Change search
Refine search result
1 - 12 of 12
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Chartkunchand, Kiattichart C.
    et al.
    Stockholm University, Faculty of Science, Department of Physics.
    Stockett, Mark H.
    Stockholm University, Faculty of Science, Department of Physics.
    Anderson, Emma K.
    Stockholm University, Faculty of Science, Department of Physics.
    Eklund, Gustav
    Stockholm University, Faculty of Science, Department of Physics.
    Kristiansson, Moa K.
    Stockholm University, Faculty of Science, Department of Physics.
    Kamińska, Magdalena
    Stockholm University, Faculty of Science, Department of Physics. Jan Kochanowski University, Poland.
    de Ruette, Nathalie
    Stockholm University, Faculty of Science, Department of Physics.
    Blom, Mikael
    Stockholm University, Faculty of Science, Department of Physics.
    Björkhage, Mikael
    Stockholm University, Faculty of Science, Department of Physics.
    Källberg, Anders
    Stockholm University, Faculty of Science, Department of Physics.
    Löfgren, Patrik
    Stockholm University, Faculty of Science, Department of Physics.
    Reinhed, Peter
    Stockholm University, Faculty of Science, Department of Physics.
    Rosén, Stefan
    Stockholm University, Faculty of Science, Department of Physics.
    Simonsson, Ansgar
    Stockholm University, Faculty of Science, Department of Physics.
    Zettergren, Henning
    Stockholm University, Faculty of Science, Department of Physics.
    Schmidt, Henning T.
    Stockholm University, Faculty of Science, Department of Physics.
    Cederquist, Henrik
    Stockholm University, Faculty of Science, Department of Physics.
    Dianion diagnostics in DESIREE: High-sensitivity detection of C-n(2-) from a sputter ion source2018In: Review of Scientific Instruments, ISSN 0034-6748, E-ISSN 1089-7623, Vol. 89, no 3, article id 033112Article in journal (Refereed)
    Abstract [en]

    A sputter ion source with a solid graphite target has been used to produce dianions with a focus on carbon cluster dianions, C-n(2-), with n = 7-24. Singly and doubly charged anions from the source were accelerated together to kinetic energies of 10 keV per atomic unit of charge and injected into one of the cryogenic (13 K) ion-beam storage rings of the Double ElectroStatic Ion Ring Experiment facility at Stockholm University. Spontaneous decay of internally hot C-n(2-) dianions injected into the ring yielded C-n(2-) anions with kinetic energies of 20 keV, which were counted with a microchannel plate detector. Mass spectra produced by scanning the magnetic field of a 90 degrees analyzing magnet on the ion injection line reflect the production of internally hot C-7(2-) - C-24(2-) dianions with lifetimes in the range of tens of microseconds to milliseconds. In spite of the high sensitivity of this method, no conclusive evidence of C-6(2-) was found while there was a clear C-7(2-) signal with the expected isotopic distribution. This is consistent with earlier experimental studies and with theoretical predictions. An upper limit is deduced for a C-6(2-) signal that is two orders-of-magnitude smaller than that for C-7(2-). In addition, CnO2- and CnCu2- dianions were detected.

  • 2.
    de Ruette, Nathalie
    et al.
    Stockholm University, Faculty of Science, Department of Physics.
    Dochain, A.
    Launoy, T.
    Nascimento, Rodrigo F.
    Stockholm University, Faculty of Science, Department of Physics. Centro Federal de Educação Tecnológica Celso Suckow da Fonseca, Brazil.
    Kaminska, Magdalena
    Stockholm University, Faculty of Science, Department of Physics. Jan Kochanowski University, Poland.
    Stockett, Mark H.
    Stockholm University, Faculty of Science, Department of Physics.
    Vaeck, N.
    Schmidt, Henning T.
    Stockholm University, Faculty of Science, Department of Physics.
    Cederquist, Henrik
    Stockholm University, Faculty of Science, Department of Physics.
    Urbain, X.
    Mutual Neutralization of O- with O+ and N+ at Subthermal Collision Energies2018In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 121, no 8, article id 083401Article in journal (Refereed)
    Abstract [en]

    We have measured total absolute cross sections for the mutual neutralization (MN) of O- with O+ and N+. A fine resolution (of about 50 meV) in the kinetic energy spectra of the product neutral atoms allows unique identification of the atomic states participating in the mutual neutralization process. Cross sections and branching ratios have also been calculated down to 1 meV center-of-mass collision energy for these two systems, with a multichannel Landau-Zener model and an asymptotic method for the ionic-covalent coupling matrix elements. The importance of two-electron processes in one-electron transfer is demonstrated by the dominant contribution of a core-excited configuration of the nitrogen atom in N+ + O- collisions. This effect is partially accounted for by introducing configuration mixing in the evaluation of coupling matrix elements.

  • 3.
    de Ruette, Nathalie
    et al.
    Stockholm University, Faculty of Science, Department of Physics.
    Wolf, Michael
    Stockholm University, Faculty of Science, Department of Physics.
    Giacomozzi, Linda
    Stockholm University, Faculty of Science, Department of Physics.
    Alexander, John D.
    Stockholm University, Faculty of Science, Department of Physics.
    Gatchell, Michael
    Stockholm University, Faculty of Science, Department of Physics. Universität Innsbruck, Austria.
    Stockett, Mark H.
    Stockholm University, Faculty of Science, Department of Physics.
    Haag, Nicole
    Stockholm University, Faculty of Science, Department of Physics.
    Zettergren, Henning
    Stockholm University, Faculty of Science, Department of Physics.
    Schmidt, Henning T.
    Stockholm University, Faculty of Science, Department of Physics.
    Cederquist, Henrik
    Stockholm University, Faculty of Science, Department of Physics.
    DESIREE electrospray ion source test bench and setup for collision induced dissociation experiments2018In: Review of Scientific Instruments, ISSN 0034-6748, E-ISSN 1089-7623, Vol. 89, no 7, article id 075102Article in journal (Refereed)
    Abstract [en]

    In this paper, we give a detailed description of an electrospray ion source test bench and a single-pass setup for ion fragmentation studies at the Double ElectroStatic Ion Ring ExpEriment infrastructure at Stockholm University. This arrangement allows for collision-induced dissociation experiments at the center-of-mass energies between 10 eV and 1 keV. Charged fragments are analyzed with respect to their kinetic energies (masses) by means of an electrostatic energy analyzer with a wide angular acceptance and adjustable energy resolution.

  • 4.
    Gatchell, Michael
    et al.
    Stockholm University, Faculty of Science, Department of Physics.
    Stockett, Mark H.
    Stockholm University, Faculty of Science, Department of Physics. Aarhus University, Denmark.
    de Ruette, Nathalie
    Stockholm University, Faculty of Science, Department of Physics.
    Chen, Tao
    Stockholm University, Faculty of Science, Department of Physics.
    Giacomozzi, Linda
    Stockholm University, Faculty of Science, Department of Physics.
    Nascimento, Rodrigo F.
    Stockholm University, Faculty of Science, Department of Physics.
    Wolf, Michael
    Stockholm University, Faculty of Science, Department of Physics.
    Anderson, Emma K.
    Stockholm University, Faculty of Science, Department of Physics.
    Delaunay, R.
    Vizcaino, V.
    Rousseau, P.
    Adoui, L.
    Huber, B. A.
    Schmidt, Henning T.
    Stockholm University, Faculty of Science, Department of Physics.
    Zettergren, Henning
    Stockholm University, Faculty of Science, Department of Physics.
    Cederquist, Henrik
    Stockholm University, Faculty of Science, Department of Physics.
    Failure of hydrogenation in protecting polycyclic aromatic hydrocarbons from fragmentation2015In: Physical Review A. Atomic, Molecular, and Optical Physics, ISSN 1050-2947, E-ISSN 1094-1622, Vol. 92, no 5, article id 050702Article in journal (Refereed)
    Abstract [en]

    A recent study of soft x-ray absorption in native and hydrogenated coronene cations, C24H12+m + m = 0-7, led to the conclusion that additional hydrogen atoms protect (interstellar) polycyclic aromatic hydrocarbon (PAH) molecules from fragmentation [Reitsma et al., Phys. Rev. Lett. 113, 053002 (2014)]. The present experiment with collisions between fast (30-200 eV) He atoms and pyrene (C16H10+m +, m = 0, 6, and 16) and simulations without reference to the excitation method suggests the opposite. We find that the absolute carbon-backbone fragmentation cross section does not decrease but increases with the degree of hydrogenation for pyrene molecules.

  • 5.
    Giacomozzi, Linda
    et al.
    Stockholm University, Faculty of Science, Department of Physics.
    D'Angelo, Giovanna
    Stockholm University, Faculty of Science, Department of Physics. Universidad Autónoma de Madrid, Spain.
    Diaz-Tendero, S.
    de Ruette, Nathalie
    Stockholm University, Faculty of Science, Department of Physics.
    Stockett, Mark H.
    Stockholm University, Faculty of Science, Department of Physics.
    Alcami, M.
    Cederquist, Henrik
    Stockholm University, Faculty of Science, Department of Physics.
    Schmidt, Henning T.
    Stockholm University, Faculty of Science, Department of Physics.
    Zettergren, Henning
    Stockholm University, Faculty of Science, Department of Physics.
    Decay pathways for protonated and deprotonated adenine molecules2019In: Journal of Chemical Physics, ISSN 0021-9606, E-ISSN 1089-7690, Vol. 151, no 4, article id 044306Article in journal (Refereed)
    Abstract [en]

    We have measured fragment mass spectra and total destruction cross sections for protonated and deprotonated adenine following collisions with He at center-of-mass energies in the 20-240 eV range. Classical and ab initio molecular dynamics simulations are used to provide detailed information on the fragmentation pathways and suggest a range of alternative routes compared to those reported in earlier studies. These new pathways involve, for instance, losses of HNC molecules from protonated adenine and losses of NH2 or C3H2N2 from deprotonated adenine. The present results may be important to advance the understanding of how biomolecules may be formed and processed in various astrophysical environments.

  • 6.
    Giacomozzi, Linda
    et al.
    Stockholm University, Faculty of Science, Department of Physics.
    Gatchell, Michael
    Stockholm University, Faculty of Science, Department of Physics.
    de Ruette, Nathalie
    Stockholm University, Faculty of Science, Department of Physics.
    Wolf, Michael
    Stockholm University, Faculty of Science, Department of Physics.
    D'Angelo, Giovanna
    Stockholm University, Faculty of Science, Department of Physics. Universidade do Porto, Portugal; Universidad Autónoma de Madrid, Spain.
    Schmidt, Henning T.
    Stockholm University, Faculty of Science, Department of Physics.
    Cederquist, Henrik
    Stockholm University, Faculty of Science, Department of Physics.
    Zettergren, Henning
    Stockholm University, Faculty of Science, Department of Physics.
    Knockout driven fragmentation of porphyrins2017In: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 19, no 30, p. 19750-19755Article in journal (Refereed)
    Abstract [en]

    We have studied collisions between tetraphenylporphyrin cations and He or Ne at center-of-mass energies in the range 50-110 eV. The experimental results were interpreted in view of density functional theory calculations of dissociation energies and classical molecular dynamics simulations of how the molecules respond to the He/Ne impact. We demonstrate that prompt atom knockout strongly contributes to the total destruction cross sections. Such impulse driven processes typically yield highly reactive fragments and are expected to be important for collisions with any molecular system in this collision energy range, but have earlier been very difficult to isolate for biomolecules.

  • 7.
    Kulyk, Kostiantyn
    et al.
    Stockholm University, Faculty of Science, Department of Physics.
    Wolf, Michael
    Stockholm University, Faculty of Science, Department of Physics.
    Gatchell, Michael
    Stockholm University, Faculty of Science, Department of Physics. Universität Innsbruck, Austria.
    Giacomozzi, Linda
    Stockholm University, Faculty of Science, Department of Physics.
    Vegvari, Akos
    Kovalenko, Oleksandr
    de Ruette, Nathalie
    Stockholm University, Faculty of Science, Department of Physics.
    Wendt, Ola
    Zubarev, Roman
    Schmidt, T. Henning
    Stockholm University, Faculty of Science, Department of Physics.
    Cederquist, Henrik
    Stockholm University, Faculty of Science, Department of Physics.
    Zettergren, Henning
    Stockholm University, Faculty of Science, Department of Physics.
    Collision Induced Dissociation of the retinal chromophore Schiff base from sub-eV to keV collision energiesIn: Journal of Physical Chemistry A, ISSN 1089-5639, E-ISSN 1520-5215Article in journal (Refereed)
    Abstract [en]

    The gas-phase fragmentation of the protonated n-butylamine Schiff base of all-trans-retinal (NB-RPSB) was measured in low- and high-energy collisional activation modes. The protonated n-butyl β-ionone Schiff base (NB-BISB) peak at m/z = 248, known to be formed as a result of a complex gas-phase rearrangement reaction, has been reported to dominate in mass spectra of NB-RPSB after photo- and collisionally activated fragmentation processes. Earlier reported high-energy collision (50 keV) mass spectra have shown a broad distribution of the fragments with the peak at m/z = 248 present but not dominating. We observed the formation of a peak at m/z = 248 only in collisional activation of NB-RPSB parent ion below a few eV, which shows that the rearrangement process is extremely efficient and happens in a very narrow energy range. On the other hand, our high-energy collision induced dissociation experiments yielded fragmentation patterns, which are fully accounted for simple bond cleavages of the NB-RPSB molecular backbone. We do not observe any peak corresponding to the formation of NB-BISB in the 10 eV – 1 keV collision energy range. This leaves the question open why this fragment reappears in the mass spectra at much higher energies.

  • 8. Mezdari, Ferid
    et al.
    de Ruette, Nathalie
    Stockholm University, Faculty of Science, Department of Physics.
    Urbain, Xavier
    Spontaneous dissociation and rovibrational structure of the metastable D-2(-) anion2017In: Physical Review A: covering atomic, molecular, and optical physics and quantum information, ISSN 2469-9926, E-ISSN 2469-9934, Vol. 96, no 3, article id 032512Article in journal (Refereed)
    Abstract [en]

    Long-lived rovibrational states of the metastable D2-molecular anion, with lifetimes of the order of microseconds, were studied by recording the time-of-flight difference between D and D-fragments produced by spontaneous dissociation of the D2-complex. The simulated time-of-flight spectrum was adjusted to the experimental results, allowing us to extract the resonance energy relative to the dissociation threshold. A single value was found, 22.8 +/- 0.3 meV, which is somewhat larger than resonance energies predicted by theory for long-lived D2-rovibrational states with (J, v) quantum numbers (37,0), (37,1), and (38,0) [ Phys. Rev. A 75, 012507 (2007)]. This discrepancy seems due to the extreme sensitivity of thesemetastable states tominute features of the potential energy curve. The spectral feature is explained by the competition between autodetachment and spontaneous dissociation decay channels.

  • 9.
    Schmidt, Henning T.
    et al.
    Stockholm University, Faculty of Science, Department of Physics.
    Eklund, Gustav
    Stockholm University, Faculty of Science, Department of Physics.
    Chartkunchand, Kiattichart C.
    Stockholm University, Faculty of Science, Department of Physics.
    Anderson, Emma K.
    Stockholm University, Faculty of Science, Department of Physics.
    Kamińska, Magdalena
    Stockholm University, Faculty of Science, Department of Physics. Jan Kochanowski University, Poland.
    de Ruette, Nathalie
    Stockholm University, Faculty of Science, Department of Physics.
    Thomas, Richard D.
    Stockholm University, Faculty of Science, Department of Physics.
    Kristiansson, Moa K.
    Stockholm University, Faculty of Science, Department of Physics.
    Gatchell, Michael
    Stockholm University, Faculty of Science, Department of Physics.
    Reinhed, Peter
    Stockholm University, Faculty of Science, Department of Physics.
    Rosen, Stefan
    Stockholm University, Faculty of Science, Department of Physics.
    Simonsson, Ansgar
    Stockholm University, Faculty of Science, Department of Physics.
    Källberg, Anders
    Stockholm University, Faculty of Science, Department of Physics.
    Löfgren, Patrik
    Stockholm University, Faculty of Science, Department of Physics.
    Mannervik, Sven
    Stockholm University, Faculty of Science, Department of Physics.
    Zettergren, Henning
    Stockholm University, Faculty of Science, Department of Physics.
    Cederquist, Henrik
    Stockholm University, Faculty of Science, Department of Physics.
    Rotationally Cold OH- Ions in the Cryogenic Electrostatic Ion-Beam Storage Ring DESIREE2017In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 119, no 7, article id 073001Article in journal (Refereed)
    Abstract [en]

    We apply near-threshold laser photodetachment to characterize the rotational quantum level distribution of OH- ions stored in the cryogenic ion-beam storage ring DESIREE at Stockholm University. We find that the stored ions relax to a rotational temperature of 13.4 +/- 0.2 K with 94.9 +/- 0.3% of the ions in the rotational ground state. This is consistent with the storage ring temperature of 13.5 +/- 0.5 K as measured with eight silicon diodes but in contrast to all earlier studies in cryogenic traps and rings where the rotational temperatures were always much higher than those of the storage devices at their lowest temperatures. Furthermore, we actively modify the rotational distribution through selective photodetachment to produce an OH- beam where 99.1 +/- 0.1% of approximately one million stored ions are in the J = 0 rotational ground state. We measure the intrinsic lifetime of the J = 1 rotational level to be 145 +/- 28 s.

  • 10.
    Stockett, Mark H.
    et al.
    Stockholm University, Faculty of Science, Department of Physics. Aarhus University, Denmark.
    Gatchell, Michael
    Stockholm University, Faculty of Science, Department of Physics.
    Chen, Tao
    Stockholm University, Faculty of Science, Department of Physics.
    de Ruette, Nathalie
    Stockholm University, Faculty of Science, Department of Physics.
    Giacomozzi, Linda
    Stockholm University, Faculty of Science, Department of Physics.
    Wolf, Michael
    Stockholm University, Faculty of Science, Department of Physics.
    Schmidt, Henning T.
    Stockholm University, Faculty of Science, Department of Physics.
    Zettergren, Henning
    Stockholm University, Faculty of Science, Department of Physics.
    Cederquist, Henrik
    Stockholm University, Faculty of Science, Department of Physics.
    Threshold Energies for Single-Carbon Knockout from Polycyclic Aromatic Hydrocarbons2015In: Journal of Physical Chemistry Letters, ISSN 1948-7185, E-ISSN 1948-7185, Vol. 6, no 22, p. 4504-4509Article in journal (Refereed)
    Abstract [en]

    We have measured absolute cross sections for ultrafast (femtosecond) single-carbon knockout from polycyclic aromatic hydrocarbon (PAR) cations as functions of He-PAR center-of-mass collision energy in the 10-200 eV range. Classical molecular dynamics (MD) simulations cover this range and extend up to 105 eV. The shapes of the knockout cross sections are well-described by a simple analytical expression yielding experimental and MD threshold energies of E-th(Exp) = 32.5 +/- 0.4 eV and E-th(MD) = 41.0 +/- 0.3 eV, respectively. These are the first measurements of knockout threshold energies for molecules isolated in vacuo. We further deduce semiempirical (SE) and MD displacement energies, i.e., the energy transfers to the PAH molecules at the threshold energies for knockout, of T-disp(SE) = 23.3 +/- 0.3 eV and T-disp(MD) = 27.0 +/- 0.3 eV. The semiempirical results compare favorably with measured displacement energies for graphene (T-disp = 23.6 eV).

  • 11.
    Stockett, Mark H.
    et al.
    Stockholm University, Faculty of Science, Department of Physics. Aarhus University, Denmark.
    Gatchell, Michael
    Stockholm University, Faculty of Science, Department of Physics.
    de Ruette, Nathalie
    Stockholm University, Faculty of Science, Department of Physics.
    Giacomozzi, Linda
    Stockholm University, Faculty of Science, Department of Physics.
    Chen, Tao
    Stockholm University, Faculty of Science, Department of Physics.
    Rousseau, P.
    Maclot, S.
    Chesnel, J. -Y.
    Adoui, L.
    Huber, B. A.
    Berzins, U.
    Schmidt, Henning T.
    Stockholm University, Faculty of Science, Department of Physics.
    Zettergren, Henning
    Stockholm University, Faculty of Science, Department of Physics.
    Cederquist, Henrik
    Stockholm University, Faculty of Science, Department of Physics.
    Isomer effects in fragmentation of Polycyclic Aromatic Hydrocarbons2015In: International Journal of Mass Spectrometry, ISSN 1387-3806, E-ISSN 1873-2798, Vol. 392, p. 58-62Article in journal (Refereed)
    Abstract [en]

    We have observed significant differences in the fragmentation patterns of isomeric Polycyclic Aromatic Hydrocarbon (PAH) cations following collisions with helium atoms at center-of-mass energies around 100 eV. This is in contrast to the situation at other collision energies or in photo-absorption experiments where isomeric effects are very weak and where the lowest-energy dissociation channels (H- and C2H2-loss) domihate in statistical fragmentation processes. In the 100 eV range, non-statistical fragmentation also competes and is uniquely linked to losses of single carbon atoms (CHx-losses). We find that such CHx-losses are correlated with the ionic ground state energy within a given group of isomers. We present results for three C16H10+, four C18H12+ and five C20H12+ isomers colliding with He.

  • 12.
    Wolf, Michael
    et al.
    Stockholm University, Faculty of Science, Department of Physics.
    Giacomozzi, Linda
    Stockholm University, Faculty of Science, Department of Physics.
    Gatchell, Michael
    Stockholm University, Faculty of Science, Department of Physics.
    de Ruette, Nathalie
    Stockholm University, Faculty of Science, Department of Physics.
    Stockett, H. Mark
    Stockholm University, Faculty of Science, Department of Physics. Aarhus University, Denmark.
    Schmidt, T. Henning
    Stockholm University, Faculty of Science, Department of Physics.
    Cederquist, Henrik
    Stockholm University, Faculty of Science, Department of Physics.
    Zettergren, Henning
    Stockholm University, Faculty of Science, Department of Physics.
    Hydrogenated pyrene: Statistical single-carbon loss below the knockout threshold2016In: European Physical Journal D: Atomic, Molecular and Optical Physics, ISSN 1434-6060, E-ISSN 1434-6079, Vol. 70, no 4, article id 85Article in journal (Refereed)
    Abstract [en]

    An ongoing discussion revolves around the question of what effect hydrogenation has oncarbon backbone fragmentation in polycyclic aromatic hydrocarbons (PAHs). In order to shedmore light on this issue, we have measured absolute single carbon loss cross sections incollisions between native or hydrogenated pyrene cations (C16H+ 10+m , m = 0, 6, 16) and He as functions of center-of-massenergies down to 20 eV. Classical molecular dynamics (MD) simulations give further insightinto energy transfer processes and also yield m-dependent threshold energies for prompt(femtoseconds) carbon knockout. Such fast, non-statistical fragmentation processesdominate CH x -loss for native pyrene (m = 0), while much slowerstatistical fragmentation processes contribute significantly to single-carbon loss for thehydrogenated molecules (m =6 and m =16). The latter is shown by measurements of large CH x -loss crosssections far below the MD knockout thresholds for C16H+ 16 and C16H+ 26.

1 - 12 of 12
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf