Change search
Refine search result
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Figueroa, Ricardo A.
    et al.
    Stockholm University, Faculty of Science, Department of Neurochemistry.
    Gudise, Santhosh
    Stockholm University, Faculty of Science, Department of Neurochemistry. Karolinska Institutet, Sweden.
    Hallberg, Einar
    Stockholm University, Faculty of Science, Department of Neurochemistry.
    Microtubule-associated nuclear envelope proteins in interphase and mitosis2011In: Biochemical Society Transactions, ISSN 0300-5127, E-ISSN 1470-8752, Vol. 39, p. 1786-1789Article in journal (Refereed)
    Abstract [en]

    The LINC (linker of nucleoskeleton and cytoskeleton) complex forms a transcisternal bridge across the NE (nuclear envelope) that connects the cytoskeleton with the nuclear interior. This enables some proteins of the NE to communicate with the centrosome and the microtubule cytoskeleton. The position of the centrosome relative to the NE is of vital importance for many cell functions, such as cell migration and division, and centrosomal dislocation is a frequent phenotype in laminopathic disorders. Also in mitosis, a small group of transmembrane NE proteins associate with microtubules when they concentrate in a specific membrane domain associated with the mitotic spindle. The present review discusses structural and functional aspects of microtubule association with NE proteins and how this association may be maintained over the cell cycle.

  • 2.
    Figueroa, Ricardo
    et al.
    Södertörn University, Sweden; Karolinska Institutet, Sweden.
    Gudise, Santhosh
    Södertörn University, Sweden; Karolinska Institutet, Sweden.
    Larsson, Veronica
    Stockholm University, Faculty of Science, Department of Neurochemistry.
    Hallberg, Einar
    Södertörn University, Sweden.
    A transmembrane inner nuclear membrane protein in the mitotic spindle2010In: Nucleus (Austin), ISSN 1949-1042, Vol. 1, no 3, p. 249-253Article in journal (Refereed)
    Abstract [en]

    We have recently characterized a novel transmembrane protein of the inner nuclear membrane of mammalian cells. The protein has two very interesting features. First, despite being an integral membrane protein it is able to concentrate in the membranes colocalizing with the mitotic spindle in metaphase and anaphase. Hence, the protein was named Samp1, Spindle associated membrane protein 1. Secondly, it displays a functional connection to centrosomes. This article discusses various aspects of Samp1 in relation to possible cellular function(s).

  • 3.
    Gudise, Santhosh
    et al.
    Stockholm University, Faculty of Science, Department of Neurochemistry. Karolinska Institute (NOVUM), Sweden.
    Figueroa, Ricardo A.
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics. Stockholm University, Faculty of Science, Department of Neurochemistry.
    Lindberg, Robert
    Stockholm University, Faculty of Science, Department of Neurochemistry. Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Larsson, Veronica
    Stockholm University, Faculty of Science, Department of Neurochemistry.
    Hallberg, Einar
    Stockholm University, Faculty of Science, Department of Neurochemistry.
    Samp1 is functionally associated with the LINC complex and A-type lamina networks2011In: Journal of Cell Science, ISSN 0021-9533, E-ISSN 1477-9137, Vol. 124, p. 2077-2085Article in journal (Refereed)
    Abstract [en]

    The transmembrane inner nuclear membrane (INM) protein Samp1 is required for anchoring centrosomes near the nuclei. Using high-resolution fluorescence microscopy we show that Samp1 is distributed in a distinct and characteristic pattern in the nuclear envelope (NE), where it partially colocalizes with the LINC complex protein Sun1. By studying the localization of Samp1 deletion mutants and fusion proteins, we conclude that the cysteine-rich N-terminal half of Samp1 is nucleoplasmically exposed and is responsible for targeting to the INM. It contains four conserved CxxC motifs with the potential to form zinc fingers. The distribution of cysteine-to-alanine substitution mutants, designed to prevent zinc finger formation, showed that NE localization of Samp1 depends on intact CxxC motifs. Overexpression of Samp1 zinc finger mutants produced an abnormal dominant phenotype characterized by disrupted organization of a selective subset NE proteins, including emerin, Sun1, endogenous Samp1 and, in some cases, lamin A/C, but not lamin B, Sun2 or nucleoporins. Silencing of Samp1 expression showed that emerin depends on Samp1 for its correct localization in the NE. Our results demonstrate that Samp1 is functionally associated with the LINC complex protein Sun1 and proteins of the A-type lamina network.

  • 4.
    Jafferali, Mohammed Hakim
    et al.
    Stockholm University, Faculty of Science, Department of Neurochemistry.
    Vijayaraghavan, Balaje
    Stockholm University, Faculty of Science, Department of Neurochemistry.
    Figueroa, Ricardo A.
    Stockholm University, Faculty of Science, Department of Neurochemistry.
    Crafoord, Ellinor
    Stockholm University, Faculty of Science, Department of Neurochemistry.
    Gudise, Santhosh
    Stockholm University, Faculty of Science, Department of Neurochemistry. Karolinska Institutet, Sweden.
    Larsson, Veronica J.
    Stockholm University, Faculty of Science, Department of Neurochemistry.
    Hallberg, Einar
    Stockholm University, Faculty of Science, Department of Neurochemistry.
    MCLIP, an effective method to detect interactions of transmembrane proteins of the nuclear envelope in live cells2014In: Biochimica et Biophysica Acta - Biomembranes, ISSN 0005-2736, E-ISSN 1879-2642, Vol. 1838, no 10, p. 2399-2403Article in journal (Refereed)
    Abstract [en]

    Investigating interactions of proteins in the nuclear envelope (NE) using co-immunoprecipitation (Co-IP) has previously been difficult or even impossible due to their inherent resistance to extraction. We have developed a novel method, MCLIP (Membrane protein Cross-Link ImmunoPrecipitation), which takes advantage of a cell permeable crosslinker to enable effective detection and analysis of specific interactions of NE proteins in live cells using Western blot. Using MCLIP we show that, in U2OS cells, the integral inner nuclear membrane protein Samp1 interacts with Lamin B1, the LINC (Linker of nucleoskeleton and cytoskeleton) complex protein, Sun1 and the soluble small GTPase Ran. The results show that the previously detected in vitro interaction between Samp1 and Emerin also takes place in live cells. In vitro pull down experiments show, that the nucleoplasmic domains of Samp1 and Emerin can bind directly to each other. We also, show that MCLIP is suitable to coprecipitate protein interactions in different stages of the cell cycle.

1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf