Change search
Refine search result
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Abdelhamid, Hani Nasser
    et al.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). Assiut University, Egypt.
    Wilk-Kozubek, Magdalena
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). PORT Polish Center for Technology Development, Poland.
    El-Zohry, Ahmed M.
    Gómez, Antonio Bermejo
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Valiente, Alejandro
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Martín-Matute, Belén
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Mudring, Anja-Verena
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Zou, Xiaodong
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Luminescence properties of a family of lanthanide metal-organic frameworks2019In: Microporous and Mesoporous Materials, ISSN 1387-1811, E-ISSN 1873-3093, Vol. 279, p. 400-406Article in journal (Refereed)
    Abstract [en]

    Two isostructural series of lanthanide metal-organic frameworks denoted as SUMOF-7II (Ln) and SUMOF-7IIB (Ln) (Ln = La, Ce, Pr, Nd, Sm, Eu, and Gd) were synthesized using4,4',4 ''-(pyridine-2,4,6-triyl)tris(benzoic acid) (H(3)L2) and a mixture of H(3)L2 and 4,4',4 ''-(benzene-1,3,5-triyl)tris(benzoic acid) (H3BTB) as linkers, respectively. Both series were characterized using powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), thermal analysis (TGA), and photoluminescence spectroscopy. Photoluminescence measurements show that Eu-MOFs demonstrate a red emission while Pr- and Nd-MOFs display an emission in the near-infrared (NIR) range. On the other hand, La-, Ce-, Sm- and Gd-MOFs exhibit only a ligand-centered emission. The average luminescence lifetimes in the SUMOF-7IIB series are 1.3-1.4-fold longer than the corresponding ones in the SUMOF-7II series. SUMOF-7IIs show a good photo- and thermal stability. Altogether, the properties of SUMOF-7II and SUMOF-7IIB render them promising materials for applications including sensing, biosensing, and telecommunications.

  • 2.
    Abdelhamid, Hani
    et al.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Wilk-Kozubek, Magdalena
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Ahmed, M. El-Zohry
    Valiente, Alejandro
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bermejo-Gomez, Antonio
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Martín-Matute, Belén
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Mudring, Anja-Verena
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Zou, Xiaodong
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Luminescence Properties for a Family of Highly Stable Lanthanide Metal-Organic FrameworksManuscript (preprint) (Other academic)
  • 3. Li, Min
    et al.
    Smetana, Volodymyr
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). Iowa State University, USA.
    Wilk-Kozubek, Magdalena
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). Iowa State University, USA; Wrocław Research Centre EIT+, Poland.
    Mudryk, Yaroslav
    Alammar, Tarek
    Pecharsky, Vitalij K.
    Mudring, Anja-Verena
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). Iowa State University, USA.
    Open-Framework Manganese(II) and Cobalt(II) Borophosphates with Helical Chains: Structures, Magnetic, and Luminescent Properties2017In: Inorganic Chemistry, ISSN 0020-1669, E-ISSN 1520-510X, Vol. 56, no 18, p. 11104-11112Article in journal (Refereed)
    Abstract [en]

    Two borophosphates, (NH4)(1-2x)M1+x(H2O)(2)(BP2O8)center dot yH(2)O with M = Mn (I) and Co (II), synthesized hydrothermally crystallize in enantiomorphous space groups P6(5)22 and P6(1)22 with a = 9.6559(3) and 9.501(3) angstrom, c = 15.7939(6) and 15.582(4) angstrom, and V = 1275.3(1) and 1218.2(8) angstrom(3) for I and II, respectively. Both compounds feature helical chains composed of vertex-sharing tetrahedral PO4 and BO4 groups that are connected through O atoms to transition-metal cations, Mn2+ and Co2+, respectively. For the two crystallographically distinct-transition-metal cation sites present in the structure, this results in octahedral coordination with different degrees of distortion from the ideal symmetry. The crystal-field parameters, calculated from the corresponding absorption spectra, indicate that Mn2+ and Co2+ ions are located in a weak octahedral-like crystal field and suggest that the Co-ligand interactions are more covalent than the Mn-ligand ones. Luminescence measurements at room temperature reveal an orange emission that red-shifts upon lowering of the temperature to 77 K for I, while II is not luminescent. The luminescence lifetimes of I are 33.4 mu s at room temperature and 1.87 ms at 77 K. Both compounds are Curie-Weiss paramagnets with negative Weiss constants and effective magnetic moments expected for noninteracting Mn2+ and Co2+ cations but no clear long-range magnetic order above 2 K.

  • 4. Prodius, Denis
    et al.
    Wilk-Kozubek, Magdalena
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). US Department of Energy and Critical Materials Institute, USA; Iowa State University, USA; Wrocław Research Centre EIT+, Poland.
    Mudring, Anja-Verena
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). US Department of Energy and Critical Materials Institute, USA; Iowa State University, USA.
    Synthesis, structural characterization and luminescence properties of 1-carboxymethyl-3-ethylimidazolium chloride2018In: Acta crystallographica. Section C, Structural chemistry, ISSN 2053-2296, Vol. 74, p. 653-658Article in journal (Refereed)
    Abstract [en]

    A microcrystalline carboxyl-functionalized imidazolium chloride, namely 1-carboxymethyl-3-ethylimidazolium chloride, C7H11N2O2+center dot Cl-, has been synthesized and characterized by elemental analysis, attenuated total reflectance Fourier transform IR spectroscopy (ATR-FT-IR), single-crystal X-ray diffraction, thermal analysis (TGA/DSC), and photoluminescence spectroscopy. In the crystal structure, cations and anions are linked by C-H center dot center dot center dot Cl and C-H center dot center dot center dot O hydrogen bonds to create a helix along the [010] direction. Adjacent helical chains are further interconnected through O-H center dot center dot center dot Cl and C-H center dot center dot center dot O hydrogen bonds to form a (10(1) over bar) layer. Finally, neighboring layers are joined together via C-H center dot center dot center dot Cl contacts to generate a three-dimensional supramolecular architecture. Thermal analyses reveal that the compound melts at 449.7 K and is stable up to 560.0 K under a dynamic air atmosphere. Photoluminescence measurements show that the compound exhibits a blue fluorescence and a green phosphorescence associated with spin-allowed ((1)pi <- (1)pi*) and spin-forbidden ((1)pi <- (3)pi*) transitions, respectively. The average luminescence lifetime was determined to be 1.40 ns for the short-lived ((1)pi <- (1)pi*) transition and 105 ms for the long-lived ((1)pi <- (3)pi*) transition.

1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf