Change search
Refine search result
1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Agrawal, Santosh
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Lenormand, Maud
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Martín-Matute, Belén
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Selective Alkylation of (Hetero)Aromatic Amines with Alcohols Catalyzed by a Ruthenium Pincer Complex2012In: Organic Letters, ISSN 1523-7060, E-ISSN 1523-7052, Vol. 14, no 6, p. 1456-1459Article in journal (Refereed)
    Abstract [en]

    A readily available pincer ruthenium(II) complex catalyzes the selective monoalkylation of (hetero)aromatic amines with a wide range of primary alcohols (including pyridine-, furan-, and thiophene-substituted alcohols) with high efficiency when used in low catalyst loadings (1 mol %). Tertiary amine formation via polyalkylation does not occur, making this ruthenium system an excellent catalyst for the synthesis of sec-amines.

    Download full text (pdf)
    fulltext
  • 2.
    Agrawal, Santosh
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Martínez-Castro, Elisa
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Marcos, Rocio
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Martín-Matute, Belén
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Readily Available Ruthenium Complex for Efficient Dynamic Kinetic Resolution of Aromatic alpha-Hydroxy Ketones2014In: Organic Letters, ISSN 1523-7060, E-ISSN 1523-7052, Vol. 16, no 8, p. 2256-2259Article in journal (Refereed)
    Abstract [en]

    A ruthenium complex formed from commercially available [Ru(p-cymene)Cl-2](2) and 1,4-bis(diphenylphosphino)butane catalyzes the racemization of aromatic alpha-hydroxy ketones very efficiently at room temperature. The racemization is fully compatible with a kinetic resolution catalyzed by a lipase from Pseudomonas stutzeri. This is the first example of dynamic kinetic resolution of alpha-hydroxy ketones at ambient temperature in which the metal and enzyme catalysts work in concert in one pot at room temperature to give quantitative yields of esters of alpha-hydroxy ketones with very high enantioselectivity.

    Download full text (pdf)
    fulltext
  • 3.
    Ahlsten, Nanna
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bartoszewicz, Agnieszka
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Agrawal, Santosh
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Martin-Matute, Belen
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    A facile synthesis of α-fluoro ketones catalyzed by [Cp*IrCl2](2)2011In: Synthesis (Stuttgart), ISSN 0039-7881, E-ISSN 1437-210X, no 16, p. 2600-2608Article in journal (Refereed)
    Abstract [en]

    Allylic alcohols are isomerized into enolates (enols) by [Cp*IrCl2]2. The enolates react with Selectfluor present in the reaction media. This method produces α-fluoro ketones as single constitutional isomers in high yields.

  • 4.
    Carson, Fabian
    et al.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Agrawal, Santosh
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Gustafsson, Mikaela
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Bartoszewicz, Agnieszka
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Moraga, Francisca
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Zou, Xiaodong
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Martín-Matute, Belén
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Ruthenium Complexation in an Aluminium Metal-Organic Framework and its Application in Alcohol Oxidation Catalysis2012In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 18, no 48, p. 15337-15344Article, review/survey (Refereed)
    Abstract [en]

    A ruthenium trichloride complex has been loaded into an aluminium metalorganic framework (MOF), MOF-253, by post-synthetic modification to give MOF-253-Ru. MOF-253 contains open bipyridine sites that are available to bind with the ruthenium complex. MOF-253-Ru was characterised by elemental analysis, N2 sorption and X-ray powder diffraction. This is the first time that a Ru complex has been coordinated to a MOF through post-synthetic modification and used as a heterogeneous catalyst. MOF-253-Ru catalysed the oxidation of primary and secondary alcohols, including allylic alcohols, with PhI(OAc)2 as the oxidant under very mild reaction conditions (ambient temperature to 40 degrees C). High conversions (up to >99%) were achieved in short reaction times (13 h) by using low catalyst loadings (0.5 mol% Ru). In addition, high selectivities (>90%) for aldehydes were obtained at room temperature. MOF-253-Ru can be recycled up to six times with only a moderate decrease in substrate conversion.

  • 5.
    Cumpstey, Ian
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Agrawal, Santosh
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Borbas, K. Eszter
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Martín-Matute, Belén
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Iridium-catalysed condensation of alcohols and amines as a method for aminosugar synthesis2011In: Chemical Communications, ISSN 1359-7345, E-ISSN 1364-548X, Vol. 47, no 27, p. 7827-7829Article in journal (Refereed)
    Abstract [en]

    Primary carbohydrate amines at primary and secondary carbons are alkylated by alcohols in the presence of [Cp*IrCl2]2. When primary carbohydrate alcohols are used as the coupling partners and in the presence of Cs2CO3, amine-linked pseudodisaccharides are obtained. Secondary carbohydrate alcohols are unaffected under these conditions, which allows regioselective reactions.

1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf