department of Physics.
    Alexander, John D.
    Stockholm University, Faculty of Science, Department of Physics.
    Stocket, Mark H.
    Stockholm University, Faculty of Science, Department of Physics.
    Rangama, J.
    Chesnel, J. Y.
    Capron, M.
    Poully, J. C.
    Domaracka, A.
    Mery, A.
    Maclot, S.
    Schmidt, Henning T.
    Stockholm University, Faculty of Science, Department of Physics.
    Adoui, L.
    Alcami, M.
    Tielens, A. G. G. M.
    Martin, F.
    Huber, B. A.
    Cederquist, Henrik
    Stockholm University, Faculty of Science, Department of Physics.
    Formations of Dumbbell C-118 and C-119 inside Clusters of C-60 Molecules by Collision with alpha Particles2013In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 110, no 18, article id 185501Article in journal (Refereed)
    Abstract [en]

    We report highly selective covalent bond modifications in collisions between keV alpha particles and van der Waals clusters of C-60 fullerenes. Surprisingly, C-119(+) and C-118(+) are the dominant molecular fusion products. We use molecular dynamics simulations to show that C-59(+) and C-58(+) ions-effectively produced in prompt knockout processes with He2+-react rapidly with C-60 to form dumbbell C-119(+) and C-118(+). Ion impact on molecular clusters in general is expected to lead to efficient secondary reactions of interest for astrophysics. These reactions are different from those induced by photons.

  • 4.
    Zettergren, Henning
    et al.
    Stockholm University, Faculty of Science, Department of Physics.
    Rousseau, P.
    Wang, Y.
    Seitz, Fabian
    Stockholm University, Faculty of Science, Department of Physics.
    Chen, Tao
    Stockholm University, Faculty of Science, Department of Physics.
    Gatchell, Michael
    Stockholm University, Faculty of Science, Department of Physics.
    Alexander, John D.
    Stockholm University, Faculty of Science, Department of Physics.
    Stocket, Mark H.
    Stockholm University, Faculty of Science, Department of Physics.
    Rangama, J.
    Chesnel, J. Y.
    Capron, M.
    Poully, J. C.
    Domaracka, A.
    Méry, A.
    Maclot, S.
    Schmidt, Henning T.
    Stockholm University, Faculty of Science, Department of Physics.
    Adoui, L.
    Alcamí, M.
    Tielens, A. G. G. M.
    Martín, F.
    Huber, B. A.
    Cederquist, Henrik
    Stockholm University, Faculty of Science, Department of Physics.
    Formation of dumb-bell C118 and C119 inside clusters of C60 -moleculesArticle in journal (Refereed)
    Abstract [en]

    We report highly selective covalent bond-modifications in collisions between keV alpha particles and van der Waals clusters of C60-fullerenes. Surprisingly, C119+ and C118+ are the dominant molecular fusion products. We use Molecular Dynamics simulations to show that C59+ and C58+ ions - effectively produced in prompt knock-out processes with He2+ - react rapidly with C60 to form dumb-bell C119+ and C118+ . Ion impact on molecular clusters in general is expected to lead to efficient secondary reactions of interest for astrophysics. These reactions are different from those induced by photons.

1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf