Change search
Refine search result
1 - 10 of 10
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Fu, Ping
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Paleoglaciology of Shaluli Shan, southeastern Tibetan Plateau2013Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Reconstructing the paleoglaciation of the Tibetan Plateau is critical to understanding linkages between regional climate changes and global climate changes. This work focuses on the paleoglaciology of the Shaluli Shan Mountain area in the southeastern Tibetan Plateau. Multiple approaches, including geomorphological mapping, field assessment, cosmogenic nuclide exposure dating, and numerical glacier modeling are employed to reconstruct the extent, timing, erosion patterns, basal thermal regime, and ice dynamic of past glaciation of the Shaluli Shan. Detailed geomorphological mapping and analysis provide evidence for multiple past glaciations involving valley glaciers and small ice fields in the high mountains and ice caps on low-relief plateaus at intermediate elevations. Ice cap glaciation on the low-relief Haizishan Plateau produced glacial landforms in a zonal pattern, suggesting that the Haizishan paleo-ice cap had a complex basal thermal regime. 10Be exposure ages for glacial erratics and till depth profiles constrain three major glaciations in the Shaluli Shan: pre global Last Glacial Maximum (gLGM) (with minimum ages at 102.3 ± 10.0 – 183.6 ± 17.0 ka), gLGM (21.6 ± 2.0 ka), and Late Glacial (13.0 ± 1.2 – 17.1 ± 1.6 ka) . Extensive glacier expansion in the Shaluli Shan during Marine Isotope Stage (MIS) 6 and gLGM, and the lack of evidence of glaciation during MIS 4 and 3, suggests that the extent and timing of glaciations in the southeastern Tibetan Plateau are synchronized with northern Hemisphere climate changes. The glacial erosion depth constraints based on 10Be and 26Al concentrations in bedrock, glacial erratics, and till depth profiles indicate a complex glacial erosion pattern during the gLGM and Late Glacial, consistent with the hypothesis of complex basal thermal regime of Haizishan paleo-ice cap. Numerical model simulations of a Haizishan ice cap also predict a complex basal thermal regime and indicate high sensitivity of the ice cap to past temperature.

     

  • 2.
    Fu, Ping
    et al.
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Harbor, Jonathan M.
    Purdue University.
    Stroeven, Arjen P.
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Hättestrand, Clas
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Heyman, Jakob
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Zhou, Li Ping
    Peking University.
    Glacial geomorphology and paleoglaciation patterns in Shaluli Shan, the southeastern Tibetan Plateau — Evidence for polythermal ice cap glaciation2013In: Geomorphology, ISSN 0169-555X, E-ISSN 1872-695X, Vol. 182, p. 66-78Article in journal (Refereed)
    Abstract [en]

    Glacial geomorphological mapping from satellite imagery and field investigations provide the basis for a reconstructionof the extent and style of glaciation of the Shaluli Shan, a mountainous area on the southeastern TibetanPlateau. Our studies provide evidence for multiple glaciations, including the formation of regional ice caps andvalley glaciers. The low-relief topographywithin the Shaluli Shan, the Haizishan Plateau, and Xinlong Plateau displayzonal distributions of glacial landforms that is similar to those imprinted by Northern Hemisphere ice sheetsduring the last glacial cycle, indicating the presence of regional, polythermal ice caps. Abundant alpine glaciallandforms occur on high mountain ranges. The pattern of glaciated valleys centered on high mountain rangesand ice-scoured low relief granite plateaus with distinctive patterns of glacial lineations indicate a strong topographiccontrol on erosional and depositional patterns by glaciers and ice caps. In contrast to the Shaluli Shan,areas farther north and west on the Tibetan Plateau have not yielded similar landform evidence for regionalice capswith complex thermal basal conditions. Such spatial differences across the Tibetan Plateau are the resultof variations in climate and topography that control the extent and style of glaciations and that reinforce the importanceof detailed geomorphological mapping for understanding paleoclimate variations and characteristics offormer glaciations.

  • 3.
    Fu, Ping
    et al.
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology. Purdue University.
    Heyman, Jakob
    Hättestrand, Clas
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Stroeven, Arjen
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Harbor, Jonathan M.
    Glacial geomorphology of the Shaluli Shan area, southeastern Tibetan Plateau2012In: Journal of Maps, ISSN 1744-5647, E-ISSN 1744-5647, Vol. 8, no 1, p. 48-55Article in journal (Refereed)
    Abstract [en]

    We present a glacial geomorphological map covering 1.04 x 10(5) km(2) of the Shaluli Shan (Shan Mountain), southeastern Tibetan Plateau. Using a 90 m digital elevation model from the Shuttle Radar Topography Mission and 15/30 m Landsat Enhanced Thematic Mapper Plus satellite imagery, we have mapped glacial valleys, marginal moraines, hummocky terrain, glacial lineations and ice-scoured terrain. Lineations and scoured areas largely overlap on the low relief granite plateau of the Shaluli Shan and relate to former ice cap glaciation. These landscape features indicate that past ice cap glaciation included basal sliding conditions, and thus warm-based ice. Glacial valleys and marginal moraines are dominant landforms in the high mountain ranges of Shaluli Shan and occur on and fringing the plateau. This glacial geomorphological map forms the basis for paleoglaciological reconstructions of this southeastern Tibetan Plateau region and indicates the former presence of multiple glaciations involving valley glaciers and ice caps. The map is presented at a scale of 1:630,000.

  • 4.
    Fu, Ping
    et al.
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Heyman, Jakob
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Stroeven, Arjen P
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Harbor, Jon
    Department of Earth and Atmospheric Sciences, Purdue University, USA.
    Zhou, Liping
    Department of Urban and Environmental Sciences, Peking University, China.
    Hättestrand, Clas
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Glacial geomorphology of the Haizi Shan area, SE Tibetan Plateau2009Conference paper (Refereed)
    Abstract [en]

    The Haizi Shan area on the SE Tibetan Plateau is characterized by an elliptical relatively low relief plateau surrounded by steeper fluvial valleys. Glacial deposits and erosive imprints are widely distributed indicating former glacier expansions of varying extents in a presently ice-free area. We have initiated a project on the glacial history of the Haizi Shan area and we here present some initial mapping results. Glacial landforms have been mapped based on remote sensing (SRTM digital elevation model, Landsat ETM+ satellite imagery, and Google Earth) and one short reconnaissance field season. Well-preserved moraines from different stages and distinctive U-shaped glacial valleys are abundant (Fig. 1). In the Daocheng Valley southwest of the Haizi Shan Plateau we have mapped glacial deposits in the form of discontinued moraine ridges at Sangdui village. This line, which might be the maximum Quaternary glacial extent, can be traced for several kilometers along the western side of the valley as dispersed erratic boulders. This implies that during the maximum glaciation, ice from the Haizi Shan Plateau crossed the valley and reached up to the piedmont of the opposite mountain. Smaller in extent than the former, numerous large moraine ridges reach down towards valley floors along the edges of the Haizi Shan Plateau. In several locations these valleys lack cirque heads indicating former outlet glaciers emanating from a Haizi Shan ice cap. We will use TCN and OSL dates of samples collected from numerous ice marginal moraines of the Haizi Shan Plateau to determine a glacial chronology. Hence, using remote sensing, field investigations and numerical dating techniques for the Haizi Shan we aim to advance our knowledge on Quaternary glaciations of the SE Tibetan Plateau.

  • 5.
    Fu, Ping
    et al.
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Stroeven, Arjen P.
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Harbor, Jonathan M.
    Purdue University.
    Hättestrand, Clas
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Heyman, Jakob
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Caffee, Marc W.
    Purdue University.
    Complex erosion patterns produced by the Haizishan paleo-ice capManuscript (preprint) (Other academic)
    Abstract [en]

    Determining patterns and rates of glacial erosion is important in understanding landscape evolution, topographic relief production, geochemical cycles, climate change, and glacial thermal regimes of paleo glaciers and ice sheets. Combining in situ $^{10}$Be and $^{26}$Al apparent exposure age dating, geomorphological mapping, and field investigations, we examine glacial erosion patterns of the almost 4 000 km$^2$ Haizishan paleo-ice cap on the southeastern Tibetan Plateau. Our results show that ice caps developed several times on the low relief Haizishan Plateau and produced a zonal pattern of landscape modification. In locations where apparent exposure ages on bedrock are consistent with last deglaciation, complete resetting of the cosmogenic exposure age clock indicates that more than 2 m of glacial erosion occurred during the last major glaciation (which in this area correlates with the global Last Glacial Maximum (gLGM)).  However, older apparent exposure ages on bedrock and in saprolites profiles in areas known to have been covered by the paleo ice cap during gLGM indicate inheritance and thus limited or no erosion by the last ice cap in several areas, including the central zone of the paleo ice cap and at the head of an outlet glacier. Similarly, cosmogenic radionuclide depth profiles in saprolites show erosion of $>$2 m in an outlet valley bottom and in the mountains that make up the northern border of the paleo ice cap, while samples from saprolites in areas of otherwise scoured terrain have a large nuclide inheritance indicating limited erosion. As patterns of glacial erosion intensity are largely driven by basal thermal regime, our results are consistent with a hypothesis of complex thermal regimes for the paleo Haizishan ice cap during gLGM that was proposed previously on the basis of landform patterns. Future work, including glaciological modeling, is required to fully understand the implications and mechanisms of the complex thermal regime of this paleo ice cap.

  • 6.
    Fu, Ping
    et al.
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology. Purdue University.
    Stroeven, Arjen P.
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Harbor, Jonathan M.
    Hättestrand, Clas
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Heyman, Jakob
    Caffee, Marc W.
    Zhou, Liping
    Paleoglaciation of Shaluli Shan, southeastern Tibetan Plateau2013In: Quaternary Science Reviews, ISSN 0277-3791, E-ISSN 1873-457X, Vol. 64, p. 121-135Article in journal (Refereed)
    Abstract [en]

    Reconstructing the paleoglaciation of the Tibetan Plateau is critical to understanding linkages between regional climate changes and global climate changes, and here we focus on the glacial history of the Shaluli Shan, an area of the southeastern Tibetan Plateau that receives much of its precipitation from monsoon flow. Based on field investigation, geomorphological mapping, and Be-10 exposure dating of moraines, we identify glacial deposits from the Late Glacial, with minimum ages at 13.0 +/- 1.2 -17.1 +/- 1.6 ka, global Last Glacial Maximum (gLGM) at 21.6 +/- 2.0 ka, and pre-gLGM at 102.3 +/- 10.0-183.6 +/- 17.0 ka. These ages are consistent with and significantly extend the known range from most prior chronological work using terrestrial cosmogenic nuclides in this area, and include a set of dates for the Kuzhaori moraine that raise questions about prior chronologies based on the electron spin resonance technique. Ice caps about 4000 km(2) in size covered the Haizishan Plateau and the Xinlong Plateau during the global LGM, with large glaciers extending far down outlet valleys. The presence of ice cap glaciation, here, contrasts strongly to glaciation elsewhere in the Shaluli Shan and more central regions of the Tibetan Plateau where ice expansion remained constricted to valleys. This work provides important insights into the paleoclimate pattern and monsoon evolution of the Tibetan Plateau over past glacial cycles and indicates that the Shaluli Shan has a glacial chronology more consistent with the Northern Hemisphere paleo-ice sheets than other areas of the Tibetan Plateau.

  • 7.
    Harbor, Jon
    et al.
    Department of Earth and Atmospheric Sciences, Purdue University.
    Fu, Ping
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology (INK).
    Heyman, Jakob
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology (INK).
    Stroeven, Arjen P
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology (INK).
    Hättestrand, Clas
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology (INK).
    Zhou, Liping
    Department of Geography, Peking University.
    Glacial Geomorphology of the Haizi Shan area, SE Tibetan Plateau2010Conference paper (Refereed)
    Abstract [en]

    The Haizi Shan area on the SE Tibetan Plateau is characterized by a relatively low relief plateau surrounded by steeper fluvial valleys. Glacial deposits and erosive imprints are widely distributed indicating former glacier expansions of varying extents in a presently ice-free area. Glacial landforms have been mapped using remote sensing (SRTM digital elevation model, Landsat ETM+ satellite imagery, and Google Earth) and field reconnaissance. Well-preserved moraines from different stages and distinctive U-shaped glacial valleys are abundant. In the Daocheng Valley southwest of the Haizi Shan Plateau we have mapped glacial deposits which likely reflect the maximum Quaternary glacial extent for several kilometers along the western side of the valley. During the maximum glaciation, we infer that ice from the Haizi Shan Plateau crossed the valley and extended in to tributary valleys. Numerous large moraine ridges also reach down towards valley floors along the edges of the Haizi Shan Plateau. In several locations these valleys lack cirque heads indicating former outlet glaciers emanating from a Haizi Shan ice cap. In ongoing work we are using TCN and OSL to determine a glacial chronology for this area and advance our knowledge of Quaternary glaciations of the SE Tibetan Plateau.

  • 8.
    Heyman, Jakob
    et al.
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Stroeven, Arjen P
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Caffee, Marc W
    Department of Physics/Purdue Rare Isotope Measurement Laboratory, Purdue University, USA.
    Li, Yingkui
    Department of Geography, University of Tennessee, USA.
    Zhou, Liping
    Department of Urban and Environmental Sciences, Peking University, China.
    Liu, Gengnian
    Department of Urban and Environmental Sciences, Peking University, China.
    Hättestrand, Clas
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Alexanderson, Helena
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Fu, Ping
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Harbor, Jon
    Department of Earth and Atmospheric Sciences, Purdue University, USA.
    An evaluation of multiple working hypotheses to explain cosmogenic exposure age data from glacial deposits in the Bayan Har Shan, NE Tibetan Plateau2009In: Proceedings, 2009Conference paper (Refereed)
    Abstract [en]

    Many questions remain unanswered regarding the Quaternary glaciations of the Tibetan Plateau. We have used terrestrial cosmogenic nuclide (TCN) exposure age dating of glacial deposits to examine the style, extent, and timing of past glaciations of the Bayan Har Shan, a mountain region on the northeastern Tibetan Plateau. This area lies within a transition zone between the dry interior of the Tibetan Plateau and the wetter eastern margin affected by the Asian monsoon. Bayan Har Shan has many glacial landforms and deposits that provide evidence for former glaciation ranging from cirque and valley glaciers to ice-fields and ice caps.

    In an attempt to constrain the timing of glaciations in Bayan Har Shan, we have performed TCN exposure dating on 65 samples in central Bayan Har Shan from glacial deposits. boulders (39 samples), on surface pebbles/cobbles (12 samples), and on pebbles in sediment depth profiles (14 samples from four profiles) allow us to examine the timing and extent of glaciations in this area. As is often the case, there are some challenges in interpreting the range of TCN apparent exposure ages that is found in data from several samples and sample types on a single deposit and from samples taken at various sites. Thus we evaluate multiple working hypotheses to explain apparent exposure ages on glacial deposits, which in this case range from 3 ka to 129 ka. We consider three different hypotheses; 1) some samples have erroneously old exposure ages due to inheritance, 2) samples have been preserved under cold-based, non-erosive ice, and 3) samples have experienced only post-glacial shielding. Only when we adopt a hypothesis that assumes no prior exposure, and thus that maximum apparent exposure ages constrain the minimum age of formation of a feature (working hypotheses 3), do we find broad consistency between apparent exposure ages from different sample types (erratic boulders, surface pebbles/cobbles and pebbles from depth profiles). This leads to the conclusion that all of the sites of former glaciations we examined are at least 50ka in age, and that there has been no large-scale expansion of glaciers in the central Bayan Har Shan over the last 50ka.

  • 9.
    Heyman, Jakob
    et al.
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology (INK).
    Stroeven, Arjen P
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology (INK).
    Hättestrand, Clas
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology (INK).
    Alexanderson, Helena
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology (INK).
    Caffee, Marc W
    Department of Physics, PRIME Lab, Purdue University.
    Fu, Ping
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology (INK).
    Harbor, Jon
    Department of Earth And Atmospheric Sciences, Purdue University.
    Hubbard, Alun
    Institute of Geography and Earth Sciences, Aberystwyth University.
    Li, Yingkui
    Department of Geography, University of Tennessee.
    Zhou, Liping
    Department of Geography, Peking University.
    LGM Tibetan Plateau glaciers were not much larger than today2010In: Geophysical Research Abstracts, 2010Conference paper (Refereed)
    Abstract [en]

    The Tibetan Plateau is the largest and highest elevated area on Earth with consequential impacts on regional (monsoon development) and global (CO2 sequestering) climate patterns and evolution, and with its glaciers providing meltwater for some of the largest rivers of the world. The glacial history of the Tibetan Plateau is dominantly characterized by glaciers and ice caps centered on elevated mountain regions of the plateau, as evidenced by an extensive glacial geological record. Here we present the outcome of a five year project aiming towards a palaeoglaciological reconstruction for the Bayan Har Shan region of the northeastern Tibetan Plateau. We have used remote sensing, field studies and 10Be exposure ages towards a robust reconstruction of former glaciation. Glacial landforms and sediments in Bayan Har Shan, distributed around elevated mountain areas, indicate a maximum Quaternary glaciation significantly larger than today. We have dated 40 boulders, 12 surface pebbles samples, and 15 depth profile samples (in 4 depth profiles) from 15 sites (mainly moraine ridges) using 10Be exposure dating. Our boulder and pebble exposure ages range from 3 ka to 128 ka with large age spreads within populations of individual sites. Based on the premise that cosmogenic age spreads within populations are caused by post-depositional shielding which yields exposure ages younger than deglaciation ages (see Heyman et al. Abstract/Poster in session CL4.7/GM2.4/SSP2.5/SSP3.9: EGU2010-14159-1) and based on the exposure ages of the multiple sample types, all dated glacial deposits pre-date the global Last Glacial Maximum (LGM). Our results further indicate that even the innermost and highest of the dated moraines, formed by glaciers <10 km long, have minimum deglaciation ages of 45 ka. These results agree well with those sites on the Tibetan Plateau where samples close outside present-day glacier margins have yielded exposure ages significantly older than the LGM. In fact, for sites where exposure age studies have been performed on the Tibetan Plateau, it is a rule rather than an exception with pre-LGM exposure ages close outside present-day glacier margins. This indicates that during the LGM, when large ice sheets covered North America and northern Europe, glaciers on the northeastern Tibetan Plateau, and perhaps the plateau at large, did not grow much larger than today.

    To explore the climate implications of restricted Tibetan Plateau LGM glaciers, we employ a high-resolution 3D glacier model forced with static climate perturbations of the present-day climate (WorldClim data:http://www.worldclim.org/). Allowing glaciers to grow and expand to but not exceed well-dated moraines enables us to derive and present climate constraints for the Tibetan Plateau during the LGM.

  • 10.
    Heyman, Jakob
    et al.
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Stroeven, Arjen P
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Hättestrand, Clas
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Harbor, Jon
    Department of Earth and Atmospheric Sciences, Purdue University, USA.
    Caffee, Marc W
    Department of Physics/Purdue Rare Isotope Measurement Laboratory, Purdue University, USA.
    Alexanderson, Helena
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Li, Yingkui
    Department of Geography, University of Tennessee, USA.
    Zhou, Liping
    Department of Urban and Environmental Sciences, Peking University, China.
    Liu, Gengnian
    Department of Urban and Environmental Sciences, Peking University, China.
    Fu, Ping
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    A paleoglaciological reconstruction for Bayan Har Shan, NE Tibetan Plateau2009Conference paper (Refereed)
    Abstract [en]

    The paleoglaciology of the Tibetan Plateau has remained elusive because extensive areas still lack detailed scrutiny. We here present a paleoglaciological reconstruction for the Bayan Har Shan region, NE Tibetan Plateau, which could serve as a working model to investigate other poorly investigated regions. The reconstruction is primarily based on three methods for revealing the glacial history; 1) remote sensing (geomorphology), 2) field studies (stratigraphy), and 3) numerical dating techniques. Remote sensing (SRTM elevation data, Landsat ETM+ satellite imagery and Google Earth) of a 136 500 km2 area reveals an abundance of glacial landforms in the highest mountain areas and an absence of glacial landforms on intervening plateau surfaces. Stratigraphical data collected during three field seasons supplement the picture emerging from remote sensing. Glacial deposits (including erratic boulders and till) occur in the elevated mountain areas but are absent on the intervening plateau areas. Marginal moraines in central Bayan Har can be grouped to represent at least three separate glacial extents and scattered observations of glacial deposits indicate the presence of a fourth (and maximum) glacial extent. To tie the glacial geological record to a chronology we have employed terrestrial cosmogenic nuclide (TCN) exposure and optically stimulated luminescence (OSL) dating. Beryllium apparent exposure ages of 65 glacial boulders, surface cobbles/pebbles and depth profile samples yield minimum ages for the three youngest glacial extents of 40-65 ka, 60-100 ka, and 95-165 ka (with the wide age ranges due to TCN dating uncertainties). A preliminary OSL age of c. 160 ka from glacial sediments of the oldest of these glacial extents supports our interpretation based on TCN dating.

    The glacial extent presented here is more restricted than most previous reconstructions, most notably with very restricted glaciers over at least the last 40-65 ka. These results indicate that while continental-scale ice sheets evolved and disappeared in North America and Eurasia over the last half of the last glacial cycle, the NE corner of the Tibetan Plateau experienced relatively minor glacial fluctuations.

1 - 10 of 10
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf