Change search
Refine search result
1 - 8 of 8
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Abdelhamid, Hani Nasser
    et al.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). Assiut University, Egypt.
    Wilk-Kozubek, Magdalena
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). PORT Polish Center for Technology Development, Poland.
    El-Zohry, Ahmed M.
    Gómez, Antonio Bermejo
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Valiente, Alejandro
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Martín-Matute, Belén
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Mudring, Anja-Verena
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Zou, Xiaodong
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Luminescence properties of a family of lanthanide metal-organic frameworks2019In: Microporous and Mesoporous Materials, ISSN 1387-1811, E-ISSN 1873-3093, Vol. 279, p. 400-406Article in journal (Refereed)
    Abstract [en]

    Two isostructural series of lanthanide metal-organic frameworks denoted as SUMOF-7II (Ln) and SUMOF-7IIB (Ln) (Ln = La, Ce, Pr, Nd, Sm, Eu, and Gd) were synthesized using4,4',4 ''-(pyridine-2,4,6-triyl)tris(benzoic acid) (H(3)L2) and a mixture of H(3)L2 and 4,4',4 ''-(benzene-1,3,5-triyl)tris(benzoic acid) (H3BTB) as linkers, respectively. Both series were characterized using powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), thermal analysis (TGA), and photoluminescence spectroscopy. Photoluminescence measurements show that Eu-MOFs demonstrate a red emission while Pr- and Nd-MOFs display an emission in the near-infrared (NIR) range. On the other hand, La-, Ce-, Sm- and Gd-MOFs exhibit only a ligand-centered emission. The average luminescence lifetimes in the SUMOF-7IIB series are 1.3-1.4-fold longer than the corresponding ones in the SUMOF-7II series. SUMOF-7IIs show a good photo- and thermal stability. Altogether, the properties of SUMOF-7II and SUMOF-7IIB render them promising materials for applications including sensing, biosensing, and telecommunications.

  • 2.
    Abdelhamid, Hani
    et al.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Wilk-Kozubek, Magdalena
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Ahmed, M. El-Zohry
    Valiente, Alejandro
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bermejo-Gomez, Antonio
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Martín-Matute, Belén
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Mudring, Anja-Verena
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Zou, Xiaodong
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Luminescence Properties for a Family of Highly Stable Lanthanide Metal-Organic FrameworksManuscript (preprint) (Other academic)
  • 3. Chand, Deepak
    et al.
    Wilk-Kozubek, Magdalena
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). Iowa State University, United States; US Department of Energy and Critical Materials Institute, United States; Łukasiewicz Research Network - PORT Polish Center for Technology Development, Poland.
    Smetana, Volodymyr
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). US Department of Energy and Critical Materials Institute, United States.
    Mudring, Anja-Verena
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). Iowa State University, United States; US Department of Energy and Critical Materials Institute, United States; Łukasiewicz Research Network - PORT Polish Center for Technology Development, Poland.
    Alternative to the Popular Imidazolium Ionic Liquids: 1,2,4-Triazolium Ionic Liquids with Enhanced Thermal and Chemical Stability2019In: ACS sustainable chemistry & engineering, ISSN 2168-0485, Vol. 7, no 19, p. 15995-16006Article in journal (Refereed)
    Abstract [en]

    Direct quaternization of 1-methyl-1,2,4-triazole with n-alkyl methanesulfonates (alkyl = butyl, octyl, dodecyl) showed to be an atom-economic, convenient, mild, solvent- and halide-free way to obtain 1,2,4-triazolium methanesulfonate ionic liquids in high purity and yield. Subsequent metathesis with lithium bis(trifluoromethanesulfonyl)amide (LiTf2N) allows for a much desired, easy access to halide-free, bis(trifluoromethanesulfonyl)amide ionic liquids. Differential scanning calorimetry confirms that all investigated compounds qualify as ionic liquids (ILs). Moreover, it reveals for 1-methyl-4-n-dodecyl-1,2,4-triazolium methanesulfonate a rather complex thermal behavior involving formation of mesophases. Indeed, polarizing optical microscopy shows oily streaky textures that are characteristic for smectic liquid crystalline phases. Single-crystal X-ray diffraction structure analysis confirms formation of a layered structure. All compounds are photoluminescent. The color of fluorescence at room temperature can be tuned from blue to orange through the length of the alkyl side chain of the cation, the aromatic interactions between the cations, and the anion nature. In addition, at low temperatures (77 K) a close to white phosphorescence with average lifetimes in the millisecond time range can be observed for 1-methyl-4-n-butyl-triazolium methanesulfonate and all of the studied bis(trifluoromethanesulfonyl)amide ILs. All ILs show an appreciable liquidus range and thermal (up to 260-350 degrees C) and electrochemical stability. The presented set of ILs overcomes the sometimes problematic acidity and low stability of imidazolium ILs in basic environment and can be obtained easily in high purity without halide contamination. Overcoming two shortcomings of classical imidazolium ILs, they may be good alternatives for a number of applications and even enabling new ones.

  • 4. Li, Min
    et al.
    Smetana, Volodymyr
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). Iowa State University, USA.
    Wilk-Kozubek, Magdalena
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). Iowa State University, USA; Wrocław Research Centre EIT+, Poland.
    Mudryk, Yaroslav
    Alammar, Tarek
    Pecharsky, Vitalij K.
    Mudring, Anja-Verena
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). Iowa State University, USA.
    Open-Framework Manganese(II) and Cobalt(II) Borophosphates with Helical Chains: Structures, Magnetic, and Luminescent Properties2017In: Inorganic Chemistry, ISSN 0020-1669, E-ISSN 1520-510X, Vol. 56, no 18, p. 11104-11112Article in journal (Refereed)
    Abstract [en]

    Two borophosphates, (NH4)(1-2x)M1+x(H2O)(2)(BP2O8)center dot yH(2)O with M = Mn (I) and Co (II), synthesized hydrothermally crystallize in enantiomorphous space groups P6(5)22 and P6(1)22 with a = 9.6559(3) and 9.501(3) angstrom, c = 15.7939(6) and 15.582(4) angstrom, and V = 1275.3(1) and 1218.2(8) angstrom(3) for I and II, respectively. Both compounds feature helical chains composed of vertex-sharing tetrahedral PO4 and BO4 groups that are connected through O atoms to transition-metal cations, Mn2+ and Co2+, respectively. For the two crystallographically distinct-transition-metal cation sites present in the structure, this results in octahedral coordination with different degrees of distortion from the ideal symmetry. The crystal-field parameters, calculated from the corresponding absorption spectra, indicate that Mn2+ and Co2+ ions are located in a weak octahedral-like crystal field and suggest that the Co-ligand interactions are more covalent than the Mn-ligand ones. Luminescence measurements at room temperature reveal an orange emission that red-shifts upon lowering of the temperature to 77 K for I, while II is not luminescent. The luminescence lifetimes of I are 33.4 mu s at room temperature and 1.87 ms at 77 K. Both compounds are Curie-Weiss paramagnets with negative Weiss constants and effective magnetic moments expected for noninteracting Mn2+ and Co2+ cations but no clear long-range magnetic order above 2 K.

  • 5. Prodius, Denis
    et al.
    Wilk-Kozubek, Magdalena
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). US Department of Energy and Critical Materials Institute, USA; Iowa State University, USA; Wrocław Research Centre EIT+, Poland.
    Mudring, Anja-Verena
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). US Department of Energy and Critical Materials Institute, USA; Iowa State University, USA.
    Synthesis, structural characterization and luminescence properties of 1-carboxymethyl-3-ethylimidazolium chloride2018In: Acta crystallographica. Section C, Structural chemistry, ISSN 2053-2296, Vol. 74, p. 653-658Article in journal (Refereed)
    Abstract [en]

    A microcrystalline carboxyl-functionalized imidazolium chloride, namely 1-carboxymethyl-3-ethylimidazolium chloride, C7H11N2O2+center dot Cl-, has been synthesized and characterized by elemental analysis, attenuated total reflectance Fourier transform IR spectroscopy (ATR-FT-IR), single-crystal X-ray diffraction, thermal analysis (TGA/DSC), and photoluminescence spectroscopy. In the crystal structure, cations and anions are linked by C-H center dot center dot center dot Cl and C-H center dot center dot center dot O hydrogen bonds to create a helix along the [010] direction. Adjacent helical chains are further interconnected through O-H center dot center dot center dot Cl and C-H center dot center dot center dot O hydrogen bonds to form a (10(1) over bar) layer. Finally, neighboring layers are joined together via C-H center dot center dot center dot Cl contacts to generate a three-dimensional supramolecular architecture. Thermal analyses reveal that the compound melts at 449.7 K and is stable up to 560.0 K under a dynamic air atmosphere. Photoluminescence measurements show that the compound exhibits a blue fluorescence and a green phosphorescence associated with spin-allowed ((1)pi <- (1)pi*) and spin-forbidden ((1)pi <- (3)pi*) transitions, respectively. The average luminescence lifetime was determined to be 1.40 ns for the short-lived ((1)pi <- (1)pi*) transition and 105 ms for the long-lived ((1)pi <- (3)pi*) transition.

  • 6.
    Smetana, Volodymyr
    et al.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Wilk-Kozubek, Magdalena
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). PORT Polish Center for Technology Development, Poland.
    Mudring, Anja-Verena
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Active-Transition-Metal Tellurides: Through Crystal Structures to Physical Properties2019In: Crystal Growth & Design, ISSN 1528-7483, E-ISSN 1528-7505, Vol. 19, no 9, p. 5429-5440Article, review/survey (Refereed)
    Abstract [en]

    Materials showing thermoelectric properties known as thermoelectrics can reversibly convert a temperature gradient into electricity. Since the vast majority of energy we use comes from thermal processes or creates thermal energy as waste energy, the search for materials able to efficiently convert thermal energy is of extreme importance. The discovery of a new, highly efficient thermoelectric material is complicated due to the special requirements imposed on the combination of electrical and thermal transport properties. Metal chalcogenides (MCs) have attracted significant attention as high performance thermoelectric materials. Their subgroup, active-transition-metal chalcogenides, shows structural and compositional diversity, including a wide occurrence of low-dimensional structural motifs, which opens up a fruitful area for explorations. This area has been preliminarily explored from both structural and functional viewpoints revealing very promising directions and unique compounds. Nevertheless, systematic investigations on transport properties are still missing. Available data suggests the presence of low bandgap semiconductors satisfying at least one of the conditions for a good thermoelectric, whereas the potential for structural and electronic variation in the form of active metal doping and substitution leaves a decent chance to uncover a candidate with acceptably low thermal conductivity and subsequently high thermoelectric performance.

  • 7. Wang, Guangmei
    et al.
    Valldor, Martin
    Dorn, Katharina V.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Wilk-Kozubek, Magdalena
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). PORT Polish Center for Technology Development, Poland.
    Smetana, Volodymyr
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Mudring, Anja-Verena
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). Ruhr-Universität Bochum, Germany.
    Ionothermal Synthesis Enables Access to 3D Open Framework Manganese Phosphates Containing Extra-Large 18-Ring Channels2019In: Chemistry of Materials, ISSN 0897-4756, E-ISSN 1520-5002, Vol. 31, no 18, p. 7329-7339Article in journal (Refereed)
    Abstract [en]

    An ionothermal synthesis study of transition metal phosphates using the ionic liquid 1-butyl-4-methylpyridinium hexafluorophosphate [C(4)mpy] [PF6] yielded four new, different open framework manganese compounds, that is, K2Mn3 (HPO4)(2)(PO3F)F-2 (1), (NH4)(2)Mn-3 (HPO4)(2) (PO3F)-F-2 (2), KMn3 (H2PO4)(HPO4)(2)F-2 (3), and (NH4)Mn-3(H2PO4)(PO3F)(2)F-2 (4). The obtained products not only feature new framework topologies unprecedented in the family of phosphates but also interesting properties as the transition metal gives rise to both luminescent (rendering them potential nonrare earth containing red emitting phosphors) and unconventional magnetic properties governed by geometric frustrations. Aside from the structural analysis (powder and single-crystal X-ray diffraction, infrared spectroscopy), a variety of characterization methods (photoluminescence spectroscopy and magnetic measurements) were applied to study the material's properties. Single crystal X-ray studies reveal that 1 (P2(1)/c with a = 5.501(1), b = 14.203(3), c = 16.905(4) angstrom, beta = 108.65(3)degrees, V = 1251.4 angstrom(3), and Z = 4) and 2 (P2(1)/c with a = 5.587(1), b = 14.507(3), c = 17.364(3) angstrom, beta = 108.75(3)degrees, V = 1332.6(5) angstrom(3), and Z = 4) feature S-shaped 18-ring channels along [100], which are formed by trimer-Mn3O9F2 chains parallel to [100] and interconnecting PO3 (OH) and PO3F tetrahedra. The structure of compounds 3 (C2/c with a = 20.307(4), b = 7.635(1), c = 7.834(2) angstrom, beta = 103.26(3)degrees, V = 1182.2(4) angstrom(3), and Z = 4) and 4 (C2/c with a = 20.402(4), b = 7.673(1), c = 7.845(2) angstrom, beta = 103.56(3)degrees, V = 1193.8(4) angstrom(3), and Z = 4) are characterized by layers, which are built of Mn3O8F4 octahedra trimers, with Kagome topology parallel to the be plane featuring 3,6-ring channels. The layers are stacked according to a sequence of AA(i) along the a axis. Taking into account the [P(2)O-3(OH)/P(2)O3F] tetrahedra, the Kagome layers are replenished to a Mn3O2 (HPO4)/Mn3O2 (PO3F) composition, which are interlinked by [P(1)O-2(OH)(2)] forming 10-ring channels parallel to [001]. Charge compensation of the macroanions is achieved by K+ (1 and 3) and (NH4)(+) (2 and 4) cations. At room temperature, compounds 1-4 demonstrate a reddish orange emission ascribed to the spin-forbidden T-4(1g)((4)G) -> (6)A(1g) (S-6) transition of the Mn2+ ions. Upon lowering the temperature to 77 K, the emission of each compound is red-shifted and becomes pure red. Compounds 1 and 2 contain spin trimers with a presumable doubled ground state. The intertrimer magnetic coupling is relatively weak, and small ferrimagnetic domains are possible in 1. The magnetic behavior of 3 and 4 can be considered as antiferromagnetic. This can be understood as their staircase Kagome lattices are distorted, meaning that the intrinsic geometrical frustration is lifted.

  • 8. Wang, Guangmei
    et al.
    Valldor, Martin
    Siebeneichler, Stefanie
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Wilk-Kozubek, Magdalena
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). Łukasiewicz Research Network-PORT Polish Center for Technology Development, Poland.
    Smetana, Volodymyr
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Mudring, Anja-Verena
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). Ruhr-Universität Bochum, Germany.
    Ionothernnal Synthesis, Structures, and Magnetism of Three New Open Framework Iron Halide-Phosphates2019In: Inorganic Chemistry, ISSN 0020-1669, E-ISSN 1520-510X, Vol. 58, no 19, p. 13203-13212Article in journal (Refereed)
    Abstract [en]

    A set of different open framework iron phosphates have been synthesized ionothermally using a task-specific ionic liquid, 1-butyl-4-methylpyridinium hexafluorophosphate, that acts in the synthesis as the reaction medium and mineralizer: (NH4)(2)Fe-2(HPO4)(PO4)Cl2F (1) and K2Fe2(HPO4(PO4)Cl2F (2) exhibit similar composition and closely related structural features. Both structures consist of {Fe-2(HPO4)(PO4)-Cl2F}(2)- macroanions and charge balancing ammonium or potassium cations. Their open framework structure contains layers and chains of corner-linked {Fe(1)O2Cl4} and {Fe(2)F2O4} octahedra, respectively, interconnected by PO4 tetrahedra forming 10-ring channels. KFe(PO3F)F-2 (3) is built up by {Fe[(PO3F)(4/3)F-2/2]}{Fe(PO3F)(2/3) F2/2F2} layers separated by K+ cations. Chains of alternating {FeF2O4} and {FeO2F4} octahedra, which are linear for 1 but undulated for 2, are linked to each other via corner-sharing {PO3F} tetrahedra with the fluorine pointing into the interlayer space. The compounds were characterized by means of single crystal and powder X-ray diffraction, infrared spectroscopy, and magnetic measurements. 1 reveals a strong ground state spin anisotropy with a spin 5/2 state and a magnetic moment of 5.3 mu(B) /Fe3+. Specific heat and magnetic data unveil three magnetic transitions at 95, 50, and 3.6 K. Compound 2 has a very similar crystal structure as compared to 1 but exhibits a different magnetic behavior: a slightly lower magnetic moment of 4.7 mu(B)/Fe3+ and a magnetic transition to a canted antiferromagnetic state below 90 K. Compound 3 exhibits typical paramagnetic behavior close to room-temperature (5.71 mu(B)/Fe3+). There are no clear indications for a phase transition down to 2 K despite strong antiferromagnetic spin-spin interactions; only a magnetic anomaly appears at 50 K in the zero-field cooled data.

1 - 8 of 8
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf