Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. O'Connell, Kyle A.
    et al.
    Di Santo, Valentina
    Stockholm University, Faculty of Science, Department of Zoology. Harvard University, Massachusetts.
    Maldonado, Jose
    Molina, Erika
    Fujita, Matthew K.
    A Tale of Two Skates: Comparative Phylogeography of North American Skate Species with Implications for Conservation2019In: Copeia, ISSN 0045-8511, E-ISSN 1938-5110, Vol. 107, no 2, p. 297-304Article in journal (Refereed)
    Abstract [en]

    Genomic data can provide novel insights into the natural history of oceanic species. These data can inform the management of vulnerable and slow-maturing species by estimating population structure, rates of migration, and the distribution of genetic diversity. In this study we focus on two protected elasmobranch species, the Winter Skate, Leucoraja ocellata, and the Little Skate, L. erinacea. We use genome-wide SNPs to estimate population structure, and quantify migration and genetic diversity among both species from four sampling localities across the Atlantic coast of North America. We find that species of Leucoraja are generally isolated by distance, although we infer some fine-scale population structure. Specifically, estimates of effective migration infer fine-scale population structure in L. ocellata between the northern sites of Georges Bank and the Mid-Atlantic sampling sites, whereas L. erinacea shows no evidence of population genetic structure in any analyses. We also found that genetic diversity is concentrated in the central sites of Georges Bank and the Mid-Atlantic Bight for L. ocellata, but is reduced at these two sites in L. erinacea, suggesting opposite distributions of genetic diversity between species. Thus, genomic data suggest that while species of Leucoraja lack discrete population structure, they likely employ only mid-range dispersal. These findings correspond to ecological studies that have found eco physiological differences between embryonic and juvenile Leucoraja from different localities. Taken together, small-bodied skate research emphasizes the importance of local adaptive plasticity for marine species, even without population genetic structure. Conservation strategies should focus on managing the portions of the Atlantic coast considered most vital to reproduction of Leucoraja, but should not recognize multiple populations across their range.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf