Change search
Refine search result
1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Auffret, Alistair G.
    et al.
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Schmucki, Reto
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Reimark, Josefin
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Cousins, Sara A. O.
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Grazing networks provide useful functional connectivity for plants in fragmented systems2012In: Journal of Vegetation Science, ISSN 1100-9233, E-ISSN 1654-1103, Vol. 23, no 5, p. 970-977Article in journal (Refereed)
    Abstract [en]

    Question To what extent does the movement of animals between fragmented habitat patches provide functional connectivity via endozoochorous seed dispersal? Location The Stockholm archipelago, Sweden. Methods We followed all movements of livestock between islands during one grazing season. After each movement, manure was collected and its seed content assessed through seedling emergence. Seedling data were then compared to vegetation surveys from the grazed islands with regard to functional traits. Results Light- and nitrogen-demanding locally abundant species, and those with relatively small and persistent seeds were more likely to be moved between islands. For quantitative traits, only a subset of the available trait ranges were dispersed, with extreme values left behind. Species apparently specialized to other means of dispersal emerged from the manure samples. Neither dispersed traits nor seed density changed with timing of movement, but seed richness and diversity both increased throughout the season. The subsets of endozoochorously-dispersed species in the established vegetation were more similar than non-dispersed subsets between islands linked by livestock. Conclusions Grazing networks contribute to the connectivity of the core species in the system, and could provide useful tools for grassland management in fragmented landscapes.

  • 2.
    Auffret, Alistair
    et al.
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Schmucki, Reto
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Reimark, Josefin
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Cousins, Sara
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    A trait-based analysis of the functional connectivity provided by mobile grazers in an island grazing system2011In: 8th IALE World Congress, Beijing 18-21 August 2011: Landscape Ecology for Sustainable Environment and Culture, 2011Conference paper (Refereed)
    Abstract [en]

    The area of species-rich semi-natural grassland in Europe has declined dramatically duringthe past two centuries. The Stockholm archipelago was once a vibrant agricultural landscape,with the movement of livestock between islands forming an extensive grazing network. Likein much of Europe, agricultural industrialisation led to most grasslands either beingabandoned to become scrub or woodland, or converted to arable fields and subsequentlyreverted to relatively species-poor pasture. The restoration of these habitats to species-richgrassland communities has been a major goal, but restoration success has often been found tobe seed or dispersal limited. In island systems, the hostility of the matrix exacerbates thisproblem, but also provides an ideal study system for investigating the dispersal of plantspecies between fragmented habitats. One management strategy has been to restart smallgrazing networks to improve connectivity in the landscape, and in the summer of 2009, wecollected fresh manure samples from grazing cattle and sheep after movement by boatbetween islands. These were then grown in a greenhouse, and 5915 seedlings of 74 speciesemerged from the 18 samples, corresponding to 18 movements within the grazing network.Comparing the species dispersed with the vegetation communities in the donor and receiverislands, we assess the subset of species and species traits which were transported. We can thusexamine the extent of the functional connectivity provided by these mobile grazers, and theeffect that timing of movement has on the range of species and traits dispersed.

  • 3.
    Rader, Romina
    et al.
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology. University of New England, Australia.
    Birkhofer, Klaus
    Schmucki, Reto
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Smith, Henrik G.
    Stjernman, Martin
    Lindborg, Regina
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Organic farming and heterogeneous landscapes positively affect different measures of plant diversity2014In: Journal of Applied Ecology, ISSN 0021-8901, E-ISSN 1365-2664, Vol. 51, no 6, p. 1544-1553Article in journal (Refereed)
    Abstract [en]

    Increasing landscape heterogeneity and organic farming practices are known to enhance species richness in agroecosystems. However, little is known about the consequences of these management options on other biodiversity components such as community composition, phylogenetic structure and functional diversity which may be more closely linked to ecosystem functioning. We surveyed semi-natural plant communities within the uncultivated field margins of 18 arable farms in Skane, south Sweden. We investigated how taxonomic, phylogenetic and functional diversity responds to landscape heterogeneity (presence of semi-natural habitat) and farm management intensity (organic vs. conventional farming). Plant species richness and functional diversity metrics all responded positively to landscape heterogeneity, with the strongest effect occurring on conventional farms. Community composition differed with farm management, and mean phylogenetic relatedness, an indicator of phylogenetic structure, was significantly higher on the field margins of organic compared to conventional farms. Individual plant functional groups themselves responded in unique ways to land management and landscape heterogeneity.Synthesis and applications. Management strategies that promote the conservation of heterogeneous landscapes (i.e. a higher proportion of semi-natural habitats) and organic farm management practices are important for maintaining plant phylogenetic, functional and taxonomic diversity in agroecosystems. Accommodating various forms of diversity is important to ensure that ecosystems have the greatest possible array of species ecologies'. Such measures will help to improve the capacity of these ecosystems to provide multiple ecosystem functions, including the sustaining and regulating services of benefit to people. Management strategies that promote the conservation of heterogeneous landscapes (i.e. a higher proportion of semi-natural habitats) and organic farm management practices are important for maintaining plant phylogenetic, functional and taxonomic diversity in agroecosystems. Accommodating various forms of diversity is important to ensure that ecosystems have the greatest possible array of species ecologies'. Such measures will help to improve the capacity of these ecosystems to provide multiple ecosystem functions, including the sustaining and regulating services of benefit to people.

  • 4.
    Schmucki, Reto
    et al.
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Reimark, Josefin
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Cousins, Sara A.O.
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Species and functional diversity in semi-natural grasslands: When local management and landscape context matter2010In: / [ed] ECOLOGICAL SOCIETY OF GERMANY, AUSTRIA AND SWITZERLAND, 2010, p. 129-Conference paper (Refereed)
    Abstract [en]

    Change in land-use pattern is identified as the main cause of the current decline in biodiversity. While the influence of human activities on species distribution is noticeable in most ecosystems, historic grassland management has resulted in habitats with exceptionally high plant diversity. Over the last century, however, the extent of these semi-natural grasslands has declined dramatically as a result of conversion and intensification of land-use and abandonment of traditional practices. In addition to the effects of habitat loss on plant diversity, species assemblage in remnant grasslands are expected experience further decline, as extinction is likely to exceed colonization in isolated habitats. This study focuses on the effect of landscape context on species diversity and functional response in semi-natural grasslands. We sampled 50 grassland communities distributed over 22 islands in the Stockholm archipelagos. Using 25 pairs of adjacent habitats, we modeled the effect of land-use on species diversity in grassland communities. Furthermore, we examined the functional response of species assemblages. While our data provide no clear evidences of extinction debt in remnant grasslands, grazing affect small-scale plant diversity. At the habitat-level, however, variation in species diversity is best explained by today’s landscape context, suggesting that other land-use can provide refuges for grassland species and increase connectivity between remnant habitats.

  • 5.
    Schmucki, Reto
    et al.
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Reimark, Josefin
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Lindborg, Regina
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Cousins, Sara A. O.
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Landscape context and management regime structure plant diversity in grassland communities2012In: Journal of Ecology, ISSN 0022-0477, E-ISSN 1365-2745, Vol. 100, no 5, p. 1164-1173Article in journal (Refereed)
    Abstract [en]

    1. Theoretical models show that environmental heterogeneity and dispersal are major determinants of species diversity at multiple scales, yet there are few studies from real landscapes that adequately integrate variation in the surrounding matrix. Understanding how landscape context and management influence species composition and diversity patterns across habitats and scales is an important goal in ecology with relevance for both management and conservation. 2. We used a system of 25 landscapes distributed across islands in the Baltic Sea to investigate the effect of current and historical landscape context and management on plant diversity and composition in grassland communities. Plant diversity was measured at three hierarchical scales (1 m2, habitat, landscape) in grazed fields and adjacent wood pastures to calculate a-, beta- and ?-diversity values across habitats and scales. 3. Structural equation modelling was used to model and quantify the effects of landscape context on species diversity and spatial turnover, and constraint analysis of principal coordinates to relate variation in species composition to landscape variables. 4. Proportion of open land, spacing and grazing intensity positively affected species diversity in both habitats, whereas the effect of historical landscape context was only significant in open fields. Plant diversity in field pastures was mainly determined by the number of species found at a small scale, while both local species density and spatial turnover were key determinants of diversity in wood pastures. 5. Habitat proximity influenced species composition as compositional similarity was higher between adjacent field and wood pastures compared to randomly paired habitats. Although increasing flow of propagules from adjacent patches can promote local coexistence, dispersal can result in spatial homogenization. 6. Synthesis. Plant diversity in grassland communities is substantially influenced by species occurring in adjacent habitats. While the effect of landscape context and management on small-scale diversity was consistent across habitats, the effect on spatial turnover was habitat specific. Our study shows that plant diversity is structured through the interplay between local and landscape processes and highlights that plant communities in specific habitat types cannot be considered in isolation from the surrounding landscape matrix.

1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf