Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Dong, Xiaolin
    et al.
    Svantesson, Teodor
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Sholts, Sabrina B.
    Wallin, Cecilia
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Jarvet, Jüri
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics. The National Institute of Chemical Physics and Biophysics, Estonia.
    Gräslund, Astrid
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Wärmländer, Sebastian K. T. S.
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Copper ions induce dityrosine-linked dimers in human but not in murine islet amyloid polypeptide (IAPP/amylin)2019In: Biochemical and Biophysical Research Communications - BBRC, ISSN 0006-291X, E-ISSN 1090-2104, Vol. 510, no 4, p. 520-524Article in journal (Refereed)
    Abstract [en]

    Dysregulation and aggregation of the peptide hormone IAPP (islet amyloid polypeptide, a.k.a. amylin) into soluble oligomers that appear to be cell-toxic is a known aspect of diabetes mellitus (DM) Type 2 pathology. IAPP aggregation is influenced by several factors including interactions with metal ions such as Cu(II). Because Cu(II) ions are redox-active they may contribute to metal-catalyzed formation of oxidative tyrosyl radicals, which can generate dityrosine cross-links. Here, we show that such a process, which involves Cu(II) ions bound to the IAPP peptide together with H2O2, can induce formation of large amounts of IAPP dimers connected by covalent dityrosine cross-links. This cross-linking is less pronounced at low pH and for murine IAPP, likely due to less efficient Cu(II) binding. Whether IAPP can carry out its hormonal function as a cross-linked dimer is unknown. As dityrosine concentrations are higher in blood plasma of DM Type 2 patients - arguably due to disease-related oxidative stress - and as dimer formation is the first step in protein aggregation, generation of dityrosine-linked dimers may be an important factor in IAPP aggregation and thus relevant for DM Type 2 progression.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf