Change search
Refine search result
1 - 25 of 25
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Ahlmer, Anna-Klara
    et al.
    Cavalli, Marco
    Hansson, Klas
    Koutsouris, Alexander J.
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Crema, Stefano
    Kalantari, Zahra
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Soil moisture remote-sensing applications for identification of flood-prone areas along transport infrastructure2018In: Environmental Earth Sciences, ISSN 1866-6280, E-ISSN 1866-6299, Vol. 77, no 14, article id 533Article in journal (Refereed)
    Abstract [en]

    The expected increase in precipitation and temperature in Scandinavia, and especially short-time heavy precipitation, will increase the frequency of flooding. Urban areas are the most vulnerable, and specifically, the road infrastructure. The accumulation of large volumes of water and sediments on road-stream intersections gets severe consequences for the road drainage structures. This study integrates the spatial and temporal soil moisture properties into the research about flood prediction methods by a case study of two areas in Sweden, Vastra Gotaland and Varmland, which was affected by severe flooding in August 2014. Soil moisture data are derived from remote-sensing techniques, with a focus on the soil moisture-specific satellites ASCAT and SMOS. Furthermore, several physical catchments descriptors (PCDs) are analyzed and the result shows that larger slopes and drainage density, in general, mean a higher risk of flooding. The precipitation is the same; however, it can be concluded that more precipitation in most cases gives higher soil moisture values. The lack, or the dimensioning, of road drainage structures seems to have a large impact on the flood risk as more sediment and water can be accumulated at the road-stream intersection. The results show that the method implementing soil moisture satellite data is promising for improving the reliability of flooding.

  • 2. Arabameri, Alireza
    et al.
    Rezaei, Khalil
    Cerdà, Artemi
    Conoscenti, Christian
    Kalantari, Zahra
    Stockholm University, Faculty of Science, Department of Physical Geography.
    A comparison of statistical methods and multi-criteria decision making to map flood hazard susceptibility in Northern Iran2019In: Science of the Total Environment, ISSN 0048-9697, E-ISSN 1879-1026, Vol. 660, p. 443-458Article in journal (Refereed)
    Abstract [en]

    In north of Iran, flood is one of the most important natural hazards that annually inflict great economic damages on humankind infrastructures and natural ecosystems. The Kiasar watershed is known as one of the critical areas in north of Iran, due to numerous floods and waste of water and soil resources, as well as related economic and ecological losses. However, a comprehensive and systematic research to identify flood-prone areas, which may help to establish management and conservation measures, has not been carried out yet. Therefore, this study tested four methods: evidential belief function (EBF), frequency ratio (FR), Technique for Order Preference by Similarity To ideal Solution (TOPSIS) and Vlse Kriterijumsk Optimizacija Kompromisno Resenje (VIKOR) for flood hazard susceptibility mapping (FHSM) in this area. These were combined in two methodological frameworks involving statistical and multi-criteria decision making approaches. The efficiency of statistical and multi-criteria methods in FHSM were compared by using area under receiver operating characteristic (AUROC) curve, seed cell area index and frequency ratio. A database containing flood inventory maps and flood-related conditioning factors was established for this watershed. The flood inventory maps produced included 132 flood conditions, which were randomly classified into two groups, for training (70%) and validation (30%). Analytical hierarchy process (AHP) indicated that slope, distance to stream and land use/land cover are of key importance in flood occurrence in the study catchment. In validation results, the EBF model had a better prediction rate (0.987) and success rate (0.946) than FR, TOPSIS and VIKOR (prediction rate 0.917, 0.888, and 0.810; success rate 0.939, 0.904, and 0.735, respectively). Based on their frequency ratio and seed cell area index values, all models except VIKOR showed acceptable accuracy of classification.

  • 3. Blösch, Günter
    et al.
    Bierkens, Marc F. P.
    Chambel, Antonio
    Cudennec, Christophe
    Destouni, Georgia
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Fiori, Aldo
    Kirchner, James W.
    McDonnell, Jeffrey J.
    Savenije, Hubert H. G.
    Sivapalan, Murugesu
    Stumpp, Christine
    Toth, Elena
    Volpi, Elena
    Carr, Gemma
    Lupton, Claire
    Salinas, Jose
    Szeles, Borbala
    Viglione, Alberto
    Aksoy, Hafzullah
    Allen, Scott T.
    Amin, Anam
    Andreassian, Vazken
    Arheimer, Berit
    Aryal, Santosh K.
    Baker, Victor
    Bardsley, Earl
    Barendrecht, Marlies H.
    Bartosova, Alena
    Batelaan, Okke
    Berghuijs, Wouter R.
    Beven, Keith
    Blume, Theresa
    Bogaard, Thom
    de Amorim, Pablo Borges
    Boettcher, Michael E.
    Boulet, Gilles
    Breinl, Korbinian
    Brilly, Mitja
    Brocca, Luca
    Buytaert, Wouter
    Castellarin, Attilio
    Castelletti, Andrea
    Chen, Xiaohong
    Chen, Yangbo
    Chen, Yuanfang
    Chifflard, Peter
    Claps, Pierluigi
    Clark, Martyn P.
    Collins, Adrian L.
    Croke, Barry
    Dathe, Annette
    David, Paula C.
    de Barros, Felipe P. J.
    de Rooij, Gerrit
    Di Baldassarre, Giuliano
    Driscoll, Jessica M.
    Duethmann, Doris
    Dwivedi, Ravindra
    Eris, Ebru
    Farmer, William H.
    Feiccabrino, James
    Ferguson, Grant
    Ferrari, Ennio
    Ferraris, Stefano
    Fersch, Benjamin
    Finger, David
    Foglia, Laura
    Fowler, Keirnan
    Gartsman, Boris
    Gascoin, Simon
    Gaume, Eric
    Gelfan, Alexander
    Geris, Josie
    Gharari, Shervan
    Gleeson, Tom
    Glendell, Miriam
    Bevacqua, Alena Gonzalez
    Gonzalez-Dugo, Maria P.
    Grimaldi, Salvatore
    Gupta, A. B.
    Guse, Bjoern
    Han, Dawei
    Hannah, David
    Harpold, Adrian
    Haun, Stefan
    Heal, Kate
    Helfricht, Kay
    Herrnegger, Mathew
    Hipsey, Matthew
    Hlavacikova, Hana
    Hohmann, Clara
    Holko, Ladislav
    Hopkinson, Christopher
    Hrachowitz, Markus
    Illangasekare, Tissa H.
    Inam, Azhar
    Innocente, Camyla
    Istanbulluoglu, Erkan
    Jarihani, Ben
    Kalantari, Zahra
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Kalvans, Andis
    Khanal, Sonu
    Khatami, Sina
    Kiesel, Jens
    Kirkby, Mike
    Knoben, Wouter
    Kochanek, Krzysztof
    Kohnova, Silvia
    Kolechkina, Alla
    Krause, Stefan
    Kreamer, David
    Kreibich, Heidi
    Kunstmann, Harald
    Lange, Holger
    Liberato, Margarida L. R.
    Lindquist, Eric
    Link, Timothy
    Liu, Junguo
    Loucks, Daniel Peter
    Luce, Charles
    Mahe, Gil
    Makarieva, Olga
    Malard, Julien
    Mashtayeva, Shamshagul
    Maskey, Shreedhar
    Mas-Pla, Josep
    Mavrova-Guirguinova, Maria
    Mazzoleni, Maurizio
    Mernild, Sebastian
    Misstear, Bruce Dudley
    Montanari, Alberto
    Mueller-Thomy, Hannes
    Nabizadeh, Alireza
    Nardi, Fernando
    Neale, Christopher
    Nesterova, Nataliia
    Nurtaev, Bakhram
    Odongo, Vincent O.
    Panda, Subhabrata
    Pande, Saket
    Pang, Zhonghe
    Papacharalampous, Georgia
    Perrin, Charles
    Pfister, Laurent
    Pimentel, Rafael
    Polo, Maria J.
    Post, David
    Sierra, Cristina Prieto
    Ramos, Maria-Helena
    Renner, Maik
    Reynolds, Jose Eduardo
    Ridolfi, Elena
    Rigon, Riccardo
    Riva, Monica
    Robertson, David E.
    Rosso, Renzo
    Roy, Tirthankar
    Sa, Joao H. M.
    Salvadori, Gianfausto
    Sandells, Mel
    Schaefli, Bettina
    Schumann, Andreas
    Scolobig, Anna
    Seibert, Jan
    Servat, Eric
    Shafiei, Mojtaba
    Sharma, Ashish
    Sidibe, Moussa
    Sidle, Roy C.
    Skaugen, Thomas
    Smith, Hugh
    Spiessl, Sabine M.
    Stein, Lina
    Steinsland, Ingelin
    Strasser, Ulrich
    Su, Bob
    Szolgay, Jan
    Tarboton, David
    Tauro, Flavia
    Thirel, Guillaume
    Tian, Fuqiang
    Tong, Rui
    Tussupova, Kamshat
    Tyralis, Hristos
    Uijlenhoet, Remko
    van Beek, Rens
    van der Ent, Ruud J.
    van der Ploeg, Martine
    Van Loon, Anne F.
    van Meerveld, Ilja
    van Nooijen, Ronald
    van Oel, Pieter R.
    Vidal, Jean-Philippe
    von Freyberg, Jana
    Vorogushyn, Sergiy
    Wachniew, Przemyslaw
    Wade, Andrew J.
    Ward, Philip
    Westerberg, Ida K.
    White, Christopher
    Wood, Eric F.
    Woods, Ross
    Xu, Zongxue
    Yilmaz, Koray K.
    Zhang, Yongqiang
    Twenty-three unsolved problems in hydrology (UPH) - a community perspective2019In: Hydrological Sciences Journal, ISSN 0262-6667, E-ISSN 2150-3435Article in journal (Refereed)
    Abstract [en]

    This paper is the outcome of a community initiative to identify major unsolved scientific problems in hydrology motivated by a need for stronger harmonisation of research efforts. The procedure involved a public consultation through online media, followed by two workshops through which a large number of potential science questions were collated, prioritised, and synthesised. In spite of the diversity of the participants (230 scientists in total), the process revealed much about community priorities and the state of our science: a preference for continuity in research questions rather than radical departures or redirections from past and current work. Questions remain focused on the process-based understanding of hydrological variability and causality at all space and time scales. Increased attention to environmental change drives a new emphasis on understanding how change propagates across interfaces within the hydrological system and across disciplinary boundaries. In particular, the expansion of the human footprint raises a new set of questions related to human interactions with nature and water cycle feedbacks in the context of complex water management problems. We hope that this reflection and synthesis of the 23 unsolved problems in hydrology will help guide research efforts for some years to come.

  • 4. Di Baldassarre, Giuliano
    et al.
    Martinez, Fabian
    Kalantari, Zahra
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Viglione, Alberto
    Drought and flood in the Anthropocene: feedback mechanisms in reservoir operation2017In: Earth System Dynamics, ISSN 2190-4979, E-ISSN 2190-4987, Vol. 8, no 1, p. 1-9Article in journal (Refereed)
    Abstract [en]

    Over the last few decades, numerous studies have investigated human impacts on drought and flood events, while conversely other studies have explored human responses to hydrological extremes. Yet, there is still little understanding about the dynamics resulting from their interplay, i.e. both impacts and responses. Current quantitative methods therefore can fail to assess future risk dynamics and, as a result, while risk reduction strategies built on these methods often work in the short term, they tend to lead to unintended consequences in the long term. In this paper, we review the puzzles and dynamics resulting from the interplay of society and hydrological extremes, and describe an initial effort to model hydrological extremes in the Anthropocene. In particular, we first discuss the need for a novel approach to explicitly account for human interactions with both drought and flood events, and then present a stylized model simulating the reciprocal effects between hydrological extremes and changing reservoir operation rules. Lastly, we highlight the unprecedented opportunity offered by the current proliferation of big data to unravel the coevolution of hydrological extremes and society across scales and along gradients of social and hydrological conditions.

  • 5.
    Goldenberg, Romain
    et al.
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Kalantari, Zahra
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Cvetkovic, Vladimir
    Mörtberg, Ulla
    Deal, Brian
    Destouni, Georgia
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Distinction, quantification and mapping of potential and realized supply-demand of flow-dependent ecosystem services2017In: Science of the Total Environment, ISSN 0048-9697, E-ISSN 1879-1026, Vol. 593, p. 599-609Article in journal (Refereed)
    Abstract [en]

    This study addresses and conceptualizes the possible dependence of ecosystem services on prevailing air and/or water flow processes and conditions, and particularly on the trajectories and associated spatial reach of these flows in carrying services from supply to demand areas in the landscape. The present conceptualization considers and accounts for such flow-dependence in terms of potential and actually realized service supply and demand, which may generally differ and must therefore be distinguished due to and accounting for the prevailing conditions of service carrier flows. We here concretize and quantify such flow-dependence for a specific landscape case (the Stockholm region, Sweden) and for two examples of regulating ecosystem services: local climate regulation and storm water regulation. For these service and landscape examples, we identify, quantify and map key areas of potential and realized service supply and demand, based for the former (potential) on prevailing relatively static types of landscape conditions (such as land-cover/use, soil type and demographics), and for the latter (realized) on relevant carrier air and water flows. These first-order quantification examples constitute first steps towards further development of generally needed such flow-dependence assessments for various types of ecosystem services in different landscapes over the world.

  • 6.
    Groß, Elisabeth
    et al.
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Mård, Johanna
    Kalantari, Zahra
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Bring, Arvid
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Links between Nordic and Arctic hydroclimate and vegetation changes: Contribution to possible landscape-scale nature-based solutions2018In: Land Degradation and Development, ISSN 1085-3278, E-ISSN 1099-145X, Vol. 29, no 10, p. 3663-3673Article in journal (Refereed)
    Abstract [en]

    In Nordic and Arctic regions, the rapidly warming climate sustains hydroclimatic and vegetation changes in the landscape. There is evidence for an increase in vegetation density in some regions, a trend that is expected as a response to increasing temperature and precipitation. If the hydroclimatic changes are linked to vegetation response, it could be viewed as a landscape-scale nature-based solution (NBS) that could moderate the runoff response, as denser vegetation should lead to increased evapotranspiration and lower runoff. In this paper, we investigate and compare hydroclimatic changes over a set of basins in the Nordic region and northwest America and compare with changes in vegetation density, analyzed using the normalized difference vegetation index (NDVI) for three time periods: 1973-1978, 1993-1998, and 2013-2016. Over the period of the 1970s to 1990s, the hydroclimate became warmer and wetter and vegetation density increased, but over a later period from the 1990s to 2010s, vegetation density decreased, despite a continuing warming and wetting of the climate. Although there was a tendency for runoff to decrease in basins where vegetation density increased, the relation between precipitation and runoff was much stronger. Overall, we found weak evidence for vegetation density changes, driven by hydroclimate, to act as NBS on the landscape scale over the studied regions. However, as hydroclimatic changes interact with vegetation changes and their ensuing hydrological responses in complex ways, more detailed investigations are needed to determine the potential NBS effect on the landscape scale across Nordic and Arctic regions.

  • 7. Hălbac-Cotoară-Zamfir, Rareș
    et al.
    Keesstra, Saskia
    Kalantari, Zahra
    Stockholm University, Faculty of Science, Department of Physical Geography.
    The impact of political, socio-economic and cultural factors on implementing environment friendly techniques for sustainable land management and climate change mitigation in Romania2019In: Science of the Total Environment, ISSN 0048-9697, E-ISSN 1879-1026, Vol. 654, p. 418-429Article in journal (Refereed)
    Abstract [en]

    Throughout the history of Romania, political decisions, socio-economic measures, and cultural (traditional) characters have affected the implementation of environment friendly techniques (EFTs) policies. In the context of this paper, EFTs can be defined as solutions for the use of land resources aiming the increasing of goods for meeting the changing human needs and with neutral or positive environmental impact. Changes in the political regime have always had a visible impact on the EFTs issue in Romania. EFTs has gone through several major phases. The political impact on EFTs implementation mainly affected sustainable land management (SLM) and to a small extent, at the end of the communist era and partly during the capitalist period, dimate change mitigation. Throughout history, the political factor has dominated and influenced the capacity of the EFTs implementation process in responding to socio-economic stimuli. In addition, quality of life, rural-urban and urban-rural migrations, poverty, education level, and climate change adaptation have had impacts on the status of EFTs according to governance and political reflections. The agrarian reforms from the last two centuries, based on socioeconomic demands, have strongly influenced the capacity to implement EFTs both positively and negatively. However, the cultural factor was least affected by political and socio-economic changes as a stability factor in ensuring continued implementation of the EFTs. Currently, there is a strong need to reconsider EFTs as sustainability tools for Romanian agriculture that can cope with climate change and sustainable land management (SLM) demands. This paper presents a brief history of EFTs in Romania and their benefits in achieving SLM equilibrium, describing the impacts of political decisions, socio-economic measures, and cultural features on implementing ETEs policies.

  • 8.
    Kalantari, Zahra
    et al.
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Cavalli, Marco
    Cantone, Carolina
    Crema, Stefano
    Destouni, Georgia
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Flood probability quantification for road infrastructure: Data-driven spatial-statistical approach and case study applications2017In: Science of the Total Environment, ISSN 0048-9697, E-ISSN 1879-1026, Vol. 581, p. 386-398Article in journal (Refereed)
    Abstract [en]

    Climate-driven increase in the frequency of extreme hydrological events is expected to impose greater strain on the built environment and major transport infrastructure, such as roads and railways. This study develops a data-driven spatial-statistical approach to quantifying and mapping the probability of flooding at critical road-stream intersection locations, where water flow and sediment transport may accumulate and cause serious road damage. The approach is based on novel integration of key watershed and road characteristics, including also measures of sediment connectivity. The approach is concretely applied to and quantified for two specific study case examples in southwest Sweden, with documented road flooding effects of recorded extreme rainfall. The novel contributions of this study in combining a sediment connectivity account with that of soil type, land use, spatial precipitation-runoff variability and road drainage in catchments, and in extending the connectivity measure use for different types of catchments, improve the accuracy of model results for road flood probability.

  • 9.
    Kalantari, Zahra
    et al.
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Khoshkar, Sara
    Falk, Helena
    Cvetkovic, Vladimir
    Mörtberg, Ulla
    Accessibility of Water-Related Cultural Ecosystem Services through Public Transport-A Model for Planning Support in the Stockholm Region2017In: Sustainability, ISSN 2071-1050, E-ISSN 2071-1050, Vol. 9, no 3, article id 346Article in journal (Refereed)
    Abstract [en]

    Planning for sustainable cities involves supporting compact, energy-efficient urban form as well as maintaining attractive and liveable urban landscapes. Attractive cities depend highly on services provided by ecosystems, especially cultural ecosystem services (ES), which give direct benefits to urban citizens. Therefore, access to a diversity of urban functions and publicly available ES by walking and public transport should be considered when planning for sustainable cities. This could be facilitated by user-friendly planning support models. The aim of this study was to develop a GIS-based model for assessing accessibility to ES, more specifically, water-related cultural ecosystem services (WCES), via walking and public transport, with input from stakeholders. The model was applied to the Stockholm region in Sweden. Travel times and census data were used to derive measures and maps of accessibility to prioritised WCES in the region, today and in urbanisation scenarios for 2050. The results showed how access to WCES varied spatially within the region. The number of potential visitors to different WCES sites now and in the future urbanisation scenarios was estimated, and areas in need for future development of the public transport system as well as WCES were identified. The GIS-based accessibility model has potential to be used as planning support in urban planning.

  • 10.
    Kalantari, Zahra
    et al.
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology. Royal Institute of Technology, Sweden.
    Lyon, Steve W.
    Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
    Jansson, Per-Erik
    Stolte, Jannes
    French, Helen K.
    Folkeson, Lennart
    Sassner, Mona
    Modeller subjectivity and calibration impacts on hydrological model applications: An event-based comparison for a road-adjacent catchment in south-east Norway2015In: Science of the Total Environment, ISSN 0048-9697, E-ISSN 1879-1026, Vol. 502, p. 315-329Article in journal (Refereed)
    Abstract [en]

    Identifying a 'best' performing hydrologic model in a practical sense is difficult due to the potential influences of modeller subjectivity on, for example, calibration procedure and parameter selection. This is especially true for model applications at the event scale where the prevailing catchment conditions can have a strong impact on apparent model performance and suitability. In this study, two lumped models (CoupModel and HBV) and two physically-based distributed models (LISEM and MIKE SHE) were applied to a small catchment upstream of a road in south-eastern Norway. All models were calibrated to a single event representing typical winter conditions in the region and then applied to various other winter events to investigate the potential impact of calibration period and methodology on model performance. Peak flow and event-based hydrographs were simulated differently by all models leading to differences in apparent model performance under this application. In this case study, the lumped models appeared to be better suited for hydrological events that differed from the calibration event (i.e., events when runoff was generated from rain on non-frozen soils rather than from rain and snowmelt on frozen soil) while the more physical-based approaches appeared better suited during snowmelt and frozen soil conditions more consistent with the event-specific calibration. This was due to the combination of variations in subsurface conditions over the eight events considered, the subsequent ability of the models to represent the impact of the conditions (particularly when subsurface conditions varied greatly from the calibration event), and the different approaches adopted to calibrate the models. These results indicate that hydrologic models may not only need to be selected on a case-by-case basis but also have their performance evaluated on an application-by-application basis since how a model is applied can be equally important as inherent model structure.

  • 11.
    Kalantari, Zahra
    et al.
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Santos Ferreira, Carla Sofia
    Koutsouris, Alexander J.
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Ahmer, Anna-Klara
    Cerdà, Artemi
    Destouni, Georgia
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Assessing flood probability for transportation infrastructure based on catchment characteristics, sediment connectivity and remotely sensed soil moisture2019In: Science of the Total Environment, ISSN 0048-9697, E-ISSN 1879-1026, Vol. 661, p. 393-406Article in journal (Refereed)
    Abstract [en]

    Flooding may damage important transportation infrastructures, such as roads, railways and bridges, which need to be well planned and designed to be able to withstand current and possible future climate-driven increases in flood frequencies and magnitudes. This study develops a novel approach to predictive statistical modelling of the probability of flooding at major road-stream intersection sites, where water, sediment and debris can accumulate and cause failure of drainage facilities and associated road damages. Two areas in south-west Sweden, affected by severe floods in August 2014, are used in representative case studies for this development. A set of physical catchment-descriptors (PCDs), characterizing key aspects of topography, morphology, soil type, land use, hydrology (precipitation and soil moisture) and sediment connectivity in the water-and sediment-contributing catchments, are used for the predictive flood modelling. A main novel contribution to such modelling is to integrate the spatiotemporal characteristics of remotely-sensed soil moisture in indices of sediment connectivity (IC), thereby also allowing for investigation of the role of soil moisture in the flood probability for different road-stream intersections. The results suggest five categories of PCDs as especially important for flood probability quantification and identification of particularly flood-prone intersections along roads (railways, etc.) These include: channel slope at the road-stream intersection and average elevation, soil properties (mainly percentage of till), land use cover (mainly percentage of urban areas), and a sediment connectivity index that considers soil moisture in addition to morphology over the catchment.

  • 12.
    Kalantari, Zahra
    et al.
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Santos Ferreira, Carla Sofia
    Page, Jessica
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Goldenberg, Romain
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Olsson, Jonas
    Destouni, Georgia
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Meeting sustainable development challenges in growing cities: Coupled social-ecological systems modeling of land use and water changes2019In: Journal of Environmental Management, ISSN 0301-4797, E-ISSN 1095-8630, Vol. 245, p. 471-480Article in journal (Refereed)
    Abstract [en]

    Ongoing urban expansion may degrade natural resources, ecosystems, and the services they provide to human societies, e.g., through land use and water changes and feedbacks. In order to control and minimize such negative impacts of urbanization, best practices for sustainable urban development must be identified, supported, and reinforced. To accomplish this, assessment methods and tools need to consider the couplings and feedbacks between social and ecological systems, as the basis for improving the planning and management of urban development. Collaborative efforts by academics, urban planners, and other relevant actors are also essential in this context. This will require relevant methods and tools for testing and projecting scenarios of coupled social-ecological system (CSES) behavior, changes, and feedbacks, in support of sustainable development of growing cities. This paper presents a CSES modeling approach that can provide such support, by coupling socio-economically driven land use changes and associated hydrological changes. The paper exemplifies and tests the applicability of this approach for a concrete case study with relevant data availability, the Tyresan catchment in Stockholm County, Sweden. Results show that model integration in the approach can reveal impacts of urbanization on hydrological and water resource, and the implications and feedbacks for urban societies and ecosystems. The CSES approach introduces new model challenges, but holds promise for improved model support towards sustainable urban development.

  • 13.
    Kalantari, Zahra
    et al.
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Santos Ferreira, Carla Sofia
    Walsh, Rory Peter Dominic
    Dinis Ferreira, António José
    Destouni, Georgia
    Stockholm University, Faculty of Science, Department of Physical Geography.
    URBANIZATION DEVELOPMENT UNDER CLIMATE CHANGE: HYDROLOGICAL RESPONSES IN A PERI-URBAN MEDITERRANEAN CATCHMENT2017In: Land Degradation and Development, ISSN 1085-3278, E-ISSN 1099-145X, Vol. 28, no 7, p. 2207-2221Article in journal (Refereed)
    Abstract [en]

    Relatively few studies have so far investigated the hydrological impacts of urbanization in Mediterranean catchments, and particularly in peri-urban catchments experiencing relatively rapid and large changes in their land-use mosaic. This study uses data-based model simulations to investigate such impacts, with the Ribeira dos Covoes catchment in Portugal as a concrete Mediterranean peri-urban catchment example. We distinguish the impacts of urbanization from those of climatic change on the water flux partitioning and connectivity in the catchment over the period 1958-2013. Decrease in precipitation over this period has primarily driven decreases in annual runoff and actual evapotranspiration, while the urbanization development has primarily changed the relative flux partitioning and connectivity pattern in the catchment. The relative contribution of overland flow to annual and seasonal runoff has increased, keeping the absolute overland flow more or less intact, while the baseflow contribution to the stream network has decreased. Methodologically, the present simulation approach provides a relevant means for distinguishing main drivers of change in hydrological flux partitioning and connectivity under concurrent urbanization and climatic changes.

  • 14. Karlsson, Caroline S. J.
    et al.
    Kalantari, Zahra
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Mörtberg, Ulla
    Olofsson, Bo
    Lyon, Steve W.
    Stockholm University, Faculty of Science, Department of Physical Geography. The Nature Conservancy, USA.
    Natural Hazard Susceptibility Assessment for Road Planning Using Spatial Multi-Criteria Analysis2017In: Environmental Management, ISSN 0364-152X, E-ISSN 1432-1009, Vol. 60, no 5, p. 823-851Article in journal (Refereed)
    Abstract [en]

    Inadequate infrastructural networks can be detrimental to society if transport between locations becomes hindered or delayed, especially due to natural hazards which are difficult to control. Thus determining natural hazard susceptible areas and incorporating them in the initial planning process, may reduce infrastructural damages in the long run. The objective of this study was to evaluate the usefulness of expert judgments for assessing natural hazard susceptibility through a spatial multi-criteria analysis approach using hydrological, geological, and land use factors. To utilize spatial multi-criteria analysis for decision support, an analytic hierarchy process was adopted where expert judgments were evaluated individually and in an aggregated manner. The estimates of susceptible areas were then compared with the methods weighted linear combination using equal weights and factor interaction method. Results showed that inundation received the highest susceptibility. Using expert judgment showed to perform almost the same as equal weighting where the difference in susceptibility between the two for inundation was around 4%. The results also showed that downscaling could negatively affect the susceptibility assessment and be highly misleading. Susceptibility assessment through spatial multi-criteria analysis is useful for decision support in early road planning despite its limitation to the selection and use of decision rules and criteria. A natural hazard spatial multi-criteria analysis could be used to indicate areas where more investigations need to be undertaken from a natural hazard point of view, and to identify areas thought to have higher susceptibility along existing roads where mitigation measures could be targeted after in-situ investigations.

  • 15. Keesstra, Saskia
    et al.
    Nunes, Joao
    Novara, Agata
    Finger, David
    Avelar, David
    Kalantari, Zahra
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Cerda, Artemi
    The superior effect of nature based solutions in land management for enhancing ecosystem services2018In: Science of the Total Environment, ISSN 0048-9697, E-ISSN 1879-1026, Vol. 610, p. 997-1009Article, review/survey (Refereed)
    Abstract [en]

    The rehabilitation and restoration of land is a key strategy to recover services - goods and resources-ecosystems offer to the humankind. This paper reviews key examples to understand the superior effect of nature based solutions to enhance the sustainability of catchment systems by promoting desirable soil and landscape functions. The use of concepts such as connectivity and the theory of system thinking framework allowed to review coastal and river management as a guide to evaluate other strategies to achieve sustainability. In land management NBSs are not mainstream management. Through a set of case studies: organic farming in Spain; rewilding in Slovenia; land restoration in Iceland, sediment trapping in Ethiopia and wetland construction in Sweden, we show the potential of Nature based solutions (NBSs) as a cost-effective long term solution for hydrological risks and land degradation. NBSs can be divided into two main groups of strategies: soil solutions and landscape solutions. Soil solutions aim to enhance the soil health and soil functions through which local eco-system services will bemaintained or restored. Landscape solutions mainly focus on the concept of connectivity. Making the landscape less connected, facilitating less rainfall to be transformed into runoff and therefore reducing flood risk, increasing soilmoisture and reducing droughts and soil erosionwe can achieve the sustainability. The enhanced eco-system services directly feed into the realization of the Sustainable Development Goals of the United Nations.

  • 16. Khazaei, Bahram
    et al.
    Khatami, Sina
    Alemohammad, Seyed Hamed
    Rashidi, Lida
    Wu, Changshan
    Madani, Kaveh
    Stockholm University, Faculty of Science, Department of Physical Geography. Imperial College London, UK.
    Kalantari, Zahra
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Destouni, Georgia
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Aghakouchak, Amir
    Climatic or regionally induced by humans? Tracing hydro-climatic and land-use changes to better understand the Lake Urmia tragedy2019In: Journal of Hydrology, ISSN 0022-1694, E-ISSN 1879-2707, Vol. 569, p. 203-217Article in journal (Refereed)
    Abstract [en]

    Lake Urmia-a shallow endemic hypersaline lake in northwest Iran-has undergone a dramatic decline in its water level (WL), by about 8 m, since 1995. The primary cause of the WL decline in Lake Urmia has been debated in the scientific literature, regarding whether it has been predominantly driven by atmospheric climate change or by human activities in the watershed landscape. Using available climate, hydrological, and vegetation data for the period 1981-2015, this study analyzes and aims to explain the lake desiccation based on other observed hydro-climatic and vegetation changes in the Lake Urmia watershed and classical exploratory statistical methods. The analysis accounts for the relationships between atmospheric climate change (precipitation P, temperature T), and hydrological (soil moisture SM, and WL) and vegetation cover (VC; including agricultural crops and other vegetation) changes in the landscape. Results show that P, T, and SM changes cannot explain the sharp decline in lake WL since 2000. Instead, the agricultural increase of VC in the watershed correlates well with the lake WL change, indicating this human-driven VC and associated irrigation expansion as the dominant human driver of the Lake Urmia desiccation. Specifically, the greater transpiration from the expanded and increasingly irrigated agricultural crops implies increased total evapotranspiration and associated consumptive use of water (inherently related to the irrigation and water diversion and storage developments in the watershed). Thereby the runoff from the watershed into the lake has decreased, and the remaining smaller inflow to the lake has been insufficient for keeping up the previous lake WL, causing the observed WL drop to current conditions.

  • 17. Michielsen, Astrid
    et al.
    Kalantari, Zahra
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Lyon, Steve W.
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Liljegren, Eva
    Predicting and communicating flood risk of transport infrastructure based on watershed characteristics2016In: Journal of Environmental Management, ISSN 0301-4797, E-ISSN 1095-8630, Vol. 182, p. 505-518Article in journal (Refereed)
    Abstract [en]

    This research aims to identify and communicate water-related vulnerabilities in transport infrastructure, specifically flood risk of road/rail-stream intersections, based on watershed characteristics. This was done using flooding in Varmland and Vastra Gotaland, Sweden in August 2014 as case studies on which risk models are built. Three different statistical modelling approaches were considered: a partial least square regression, a binomial logistic regression, and artificial neural networks. Using the results of the different modelling approaches together in an ensemble makes it possible to cross-validate their results. To help visualize this and provide a tool for communication with stakeholders (e.g., the Swedish Transport Administration - Trafikverket), a flood 'thermometer' indicating the level of flooding risk at a given point was developed. This tool improved stakeholder interaction and helped highlight the need for better data collection in order to increase the accuracy and generalizability of modelling approaches.

  • 18. Mörtberg, Ulla
    et al.
    Goldenberg, Romain
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Kalantari, Zahra
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Kordas, Olga
    Deal, Brian
    Balfors, Berit
    Cvetkovic, Vladimir
    Integrating ecosystem services in the assessment of urban energy trajectories - A study of the Stockholm Region2017In: Energy Policy, ISSN 0301-4215, E-ISSN 1873-6777, Vol. 100, p. 338-349Article in journal (Refereed)
    Abstract [en]

    Urban development trajectories are changing towards compact, energy-efficient cities and renewable energy sources, and this will strongly affect ecosystem services (ES) that cities are dependent on but tend to disregard. Such ES can be provisioning, regulating and cultural ES, around which competition over land resources will increase with energy system shifts. Much of this can be foreseen to take place within urbanising regions that are simultaneously the living environment of a major part of the human population today. In order to inform critical urban policy decisions, tools for integrated assessment of urban energy and transport options and ecosystem services need to be developed. For this purpose, a case study of the Stockholm region was conducted, analysing three scenarios for the future urbanisation of the region, integrating a transport energy perspective and an ES perspective. The results showed that a dense but polycentric development pattern gives more opportunities for sustainable urban development, while the dense monocentric scenario has apparent drawbacks from an ES perspective. The methodology is compatible with a model integration platform for urban policy support and will thus enable integrated policy assessment of complex urban systems, with the goal of increasing their sustainability.

  • 19. Pan, Haozhi
    et al.
    Deal, Brian
    Destouni, Georgia
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Zhang, Yalei
    Kalantari, Zahra
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Sociohydrology modeling for complex urban environments in support of integrated land and water resource management practices2018In: Land Degradation and Development, ISSN 1085-3278, E-ISSN 1099-145X, Vol. 29, no 10, p. 3639-3652Article in journal (Refereed)
    Abstract [en]

    This paper argues that a systems' thinking and explicit modeling approach is needed to address noted weaknesses (in terms of practicality and usefulness) in integrated water resource management. A process of coupling complex regional land use, economy, and water system interactions in integrated modeling is demonstrated with proof-of-concept applications to two urban cases (Chicago and Stockholm). In this uniquely coupled systems model, urban land use scenarios are considered a complex urban system represented by dynamic systems models of land use, economics, and water with a focus on urban environments that include drivers and system feedbacks with implications focused on urban water systems. The integrated model results reveal that the physical availability of land for economic activities (forecasted via a bottom-up land use change model) and their locations differ sharply from top-down sectoral-based economic forecasts. This shows that both human systems (economic and land use planning) and natural systems (land use limitations and associated water implications) need to be considered in order to accurately account for system(s) impacts. For example, flood zone regulations divert land use to other locations, whereas land cover changes can greatly affect the water infiltration characteristics of land surfaces and thereby alter hydrological outcomes. Our results indicate that modeling social and natural processes using a systems approach can provide a more comprehensive understanding of coupled causal mechanisms, impacts, and feedbacks in applications of integrated water resource management.

  • 20. Pan, Haozhi
    et al.
    Page, Jessica
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Zhang, Le
    Chen, Si
    Cong, Cong
    Destouni, Georgia
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Kalantari, Zahra
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Deal, Brian
    Using comparative socio-ecological modeling to support Climate Action Planning (CAP)2019In: Journal of Cleaner Production, ISSN 0959-6526, E-ISSN 1879-1786, Vol. 232, p. 30-42Article in journal (Refereed)
    Abstract [en]

    We present a comparative socio-ecological modeling approach to identify possible improvement opportunities for Climate Action Plans (CAPs), focusing on two cities, Chicago and Stockholm. The aim is to provide a tool for capturing and addressing deep-rooted behavioral and institutional preferences that may aggravate greenhouse gas (GHG) emissions in cities. Socio-economic activities, land use change, and future urban forms are considered and forecast to the year 2040 on 30m x 30m spatial grids. GHG emissions associated with these urban development aspects are calculated and compared between the cities. Innovative policy instruments for growth control and zoning (GCZ) are simulated and tested through the socio-ecological model, to determine their effectiveness when added to other interventions included in the CAPs. Our findings show that behavioral/institutional preference for sprawl, its low density form, and resultant carbon sink losses are main factors driving current and future residential and transportation GHG emissions in Chicago. GCZ policies are shown to counteract and mitigate around 20% of these factors in the form of future GHG emissions.

  • 21. Rahmati, Omid
    et al.
    Moghaddam, Davoud Davoudi
    Moosavi, Vahid
    Kalantari, Zahra
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Samadi, Mahmood
    Lee, Saro
    Dieu, Tien
    An Automated Python Language-Based Tool for Creating Absence Samples in Groundwater Potential Mapping2019In: Remote Sensing, ISSN 2072-4292, E-ISSN 2072-4292, Vol. 11, no 11, article id 1375Article in journal (Refereed)
    Abstract [en]

    Although sampling strategy plays an important role in groundwater potential mapping and significantly influences model accuracy, researchers often apply a simple random sampling method to determine absence (non-occurrence) samples. In this study, an automated, user-friendly geographic information system (GIS)-based tool, selection of absence samples (SAS), was developed using the Python programming language. The SAS tool takes into account different geospatial concepts, including nearest neighbor (NN) and hotspot analyses. In a case study, it was successfully applied to the Bojnourd watershed, Iran, together with two machine learning models (random forest (RF) and multivariate adaptive regression splines (MARS)) with GIS and remotely sensed data, to model groundwater potential. Different evaluation criteria (area under the receiver operating characteristic curve (AUC-ROC), true skill statistic (TSS), efficiency (E), false positive rate (FPR), true positive rate (TPR), true negative rate (TNR), and false negative rate (FNR)) were used to scrutinize model performance. Two absence sample types were produced, based on a simple random method and the SAS tool, and used in the models. The results demonstrated that both RF (AUC-ROC = 0.913, TSS = 0.72, E = 0.926) and MARS (AUC-ROC = 0.889, TSS = 0.705, E = 0.90) performed better when using absence samples generated by the SAS tool, indicating that this tool is capable of producing trustworthy absence samples to improve groundwater potential models.

  • 22. Rahmati, Omid
    et al.
    Yousefi, Saleh
    Kalantari, Zahra
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Uuemaa, Evelyn
    Teimurian, Teimur
    Keesstra, Saskia
    Tien, Dat
    Dieu, Tien
    Multi-Hazard Exposure Mapping Using Machine Learning Techniques: A Case Study from Iran2019In: Remote Sensing, ISSN 2072-4292, E-ISSN 2072-4292, Vol. 11, no 16, article id 1943Article in journal (Refereed)
    Abstract [en]

    Mountainous areas are highly prone to a variety of nature-triggered disasters, which often cause disabling harm, death, destruction, and damage. In this work, an attempt was made to develop an accurate multi-hazard exposure map for a mountainous area (Asara watershed, Iran), based on state-of-the art machine learning techniques. Hazard modeling for avalanches, rockfalls, and floods was performed using three state-of-the-art models-support vector machine (SVM), boosted regression tree (BRT), and generalized additive model (GAM). Topo-hydrological and geo-environmental factors were used as predictors in the models. A flood dataset (n = 133 flood events) was applied, which had been prepared using Sentinel-1-based processing and ground-based information. In addition, snow avalanche (n = 58) and rockfall (n = 101) data sets were used. The data set of each hazard type was randomly divided to two groups: Training (70%) and validation (30%). Model performance was evaluated by the true skill score (TSS) and the area under receiver operating characteristic curve (AUC) criteria. Using an exposure map, the multi-hazard map was converted into a multi-hazard exposure map. According to both validation methods, the SVM model showed the highest accuracy for avalanches (AUC = 92.4%, TSS = 0.72) and rockfalls (AUC = 93.7%, TSS = 0.81), while BRT demonstrated the best performance for flood hazards (AUC = 94.2%, TSS = 0.80). Overall, multi-hazard exposure modeling revealed that valleys and areas close to the Chalous Road, one of the most important roads in Iran, were associated with high and very high levels of risk. The proposed multi-hazard exposure framework can be helpful in supporting decision making on mountain social-ecological systems facing multiple hazards.

  • 23.
    Seifollahi-Aghmiuni, Samaneh
    et al.
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Kalantari, Zahra
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Land, Magnus
    Destouni, Georgia
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Change Drivers and Impacts in Arctic Wetland LandscapesLiterature Review and Gap Analysis2019In: Water, ISSN 2073-4441, E-ISSN 2073-4441, Vol. 11, no 4, article id 722Article, review/survey (Refereed)
    Abstract [en]

    Wetlands are essential parts of Arctic landscapes, playing important roles for the sustainable development of the region, and linking to climate change and adaptation, ecosystem services, and the livelihood of local people. The effects of human and natural change drivers on key landscape characteristics of Arctic wetlands may be critical for ecosystem resilience, with some functional aspects still poorly understood. This paper reviews the scientific literature on change drivers for Arctic wetland landscapes, seeking to identify the main studied interactions among different drivers and landscape characteristics and their changes, as well as emerging research gaps in this context. In a total of 2232 studies of various aspects of Arctic wetland landscapes found in the literature, natural drivers and climate change have been the most studied change drivers so far, particularly regarding their impacts on carbon cycling, plant communities and biodiversity. In contrast, management plans, land use changes, and nutrient-pollutant loading, have not been investigated as much as human drivers of Arctic wetland change. This lack of study highlights essential gaps in wetland related research, and between such research and management of Arctic wetlands.

  • 24.
    Seifollahi-Aghmiuni, Samaneh
    et al.
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Nockrach, Minnoka
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Kalantari, Zahra
    Stockholm University, Faculty of Science, Department of Physical Geography.
    The Potential of Wetlands in Achieving the Sustainable Development Goals of the 2030 Agenda2019In: Water, ISSN 2073-4441, E-ISSN 2073-4441, Vol. 11, no 3, article id 609Article in journal (Refereed)
    Abstract [en]

    Wetlands used as cost-effective nature-based solutions provide environmental and socio-economic benefits to people locally and regionally. With significant loss of wetland areas due to expansion of forest, agriculture, and energy production industries, some countries, including Sweden, have begun providing economic support for environmental objectives for wetland conservation and restoration. Targeting such objectives and setting up relevant plans can decrease the risk of losing valuable wetland-related benefits and help achieve the United Nations Sustainable Development Goals (SDGs). Different ranges of wetland ecosystem services are broadly addressed by the SDGs, however, target-based assessments are required to better understand wetland functionality for sustainable development. This study investigates whether and how wetland ecosystems at local and regional scales can contribute to achieving the SDGs and their targets in Sweden. Scientific literature, policy documents, and international reports on Swedish wetland ecosystems are scrutinized to exemplify the SDGs and their targets, applying a scoring framework based on their interactions. This reveals that, overall, Swedish wetland ecosystems and implemented management plans can positively interact with 10 SDGs and 17 targets at different levels. The analysis also highlights synergies that need to be considered for integrated environmental governance and enhanced policy coherence for Swedish wetland management.

  • 25.
    Thorslund, Josefin
    et al.
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Jarsjö, Jerker
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Jaramillo, Fernando
    Stockholm University, Faculty of Science, Department of Physical Geography. Stockholm University, Faculty of Science, Stockholm Resilience Centre.
    Jawitz, James W.
    Manzoni, Stefano
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Basu, Nandita B.
    Chalov, Sergey R.
    Cohen, Matthew J.
    Creed, Irena F.
    Goldenberg, Romain
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Hylin, Anna
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Kalantari, Zahra
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Koussis, Antonis D.
    Lyon, Steve W.
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Mazi, Katerina
    Mård, Johanna
    Persson, Klas
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Pietroń, Jan
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Prieto, Carmen
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Quin, Andrew
    Stockholm University, Faculty of Science, Department of Physical Geography.
    van Meter, Kimberly
    Destouni, Georgia
    Stockholm University, Faculty of Science, Department of Physical Geography.
    Wetlands as large-scale nature-based solutions: Status and challenges for research, engineering and management2017In: Ecological Engineering: The Journal of Ecotechnology, ISSN 0925-8574, E-ISSN 1872-6992, Vol. 108, p. 489-497Article in journal (Refereed)
    Abstract [en]

    Wetlands are often considered as nature-based solutions that can provide a multitude of services of great social, economic and environmental value to humankind. Changes in land-use, water-use and climate can all impact wetland functions and services. These changes occur at scales extending well beyond the local scale of an individual wetland. However, in practical applications, engineering and management decisions usually focus on individual wetland projects and local site conditions. Here, we systematically investigate if and to what extent research has addressed the large-scale dynamics of landscape systems with multiple wetlands, hereafter referred to as wetlandscapes, which are likely to be relevant for understanding impacts of regional to global change. Although knowledge in many cases is still limited, evidence suggests that the aggregated effects of multiple wetlands in the landscape can differ considerably from the functions observed at individual wetland scales. This applies to provisioning of ecosystem services such as coastal protection, biodiversity support, groundwater level and soil moisture regulation, flood regulation and contaminant retention. We show that parallel and circular flow-paths, through which wetlands are interconnected in the landscape, may largely control such scale-function differences. We suggest ways forward for addressing the mismatch between the scales at which changes take place and the scale at which observations and implementation are currently made. These suggestions can help bridge gaps between researchers and engineers, which is critical for improving wetland function-effect predictability and management.

1 - 25 of 25
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf