Change search
Refine search result
1 - 17 of 17
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Carson, Fabian
    et al.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Pascanu, Vlad
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bermejo Gómez, Antonio
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Zhang, Yi
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Platero-Prats, Ana E.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Zou, Xiaodong
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Martín-Matute, Belén
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Influence of the Base on Pd@MIL-101-NH2(Cr) as Catalyst for the Suzuki-Miyaura Cross-Coupling Reaction2015In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 21, no 30, p. 10896-10902Article in journal (Refereed)
    Abstract [en]

    The chemical stability of metal-organic frameworks (MOFs) is a major factor preventing their use in industrial processes. Herein, it is shown that judicious choice of the base for the Suzuki-Miyaura cross-coupling reaction can avoid decomposition of the MOF catalyst Pd@MIL-101-NH2(Cr). Four bases were compared for the reaction: K2CO3, KF, Cs2CO3 and CsF. The carbonates were the most active and achieved excellent yields in shorter reaction times than the fluorides. However, powder XRD and N-2 sorption measurements showed that the MOF catalyst was degraded when carbonates were used but remained crystalline and porous with the fluorides. XANES measurements revealed that the trimeric chromium cluster of Pd@MIL-101-NH2(Cr) is still present in the degraded MOF. In addition, the different countercations of the base significantly affected the catalytic activity of the material. TEM revealed that after several catalytic runs many of the Pd nanoparticles (NPs) had migrated to the external surface of the MOF particles and formed larger aggregates. The Pd NPs were larger after catalysis with caesium bases compared to potassium bases.

  • 2.
    Nagendiran, Anuja
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Pascanu, Vlad
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bermejo Gómez, Antonio
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    González Miera, Greco
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Tai, Cheuk-Wai
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Verho, Oscar
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Martín-Matute, Belén
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Mild and Selective Catalytic Hydrogenation of the C=C Bond in a,b-Unsaturated Carbonyl Compounds Using Supported Palladium Nanoparticles2016In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 22, no 21, p. 7184-7189Article in journal (Refereed)
    Abstract [en]

    Chemoselective reduction of the C=C bond in a variety of α,β-unsaturated carbonyl compounds using supported palladium nanoparticles is reported. Three different heterogeneous catalysts were compared using 1 atm of H2: 1) nano-Pd on a metal–organic framework (MOF: Pd0-MIL-101-NH2(Cr)), 2) nano-Pd on a siliceous mesocellular foam (MCF: Pd0-AmP-MCF), and 3) commercially available palladium on carbon (Pd/C). Initial studies showed that the Pd@MOF and Pd@MCF nanocatalysts were superior in activity and selectivity compared to commercial Pd/C. Both Pd0-MIL-101-NH2(Cr) and Pd0-AmP-MCF were capable of delivering the desired products in very short reaction times (10–90 min) with low loadings of Pd (0.5–1 mol %). Additionally, the two catalytic systems exhibited high recyclability and very low levels of metal leaching.

  • 3.
    Pascanu, Vlad
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Catalytic Processes Mediated by Metal−Organic Frameworks: Reactivity and Mechanistic Studies2016Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The present thesis describes the development of heterogeneous catalytic methodologies using metal−organic frameworks (MOFs) as porous matrices for supporting transition metal catalysts. A wide spectrum of chemical reactions is covered. Following the introductory section (Chapter 1), the results are divided between one descriptive part (Chapter 2) and four experimental parts (Chapters 3–6).

    Chapter 2 provides a detailed account of MOFs and their role in heterogeneous catalysis. Specific synthesis methods and characterization techniques that may be unfamiliar to organic chemists are illustrated based on examples from this work.

    Pd-catalyzed heterogeneous C−C coupling and C−H functionalization reactions are studied in Chapter 3, with focus on their practical utility. A vast functional group tolerance is reported, allowing access to substrates of relevance for the pharmaceutical industry. Issues concerning the recyclability of MOF-supported catalysts, leaching and operation under continuous flow are discussed in detail.

    The following chapter explores puzzling questions regarding the nature of the catalytically active species and the pathways of deactivation for Pd@MOF catalysts. These questions are addressed through detailed mechanistic investigations which include in situ XRD and XAS data acquisition. For this purpose a custom reaction cell is also described in Chapter 4.

    The scope of Pd@MOF-catalyzed reactions is expanded in Chapter 5. A strategy for boosting the thermal and chemical robustness of MOF crystals is presented. Pd@MOF catalysts are coated with a protecting SiO2 layer, which improves their mechanical properties without impeding diffusion. The resulting nanocomposite is better suited to withstand the harsh conditions of aerobic oxidation reactions. In this chapter, the influence of the nanoparticles’ geometry over the catalyst’s selectivity is also investigated.

    While Chapters 3–5 dealt with Pd-catalyzed processes, Chapter 6 introduces hybrid materials based on first-row transition metals. Their reactivity is explored towards light-driven water splitting. The heterogenization process leads to stabilized active sites, facilitating the spectroscopic probing of intermediates in the catalytic cycle.

  • 4.
    Pascanu, Vlad
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Supported Palladium Nanoparticles for Sustainable Cross-Coupling and Oxidation Reactions2014Licentiate thesis, monograph (Other academic)
    Abstract [en]

    The work presented in this thesis aims to combine the rich chemistry ofpalladium and the benefits of heterogeneous catalysis with metal-organic frameworks(MOFs) in developing robust materials that are recyclable and adaptable to operationunder a continuous flow regime.

    Two new catalysts were created based on palladium nanoparticles in themesoporous MOFs MIL-101 and MIL-88B. They were synthesized and rigorouslycharacterized. All the parameters that can influence the outcome of the desiredchemical transformations were investigated, leading to the development of veryefficient methodologies.

    Pd@MIL-101-NH2 was employed in the Suzuki-Miyaura cross-couplingreaction and it displayed a remarkable efficiency in some of the mildest conditionsreported to date. Moreover, it displays a very good tolerance to highly functionalizedsubstrates, obtaining biaryl motifs that are of potential interest for the pharmaceuticalindustry. Also, a small library of 11 compounds could be synthesized in a singlecontinuous flow experiment proving that the catalyst is amenable to a packed-bedmicro-flow reactor.

    An innovative double support was also used for encapsulating palladiumnanoparticles in a mixed MOF-silica matrix. The resulting material was denotedPd@MIL-88B-NH2@SiO2 and it was employed in a greener approach towards theaerobic oxidation of alcohols. The increased protection of the support allows thecatalyst to maintain a very good performance profile over 7 days of continuousoperation under high mechanical and chemical stress, with no sign of deactivation.

  • 5.
    Pascanu, Vlad
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bermejo Gómez, Antonio
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Ayats, Carles
    Platero-Prats, Ana E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Carson, Fabian
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Su, Jie
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Yao, Qingxia
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Pericas, Miquel A.
    Zou, Xiaodong
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Martín-Matute, Belén
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Double-Supported Silica-Metal-Organic Framework Palladium Nanocatalyst for the Aerobic Oxidation of Alcohols under Batch and Continuous Flow Regimes2015In: ACS Catalysis, ISSN 2155-5435, E-ISSN 2155-5435, Vol. 5, no 2, p. 472-479Article in journal (Refereed)
    Abstract [en]

    Stable and easily synthesized metal-organic framework MIL-88B-NH2 represents an attractive support for catalysts employed in oxidation reactions, which are typically performed under relatively harsh conditions. However, MIL-88B-NH2, the thermodynamic polymorph of the more popular MIL-101-NH2, has been rarely employed in catalytic applications because of a difficult impregnation process caused by the flexible nature of the framework. We report herein a new catalyst denoted Pd@MIL-88B-NH2 (8 wt % Pd), the first example of metallic nanoparticles successfully impregnated in the pores of MIL-88B-NH2. Furthermore, by enclosing the MOF crystals in a tailored protective coating of SiO2 nanoparticles, an even more enduring material was developed and applied to the aerobic oxidation of benzylic alcohols. This doubly supported catalyst Pd@MIL-88B-NH2@nano-SiO2 displayed high activity and excellent performance in terms of endurance and leaching control. Under batch conditions, a very convenient and efficient recycling protocol is illustrated, using a teabag approach. Under continuous flow, the catalyst was capable of withstanding 7 days of continuous operation at 110 degrees C without deactivation. During this time, no leaching of metallic species was observed, and the material maintained its structural integrity.

  • 6.
    Pascanu, Vlad
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Carson, Fabian
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Vico Solano, Marta
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Su, Jie
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Zou, Xiaodong
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Johansson, Magnus J.
    Martín-Matute, Belén
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Selective Heterogeneous C−H Activation/Halogenation Reactions Catalyzed by Pd@MOF Nanocomposites2016In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 22, no 11, p. 3729-3737Article in journal (Refereed)
    Abstract [en]

    A directed heterogeneous C−H activation/halogenation reaction catalyzed by readily synthesized Pd@MOF nanocatalysts was developed. The heterogeneous Pd catalysts used were a novel and environmentally benign Fe-based metal–organic framework (MOF) (Pd@MIL-88B-NH2(Fe)) and the previously developed Pd@MIL-101-NH2(Cr). Very high conversions and selectivities were achieved under very mild reaction conditions and in short reaction times. A wide variety of directing groups, halogen sources, and substitution patterns were well tolerated, and valuable polyhalogenated compounds were synthesized in a controlled manner. The synthesis of the Pd-functionalized Fe-based MOF and the recyclability of the two catalysts are also presented.

  • 7.
    Pascanu, Vlad
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry. University of Zurich, Switzerland.
    González Miera, Greco
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Inge, A. Ken
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Martín-Matute, Belén
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Metal-Organic Frameworks as Catalysts for Organic Synthesis: A Critical Perspective2019In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 141, no 18, p. 7223-7234Article, review/survey (Refereed)
    Abstract [en]

    Recent advances in organic chemistry and materials chemistry have enabled the porosity of new materials to be accurately controlled on the nanometer scale. In this context, metal-organic frameworks (MOFs) have rapidly become one of the most attractive classes of solid supports currently under investigation in heterogeneous catalysis. Their unprecedented degree of tunability gives MOFs the chance to succeed where others have failed. The past decade has witnessed an exponential growth in the complexity of new structures. MOFs with a variety of topologies and pore sizes show excellent stability across wide ranges of pH and temperature. Even the controlled insertion of defects, to alter the MOF's properties in a predictable manner, has become commonplace. However, research on catalysis with MOFs has been sluggish in catching up with modern trends in organic chemistry. Relevant issues such as enantioselective processes, C-H activation, or olefin metathesis are still rarely discussed. In this Perspective, we highlight meritorious examples that tackle important issues from contemporary organic synthesis, and that provide a fair comparison with existing catalysts. Some of these MOF catalysts already outcompete state-of-the-art homogeneous solutions. For others, improvements may still be required, but they have merit in aiming for the bigger challenge. Furthermore, we also identify some important areas where MOFs are likely to make a difference, by addressing currently unmet needs in catalysis instead of trying to outcompete homogeneous catalysts in areas where they excel. Finally, we strongly advocate for rational design of MOF catalysts, founded on a deep mechanistic understanding of the events taking place inside the pore.

  • 8.
    Pascanu, Vlad
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Hansen, Peter R.
    Bermejo Gomez, Antonio
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Ayats, Carles
    Platero-Prats, Ana E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry. Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Johansson, Magnus J.
    Pericas, Miquel A.
    Martín-Matute, Belén
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Highly Functionalized Biaryls via Suzuki-Miyaura Cross-Coupling Catalyzed by Pd@MOF under Batch and Continuous Flow Regimes2015In: ChemSusChem, ISSN 1864-5631, E-ISSN 1864-564X, Vol. 8, no 1, p. 123-130Article in journal (Refereed)
    Abstract [en]

    A diverse set of more than 40 highly functionalized biaryls was synthesized successfully through the Suzuki-Miyaura cross-coupling reaction catalyzed by Pd nanoparticles supported in a functionalized mesoporous MOF (8 wt% Pd@MIL-101(Cr)-NH2). This could be achieved under some of the mildest conditions reported to date and a strong control over the leaching of metallic species could be maintained, despite the presence of diverse functional groups and/or several heteroatoms. Some of the targeted molecules are important intermediates in the synthesis of pharmaceuticals and we clearly exemplify the versatility of this catalytic system, which affords better yields than currently existing commercial procedures. Most importantly, Pd@MIL-101-NH2 was packed in a micro-flow reactor, which represents the first report of metallic nanoparticles supported on MOFs employed in flow chemistry for catalytic applications. A small library of 11 isolated compounds was created in a continuous experiment without replacing the catalyst, demonstrating the potential of the catalyst for large-scale applications.

  • 9.
    Pascanu, Vlad
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Yao, Qingxia
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Bermejo Gomez, Antonio
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Gustafsson, Mikaela
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Yun, Yifeng
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Wan, Wei
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Samain, Louise
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Zou, Xiaodong
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Martin-Matute, Belen
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Sustainable Catalysis: Rational Pd Loading on MIL-101Cr-NH2 for More Efficient and Recyclable Suzuki-Miyaura Reactions2013In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 19, no 51, p. 17483-17493Article in journal (Refereed)
    Abstract [en]

    Palladium nanoparticles have been immobilized into an amino-functionalized metal-organic framework (MOF), MIL-101Cr-NH2, to form Pd@MIL-101Cr-NH2. Four materials with different loadings of palladium have been prepared (denoted as 4-, 8-, 12-, and 16wt%Pd@MIL-101Cr-NH2). The effects of catalyst loading and the size and distribution of the Pd nanoparticles on the catalytic performance have been studied. The catalysts were characterized by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier-transform infrared (FTIR) spectroscopy, powder X-ray diffraction (PXRD), N-2-sorption isotherms, elemental analysis, and thermogravimetric analysis (TGA). To better characterize the palladium nanoparticles and their distribution in MIL-101Cr-NH2, electron tomography was employed to reconstruct the 3D volume of 8wt%Pd@MIL-101Cr-NH2 particles. The pair distribution functions (PDFs) of the samples were extracted from total scattering experiments using high-energy X-rays (60keV). The catalytic activity of the four MOF materials with different loadings of palladium nanoparticles was studied in the Suzuki-Miyaura cross-coupling reaction. The best catalytic performance was obtained with the MOF that contained 8wt% palladium nanoparticles. The metallic palladium nanoparticles were homogeneously distributed, with an average size of 2.6nm. Excellent yields were obtained for a wide scope of substrates under remarkably mild conditions (water, aerobic conditions, room temperature, catalyst loading as low as 0.15mol%). The material can be recycled at least 10times without alteration of its catalytic properties.

  • 10. Roy, Souvik
    et al.
    Pascanu, Vlad
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Pullen, Sonja
    González Miera, Greco
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Martín-Matute, Belén
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Ott, Sascha
    Catalyst accessibility to chemical reductants in metal-organic frameworks2017In: Chemical Communications, ISSN 1359-7345, E-ISSN 1364-548X, Vol. 53, no 22, p. 3257-3260Article in journal (Refereed)
    Abstract [en]

    A molecular H-2-evolving catalyst, [Fe-2(cbdt)(CO)(6)] ([FeFe], cbdt = 3-carboxybenzene-1,2-dithiolate), has been attached covalently to an amino-functionalized MIL-101(Cr) through an amide bond. Chemical reduction experiments reveal that the MOF channels can be clogged by ion pairs that are formed between the oxidized reductant and the reduced catalyst. This effect is lessened in MIL-101-NH-[FeFe] with lower [FeFe] loadings. On longer timescales, it is shown that large proportions of the [FeFe] catalysts within the MOF engage in photochemical hydrogen production and the amount of produced hydrogen is proportional to the catalyst loading.

  • 11. Roy, Souvik
    et al.
    Pascanu, Vlad
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Pullen, Sonja
    González-Miera, Greco
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Martín-Matute, Belén
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Ott, Sascha
    A MOF-Supported H2 Evolution Photocatalyst with Remarkable Stability and Improved EfficiencyArticle in journal (Refereed)
  • 12.
    Vico Solano, Marta
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    González Miera, Greco
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Pascanu, Vlad
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Inge, A. Ken
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Martín‐Matute, Belén
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Versatile Heterogeneous Palladium Catalysts for Diverse Carbonylation Reactions under Atmospheric Carbon Monoxide Pressure2018In: ChemCatChem, ISSN 1867-3880, E-ISSN 1867-3899, Vol. 10, no 5, p. 1089-1095Article in journal (Refereed)
    Abstract [en]

    Herein, we report a versatile carbonylation protocol using heterogeneous Pd-0 nanoparticles supported on the metal-organic frameworks (MOFs) MIL-88B-NH2 (Fe/Cr). The synthesis of a vast array of carbonyls, which includes amides, esters, carboxylic acids, and -ketoamides, was achieved through mono- and dicarbonylation reactions. The selectivity could be controlled simply by tuning the reaction conditions. Superior activity and selectivity were recorded in some cases compared to that achieved with commercial Pd/C. However, the utility of an elaborate catalyst support is questionable and important reactivity and recyclability issues are discussed.

  • 13.
    Yao, Qingxia
    et al.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Bermejo Gómez, Antonio
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Su, Jie
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Pascanu, Vlad
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Yun, Yifeng
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Zheng, Haoquan
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Chen, Hong
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Liu, Leifeng
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Abdelhamid, Hani Nasser
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Martin-Matute, Belén
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Zou, Xiaodong
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Series of Highly Stable Isoreticular Lanthanide Metal-Organic Frameworks with Expanding Pore Size and Tunable Luminescent Properties2015In: Chemistry of Materials, ISSN 0897-4756, E-ISSN 1520-5002, Vol. 27, no 15, p. 5332-5339Article in journal (Refereed)
    Abstract [en]

    A series of highly porous isoreticular lanthanide-based metal organic frameworks (LnMOFs) denoted as SUMOE-7I to SUMOE-7IV (SU = Stockholm University; Ln = La, Ce, Pr, Nd, Sm, Eu, and Gd) have been synthesized using tritopic carboxylates as the organic linkers. The SUMOF-7 materials display one-dimensional pseudohexagonal channels with the pore diameter gradually enlarged from 8.4 to 23.9 angstrom, as a result of increasing sizes of the organic linkers. The structures have been solved by single crystal X-ray diffraction or rotation electron diffraction (RED) combined with powder X-ray diffraction (PXRD). The SUMOF-7 materials exhibit robust architectures with permanent porosity. More importantly, they exhibit exceptionally high thermal and chemical stability. We show that, by inclusion of organic dye molecules, the luminescence properties of the MOFs can be elaborated and modulated, leading to promising applications in sensing and optics.

  • 14.
    Yao, Qingxia
    et al.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK), Inorganic and Structural Chemistry.
    Bermejo Gómez, Antonio
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Su, Jie
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK), Inorganic and Structural Chemistry.
    Pascanu, Vlad
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Yun, Yifeng
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Zheng, Haoquan
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK), Inorganic and Structural Chemistry.
    Chen, Hong
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK), Inorganic and Structural Chemistry.
    Liu, Leifeng
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK), Inorganic and Structural Chemistry.
    Martín-Matute, Belén
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Zou, Xiaodong
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Highly porous isoreticular lanthanide metal-organic frameworksManuscript (preprint) (Other academic)
    Abstract [en]

    As an emerging type of porous materials, metal–organic frameworks (MOFs) have the advantages over conventional inorganic porous materials in that their structures and functions are systematically and predictably designable. Isoreticular expansion is an efficient way for systematic design and control of pore size and shape for MOFs. By using our proposed strategy, a series of highly porous isoreticular lanthanide-based metal-organic frameworks with systematic pore apertures has been obtained, which afford an isoreticular series of MIL-103 structures (termed SUMOF-7I to IV) with pore apertures ranging from 7.2 Å to 23 Å. These materials demonstrated exhibit robust architectures with permanent porosity, and exceptional thermal stability and chemical stability in various solvents. The combination of luminescence property and significant porosity of these MOFs enable them as a potential platform for multifunctional purpose.

  • 15.
    Yuan, Ning
    et al.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). Swedish University of Agricultural Sciences, Sweden.
    Pascanu, Vlad
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Huang, Zhehao
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Heidenreich, Niclas
    Leubner, Sebastian
    Inge, A. Ken
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Gaar, Jakob
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Stock, Norbert
    Persson, Ingmar
    Martín-Matute, Belén
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Zou, Xiaodong
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Probing the active catalytic species generated from Pd(II)@MIL-101-NH2 in Heck coupling reactions: An operando X-ray absorption spectroscopy studyArticle in journal (Refereed)
  • 16.
    Yuan, Ning
    et al.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). Swedish University of Agricultural Sciences, Sweden.
    Pascanu, Vlad
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Huang, Zhehao
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Valiente, Alejandro
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Heidenreich, Niclas
    Leubner, Sebastian
    Inge, Andrew Kentaro
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Gaar, Jakob
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Stock, Norbert
    Persson, Ingmar
    Martín-Matute, Belén
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Zou, Xiaodong
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Probing the Evolution of Palladium Species in Pd@MOF Catalysts during the Heck Coupling Reaction: An Operando X-ray Absorption Spectroscopy Study2018In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 140, no 26, p. 8206-8217Article in journal (Refereed)
    Abstract [en]

    The mechanism of the Heck C-C coupling reaction catalyzed by Pd@MOFs has been investigated using operando X-ray absorption spectroscopy (XAS) and powder X-ray diffraction (PXRD) combined with transmission electron microscopy (TEM) analysis and nuclear magnetic resonance (H-1 NMR) kinetic studies. A custom-made reaction cell was used, allowing operando PXRD and XAS data collection using high-energy synchrotron radiation. By analyzing the XAS data in combination with ex situ studies, the evolution of the palladium species is followed from the as-synthesized to its deactivated form. An adaptive reaction mechanism is proposed. Mononuclear Pd(II) complexes are found to be the dominant active species at the beginning of the reaction, which then gradually transform into Pd nanoclusters with 13-20 Pd atoms on average in later catalytic turnovers. Consumption of available reagent and substrate leads to coordination of Cl- ions to their surfaces, which causes the poisoning of the active sites. By understanding the deactivation process, it was possible to tune the reaction conditions and prolong the lifetime of the catalyst.

  • 17.
    Zou, Xiaodong
    et al.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Yao, Qingxia
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Bermejo Gómez, Antonio
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Su, Jie
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Pascanu, Vlad
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Yifeng, Yun
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Zheng, Haoquan
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Chen, Hong
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Liu, Leifeng
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Abdelhamid, Hani N.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Martín-Matute, Belén
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    A series of highly stable isoreticular lanthanide metal-organic frameworks with tunable luminescence properties solved by rotation electron diffraction and X-ray diffraction2016In: Acta Crystallographica Section A: Foundations of Crystallography, ISSN 0108-7673, E-ISSN 1600-5724, Vol. A72, p. 136-136Article in journal (Refereed)
1 - 17 of 17
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf