Endre søk
Begrens søket
1234567 1 - 50 of 854
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1. Abdel-Aty, M.
    et al.
    Larson, Jonas
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita).
    Eleuch, H.
    Obada, A. S. F.
    Multi-particle entanglement of charge qubits coupled to a nanoresonator2011Inngår i: Physica. E, Low-Dimensional systems and nanostructures, ISSN 1386-9477, E-ISSN 1873-1759, Vol. 43, nr 9, s. 1625-1630Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The dynamics of charge qubits coupled to a nanomechanical resonator under the influence of both a phonon bath in contact with the resonator and irreversible decay of the qubits is considered. The focus of our analysis is devoted to multi-particle entanglement and the effects arising from the coupling to the reservoir. Even in the presence of the reservoirs, the inherent entanglement is found to be rather robust. Due to this fact, together with control of system parameters, the system may, therefore, be especially suited for quantum information processing. Our findings also shed light on the evolution of open quantum many-body systems. For instance, due to intrinsic qubit-qubit couplings our model is related to a driven XY spin model.

  • 2.
    Abergel, D. S. L.
    Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita). KTH Royal Institute of Technology, Sweden.
    Excitonic condensation in spatially separated one-dimensional systems2015Inngår i: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 106, nr 21, artikkel-id 213103Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We show theoretically that excitons can form from spatially separated one-dimensional ground state populations of electrons and holes, and that the resulting excitons can form a quasicondensate. We describe a mean-field Bardeen-Cooper-Schrieffer theory in the low carrier density regime and then focus on the core-shell nanowire giving estimates of the size of the excitonic gap for InAs/GaSb wires and as a function of all the experimentally relevant parameters. We find that optimal conditions for pairing include small overlap of the electron and hole bands, large effective mass of the carriers, and low dielectric constant of the surrounding media. Therefore, one-dimensional systems provide an attractive platform for the experimental detection of excitonic quasicondensation in zero magnetic field.

  • 3.
    Abergel, David S. L.
    et al.
    Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita).
    Edge, Jonathan M.
    Balatsky, Alexander V.
    Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita). Los Alamos National Laboratory, USA.
    The role of spin-orbit coupling in topologically protected interface states in Dirac materials2014Inngår i: New Journal of Physics, ISSN 1367-2630, E-ISSN 1367-2630, Vol. 16, s. 065012-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We highlight the fact that two-dimensional (2D) materials with Dirac-like low energy band structures and spin-orbit coupling (SOC) will produce linearly dispersing topologically protected Jackiw-Rebbi modes at interfaces where the Dirac mass changes sign. These modes may support persistent spin or valley currents parallel to the interface, and the exact arrangement of such topologically protected currents depends crucially on the details of the SOC in the material. As examples, we discuss buckled 2D hexagonal lattices such as silicene or germanene, and transition metal dichalcogenides such as MoS2.

  • 4.
    Abergel, David S. L.
    et al.
    Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita).
    Mucha-Kruczynski, Marcin
    Infrared absorption of closely aligned heterostructures of monolayer and bilayer graphene with hexagonal boron nitride2015Inngår i: Physical Review B, ISSN 2469-9950, E-ISSN 2469-9969, Vol. 92, nr 11, artikkel-id 115430Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We model optical absorption of monolayer and bilayer graphene on hexagonal boron nitride for the case of closely aligned crystal lattices. We show that perturbations with different spatial symmetry can lead to similar absorption spectra. We suggest that a study of the absorption spectra as a function of the doping for an almost completely full first miniband is necessary to extract meaningful information about the moire characteristics from optical absorption measurements and to distinguish between various theoretical proposals for the physically realistic interaction. Also, for bilayer graphene, the ability to compare spectra for the opposite signs of electric-field-induced interlayer asymmetry might provide additional information about the moire parameters.

  • 5. Ackermann, M.
    et al.
    Ajello, M.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Bastieri, D.
    Bellazzini, R.
    Bissaldi, E.
    Blandford, R. D.
    Bloom, E. D.
    Bonino, R.
    Bottacini, E.
    Brandt, T. J.
    Bregeon, J.
    Bruel, P.
    Buehler, R.
    Cameron, R. A.
    Caputo, R.
    Caraveo, P. A.
    Castro, D.
    Cavazzuti, E.
    Charles, E.
    Cheung, C. C.
    Chiaro, G.
    Ciprini, S.
    Cohen-Tanugi, J.
    Costantin, D.
    Cutini, S.
    D'Ammando, F.
    de Palma, F.
    Desai, A.
    Di Lalla, N.
    Di Mauro, M.
    Di Venere, L.
    Favuzzi, C.
    Finke, J.
    Franckowiak, A.
    Fukazawa, Y.
    Funk, S.
    Fusco, P.
    Gargano, F.
    Gasparrini, D.
    Giglietto, N.
    Giordano, F.
    Giroletti, M.
    Green, D.
    Grenier, I. A.
    Guillemot, L.
    Guiriec, S.
    Hays, E.
    Hewitt, J. W.
    Horan, D.
    Jóhannesson, Guðlaugur
    Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita). University of Iceland, Iceland.
    Kensei, S.
    Kuss, M.
    Larsson, S.
    Latronico, L.
    Lemoine-Goumard, M.
    Li, J.
    Longo, F.
    Loparco, F.
    Lovellette, M. N.
    Lubrano, P.
    Magill, J. D.
    Maldera, S.
    Manfreda, A.
    Mazziotta, M. N.
    McEnery, J. E.
    Meyer, M.
    Mizuno, T.
    Monzani, M. E.
    Morselli, A.
    Moskalenko, I. V.
    Negro, M.
    Nuss, E.
    Omodei, N.
    Orienti, M.
    Orlando, E.
    Ormes, J. F.
    Palatiello, M.
    Paliya, V. S.
    Paneque, D.
    Perkins, J. S.
    Persic, M.
    Pesce-Rollins, M.
    Piron, F.
    Porter, T. A.
    Principe, G.
    Raino, S.
    Rando, R.
    Rani, B.
    Razzaque, S.
    Reimer, A.
    Reimer, O.
    Reposeur, T.
    Sgro, C.
    Siskind, E. J.
    Spandre, G.
    Spinelli, P.
    Suson, D. J.
    Tajima, H.
    Thayer, J. B.
    Tibaldo, L.
    Torres, D. F.
    Tosti, G.
    Valverde, J.
    Venters, T. M.
    Vogel, M.
    Wood, K.
    Wood, M.
    Zaharijas, G.
    Biteau, J.
    The Search for Spatial Extension in High-latitude Sources Detected by the Fermi Large Area Telescope2018Inngår i: Astrophysical Journal Supplement Series, ISSN 0067-0049, E-ISSN 1538-4365, Vol. 237, nr 2, artikkel-id 32Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We present a search for spatial extension in high-latitude (vertical bar b vertical bar > 5 degrees) sources in recent Fermi point source catalogs. The result is the Fermi High-Latitude Extended Sources Catalog, which provides source extensions (or upper limits thereof) and likelihood profiles for a suite of tested source morphologies. We find 24. extended sources, 19 of which were not previously characterized as extended. These include sources that are potentially associated with supernova remnants and star-forming regions. We also found extended.-ray emission in the vicinity of the Cen. A radio lobes and-at GeV energies for the first time-spatially coincident with the radio emission of the SNR CTA 1, as well as from the Crab Nebula. We also searched for halos around active galactic nuclei, which are predicted from electromagnetic cascades induced by the e(+)e(-) pairs that are deflected in intergalactic magnetic fields. These pairs are produced when gamma-rays interact with background radiation fields. We do not find evidence for extension in individual sources or in stacked source samples. This enables us to place limits on the flux of the extended source components, which are then used to constrain the intergalactic magnetic field to be stronger than 3 x 10(-16) G for a coherence length lambda greater than or similar to 10 kpc, even when conservative assumptions on the source duty cycle are made. This improves previous limits by several orders of magnitude.

  • 6. Adam, R.
    et al.
    Ade, P. A. R.
    Aghanim, N.
    Alves, M. I. R.
    Arnaud, M.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Banday, A. J.
    Barreiro, R. B.
    Bartlett, J. G.
    Bartolo, N.
    Battaner, E.
    Benabed, K.
    Benoit, A.
    Benoit-Levy, A.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bock, J. J.
    Bonaldi, A.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Boulanger, F.
    Bucher, M.
    Burigana, C.
    Butler, R. C.
    Calabrese, E.
    Cardoso, J. -F.
    Catalano, A.
    Challinor, A.
    Chamballu, A.
    Chary, R. -R.
    Chiang, H. C.
    Christensen, P. R.
    Clements, D. L.
    Colombi, S.
    Colombo, L. P. L.
    Combet, C.
    Couchot, F.
    Coulais, A.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Danese, L.
    Davies, R. D.
    Davis, R. J.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouille, J.
    Desert, F. -X.
    Dickinson, C.
    Diego, J. M.
    Dole, H.
    Donzelli, S.
    Dore, O.
    Douspis, M.
    Ducout, A.
    Dupac, X.
    Efstathiou, G.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Falgarone, E.
    Fergusson, J.
    Finelli, F.
    Forni, O.
    Frailis, M.
    Fraisse, A. A.
    Franceschi, E.
    Frejsel, A.
    Galeotta, S.
    Galli, S.
    Ganga, K.
    Ghosh, T.
    Giard, M.
    Giraud-Heraud, Y.
    Gjerlow, E.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gratton, S.
    Gregorio, A.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita). Princeton University, USA.
    Hansen, F. K.
    Hanson, D.
    Harrison, D. L.
    Helou, G.
    Henrot-Versille, S.
    Hernandez-Monteagudo, C.
    Herranz, D.
    Hildebrandt, S. R.
    Hivon, F.
    Hobson, M.
    Holmes, W. A.
    Hornstrup, A.
    Hovest, W.
    Huffenberger, K. M.
    Hurier, G.
    Jaffe, A. H.
    Jaffe, T. R.
    Jones, W. C.
    Juvela, M.
    Keihanen, E.
    Keskitalo, R.
    Kisner, T. S.
    Kneissl, R.
    Knoche, J.
    Kunz, M.
    Kurki-Suonio, H.
    Lagache, G.
    Lahteenmaki, A.
    Lamarre, J. -M.
    Lasenby, A.
    Lattanzi, M.
    Lawrence, C. R.
    Le Jeune, M.
    Leahy, J. P.
    Leonardi, R.
    Lesgourgues, J.
    Levrier, F.
    Liguori, M.
    Lilje, P. B.
    Linden-Vornle, M.
    Lopez-Caniego, M.
    Lubin, P. M.
    Macias-Perez, J. F.
    Maggio, G.
    Maino, D.
    Mandolesi, N.
    Mangilli, A.
    Maris, M.
    Marshall, D. J.
    Martin, P. G.
    Martinez-Gonzalez, E.
    Masi, S.
    Matarrese, S.
    McGehee, P.
    Meinhold, P. R.
    Melchiorri, A.
    Mendes, L.
    Mennella, A.
    Migliaccio, M.
    Mitra, S.
    Miville-Deschenes, M. -A.
    Moneti, A.
    Montier, L.
    Morgante, G.
    Mortlock, D.
    Moss, A.
    Munshi, D.
    Murphy, J. A.
    Naselsky, P.
    Nati, F.
    Natoli, P.
    Netterfield, C. B.
    Norgaard-Nielsen, H. U.
    Noviello, F.
    Novikov, D.
    Novikov, I.
    Orlando, E.
    Oxborrow, C. A.
    Paci, F.
    Pagano, L.
    Pajot, F.
    Paladini, R.
    Paoletti, D.
    Partridge, B.
    Pasian, F.
    Patanchon, G.
    Pearson, T. J.
    Perdereau, O.
    Perotto, L.
    Perrotta, F.
    Pettorino, V.
    Piacentini, F.
    Piat, M.
    Pierpaoli, E.
    Pietrobon, D.
    Plaszczynski, S.
    Pointecouteau, E.
    Polenta, G.
    Pratt, G. W.
    Prezeau, G.
    Prunet, S.
    Puget, J. -L.
    Rachen, J. P.
    Reach, W. T.
    Rebolo, R.
    Reinecke, M.
    Remazeilles, M.
    Renault, C.
    Renzi, A.
    Ristorcelli, I.
    Rocha, G.
    Rosset, C.
    Rossetti, M.
    Roudier, G.
    Rubino-Martin, J. A.
    Rusholme, B.
    Sandri, M.
    Santos, D.
    Savelainen, M.
    Savini, G.
    Scott, D.
    Seiffert, M. D.
    Shellard, E. P. S.
    Spencer, L. D.
    Stolyarov, V.
    Stompor, R.
    Strong, A. W.
    Sudiwala, R.
    Sunyaev, R.
    Sutton, D.
    Suur-Uski, A. -S.
    Sygnet, J. -F.
    Tauber, J. A.
    Terenzi, L.
    Toffolatti, L.
    Tomasi, M.
    Tristram, M.
    Tucci, M.
    Tuovinen, J.
    Umana, G.
    Valenziano, L.
    Valiviita, J.
    Van Tent, F.
    Vielva, P.
    Villa, F.
    Wade, L. A.
    Wandelt, B. D.
    Wehus, I. K.
    Wilkinson, A.
    Yvon, D.
    Zacchei, A.
    Zonca, A.
    Planck 2015 results X. Diffuse component separation: Foreground maps2016Inngår i: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 594, artikkel-id A10Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Planck has mapped the microwave sky in temperature over nine frequency bands between 30 and 857 GHz and in polarization over seven frequency bands between 30 and 353 GHz in polarization. In this paper we consider the problem of diffuse astrophysical component separation, and process these maps within a Bayesian framework to derive an internally consistent set of full-sky astrophysical component maps. Component separation dedicated to cosmic microwave background (CMB) reconstruction is described in a companion paper. For the temperature analysis, we combine the Planck observations with the 9-yr Wilkinson Microwave Anisotropy Probe (WMAP) sky maps and the Haslam et al. 408 MHz map, to derive a joint model of CMB, synchrotron, free-free, spinning dust, CO, line emission in the 94 and 100 GHz channels, and thermal dust emission. Full-sky maps are provided for each component, with an angular resolution varying between 7: 5 and 1 degrees. Global parameters (monopoles, dipoles, relative calibration, and bandpass errors) are fitted jointly with the sky model, and best-fit values are tabulated. For polarization, the model includes CMB, synchrotron, and thermal dust emission. These models provide excellent fits to the observed data, with rms temperature residuals smaller than 4pK over 93% of the sky for all Planck frequencies up to 353 GHz, and fractional errors smaller than 1% in the remaining 7% of the sky. The main limitations of the temperature model at the lower frequencies are internal degeneracies among the spinning dust, free-free, and synchrotron components; additional observations from external low-frequency experiments will be essential to break these degeneracies. The main limitations of the temperature model at the higher frequencies are uncertainties in the 545 and 857 GHz calibration and zero-points. For polarization, the main outstanding issues are instrumental systematics in the 100-353 GHz bands on large angular scales in the form of temperature-to-polarization leakage, uncertainties in the analogue-to-digital conversion, and corrections for the very long time constant of the bolometer detectors, all of which are expected to improve in the near future.

  • 7. Adam, R.
    et al.
    Ade, P. A. R.
    Aghanim, N.
    Arnaud, M.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Banday, A. J.
    Barreiro, R. B.
    Bartlett, J. G.
    Bartolo, N.
    Basak, S.
    Battaner, E.
    Benabed, K.
    Benoit, A.
    Benoit-Levy, A.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bock, J. J.
    Bonaldi, A.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Boulanger, F.
    Bucher, M.
    Burigana, C.
    Butler, R. C.
    Calabrese, E.
    Cardoso, J. -F.
    Casaponsa, B.
    Castex, G.
    Catalano, A.
    Challinor, A.
    Chamballu, A.
    Chary, R-R.
    Chiang, H. C.
    Christensen, P. R.
    Clements, D. L.
    Colombi, S.
    Colombo, L. P. L.
    Combet, C.
    Couchot, F.
    Coulais, A.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Danese, L.
    Davies, R. D.
    Davis, R. J.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouille, J.
    Desert, F. -X.
    Dickinson, C.
    Diego, J. M.
    Dole, H.
    Donzelli, S.
    Dore, O.
    Douspis, M.
    Ducout, A.
    Dupac, X.
    Efstathiou, G.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Falgarone, E.
    Fantaye, Y.
    Fergusson, J.
    Finelli, F.
    Forni, O.
    Frailis, M.
    Fraisse, A. A.
    Francescht, E.
    Frejsel, A.
    Galeotta, S.
    Galli, S.
    Ganga, K.
    Ghosh, T.
    Giard, M.
    Giraud-Heraud, Y.
    Gjerlow, E.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gratton, S.
    Gregorio, A.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita). Princeton University, USA.
    Hansen, F. K.
    Hanson, D.
    Harrison, D. L.
    Helou, G.
    Henrot-Versille, S.
    Hernandez-Monteagudo, C.
    Herranz, D.
    Hildebrandt, S. R.
    Hivon, E.
    Hobson, M.
    Holmes, W. A.
    Hornstrup, A.
    Hovest, W.
    Huffenberger, K. M.
    Hurier, G.
    Jaffe, A. H.
    Jaffe, T. R.
    Jones, W. C.
    Juvela, M.
    Keihanen, E.
    Keskitalo, R.
    Kisner, T. S.
    Kneissl, R.
    Knoche, J.
    Krachmalnicoff, N.
    Kunz, M.
    Kurki-Suonio, H.
    Lagache, G.
    Lamarre, J. -M.
    Lasenby, A.
    Lattanzi, M.
    Lawrence, C. R.
    Le Jenne, M.
    Leonardi, R.
    Lesgourgues, J.
    Levrier, F.
    Liguori, M.
    Lilje, P. B.
    Linden-Vornle, M.
    Lopez-Caniego, M.
    Lubin, P. M.
    Macias-Perez, J. F.
    Maggio, G.
    Maino, D.
    Mandolesi, N.
    Mangilli, A.
    Maris, M.
    Marshall, D. J.
    Martin, P. G.
    Martinez-Gonzalez, E.
    Masi, S.
    Matarrese, S.
    McGehee, P.
    Meinhold, P. R.
    Melchiorri, A.
    Mendes, L.
    Mennella, A.
    Migliaccio, M.
    Mitra, S.
    Miville-Deschenes, M. -A.
    Molinari, D.
    Moneti, A.
    Montier, L.
    Morgante, G.
    Mortlock, D.
    Moss, A.
    Munshi, D.
    Murphy, J. A.
    Naselsky, P.
    Nati, F.
    Natoli, P.
    Netterfield, C. B.
    Norgaard-Nielsen, H. U.
    Noviello, F.
    Novikov, D.
    Novikov, I.
    Oxborrow, C. A.
    Paci, F.
    Pagano, L.
    Pajot, F.
    Paladini, R.
    Paoletti, D.
    Pasian, F.
    Patanchon, G.
    Pearson, T. J.
    Perdereau, O.
    Perotto, L.
    Perrotta, F.
    Pettorino, V.
    Piacentini, F.
    Piat, M.
    Pierpaoli, E.
    Pietrobon, D.
    Plaszczynski, S.
    Pointecouteau, E.
    Polenta, G.
    Pratt, G. W.
    Prezeau, G.
    Prunet, S.
    Puget, J. -L.
    Rachen, J. P.
    Racine, B.
    Reach, W. T.
    Rebolo, R.
    Reinecke, M.
    Remazeilles, M.
    Renault, C.
    Renzi, A.
    Ristorcelli, I.
    Rocha, G.
    Rosset, C.
    Rossetti, M.
    Roudier, G.
    Rubino-Martin, J. A.
    Rusholme, B.
    Sandri, M.
    Santos, D.
    Savelainen, M.
    Savini, G.
    Scott, D.
    Seiffert, M. D.
    Shellard, E. P. S.
    Spencer, L. D.
    Stolyarov, V.
    Stompor, R.
    Sudiwala, R.
    Sunyaev, R.
    Sutton, D.
    Suur-Uski, A. -S.
    Sygnet, J. -F.
    Tauber, J. A.
    Terenzi, L.
    Toffolatti, L.
    Tomasi, M.
    Tristram, M.
    Trombetti, T.
    Tucci, M.
    Tuovinen, J.
    Valenziano, L.
    Valiviita, J.
    Van Tent, F.
    Vielva, P.
    Villa, F.
    Wade, L. A.
    Wandelt, B. D.
    Wehus, I. K.
    Yvon, D.
    Zacchei, A.
    Zonca, A.
    Planck 2015 results IX. Diffuse component separation: CMB maps2016Inngår i: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 594, artikkel-id A9Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We present foreground-reduced cosmic microwave background (CMB) maps derived from the full Planck data set in both temperature and polarization. Compared to the corresponding Planck 2013 temperature sky maps, the total data volume is larger by a factor of 3.2 for frequencies between 30 and 70 GHz, and by 1.9 for frequencies between 100 and 857 GHz. In addition, systematic errors in the forms of temperature-topolarization leakage, analogue-to-digital conversion uncertainties, and very long time constant errors have been dramatically reduced, to the extent that the cosmological polarization signal may now be robustly recovered on angular scales l greater than or similar to 40. On the very largest scales, instrumental systematic residuals are still non-negligible compared to the expected cosmological signal, and modes with l < 20 are accordingly suppressed in the current polarization maps by high-pass filtering. As in 2013, four different CMB component separation algorithms are applied to these observations, providing a measure of stability with respect to algorithmic and modelling choices. The resulting polarization maps have rms instrumental noise ranging between 0.21 and 0.27 mu K averaged over 55' pixels, and between 4.5 and 6.1 mu K averaged over 3.'4 pixels. The cosmological parameters derived from the analysis of temperature power spectra are in agreement at the 1 sigma level with the Planck 2015 likelihood. Unresolved mismatches between the noise properties of the data and simulations prevent a satisfactory description of the higher-order statistical properties of the polarization maps. Thus, the primary applications of these polarization maps are those that do not require massive simulations for accurate estimation of uncertainties, for instance estimation of cross-spectra and cross-correlations, or stacking analyses. However, the amplitude of primordial non-Gaussianity is consistent with zero within 2 sigma for all local, equilateral, and orthogonal configurations of the bispectrum, including for polarization E-modes. Moreover, excellent agreement is found regarding the lensing B-mode power spectrum, both internally among the various component separation codes and with the best-fit Planck 2015 Lambda cold dark matter model.

  • 8. Adam, R.
    et al.
    Ade, P. A. R.
    Aghanim, N.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Banday, A. J.
    Barreiro, R. B.
    Bartolo, N.
    Battaner, E.
    Benabed, K.
    Benoit-Levy, A.
    Bersanelli, M.
    Bielewicz, P.
    Bikmaev, I.
    Bonaldi, A.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Burenin, R.
    Burigana, C.
    Calabrese, E.
    Cardoso, J. -F.
    Catalano, A.
    Chiang, H. C.
    Christensen, P. R.
    Churazov, E.
    Colombo, L. P. L.
    Combet, C.
    Comis, B.
    Couchot, F.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Danese, L.
    Davis, R. J.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouille, J.
    Desert, F. -X.
    Diego, J. M.
    Dole, H.
    Dore, O.
    Douspis, M.
    Ducout, A.
    Dupac, X.
    Elsner, F.
    Ensslin, T. A.
    Finelli, F.
    Forni, O.
    Frailis, M.
    Fraisse, A. A.
    Franceschi, E.
    Galeotta, S.
    Ganga, K.
    Genova-Santos, R. T.
    Giard, M.
    Giraud-Heraud, Y.
    Gjerlow, E.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gregorio, A.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita). Princeton University, USA.
    Hansen, F. K.
    Harrison, D. L.
    Hernandez-Monteagudo, C.
    Herranz, D.
    Hildebrandt, S. R.
    Hivon, E.
    Hobson, M.
    Hornstrup, A.
    Hovest, W.
    Hurier, G.
    Jaffe, A. H.
    Jaffe, T. R.
    Jones, W. C.
    Keihanen, E.
    Keskitalo, R.
    Khamitov, I.
    Kisner, T. S.
    Kneissl, R.
    Knoche, J.
    Kunz, M.
    Kurki-Suonio, H.
    Lagache, G.
    Lahteenmaki, A.
    Lamarre, J. -M.
    Lasenby, A.
    Lattanzi, M.
    Lawrence, C. R.
    Leonardi, R.
    Levrier, F.
    Liguori, M.
    Lilje, P. B.
    Linden-Vornle, M.
    Lopez-Caniego, M.
    Macias-Perez, J. F.
    Maffei, B.
    Maggio, G.
    Mandolesi, N.
    Mangilli, A.
    Maris, M.
    Martin, P. G.
    Martinez-Gonzalez, E.
    Masi, S.
    Matarrese, S.
    Melchiorri, A.
    Mennella, A.
    Migliaccio, M.
    Miville-Deschenes, M. -A.
    Moneti, A.
    Montier, L.
    Morgante, G.
    Mortlock, D.
    Munshi, D.
    Murphy, J. A.
    Naselsky, P.
    Nati, F.
    Natoli, P.
    Norgaard-Nielsen, H. U.
    Novikov, D.
    Novikov, I.
    Oxborrow, C. A.
    Pagano, L.
    Pajot, F.
    Paoletti, D.
    Pasian, F.
    Perdereau, O.
    Perotto, L.
    Pettorino, V.
    Piacentini, F.
    Piat, M.
    Plaszczynski, S.
    Pointecouteau, E.
    Polenta, G.
    Ponthieu, N.
    Pratt, G. W.
    Prunet, S.
    Puget, J. -L.
    Rachen, J. P.
    Rebolo, R.
    Reinecke, M.
    Remazeilles, M.
    Renault, C.
    Renzi, A.
    Ristorcelli, I.
    Rocha, G.
    Rosset, C.
    Rossetti, M.
    Roudier, G.
    Rubino-Martin, J. A.
    Rusholme, B.
    Santos, D.
    Savelainen, M.
    Savini, G.
    Scott, D.
    Stolyarov, V.
    Stompor, R.
    Sudiwala, R.
    Sunyaev, R.
    Sutton, D.
    Suur-Uski, A. -S.
    Sygnet, J. -F.
    Tauber, J. A.
    Terenzi, L.
    Toffolatti, L.
    Tomasi, M.
    Tristram, M.
    Tucci, M.
    Valenziano, L.
    Valiviita, J.
    Van Tent, F.
    Vielva, P.
    Villa, F.
    Wade, L. A.
    Wehus, I. K.
    Yvon, D.
    Zacchei, A.
    Zonca, A.
    Planck intermediate results XLIII. Spectral energy distribution of dust in clusters of galaxies2016Inngår i: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 596, artikkel-id A104Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Although infrared (IR) overall dust emission from clusters of galaxies has been statistically detected using data from the Infrared Astronomical Satellite (IRAS), it has not been possible to sample the spectral energy distribution (SED) of this emission over its peak, and thus to break the degeneracy between dust temperature and mass. By complementing the IRAS spectral coverage with Planck satellite data from 100 to 857 GHz, we provide new constraints on the IR spectrum of thermal dust emission in clusters of galaxies. We achieve this by using a stacking approach for a sample of several hundred objects from the Planck cluster sample. This procedure averages out fluctuations from the IR sky, allowing us to reach a significant detection of the faint cluster contribution. We also use the large frequency range probed by Planck, together with component-separation techniques, to remove the contamination from both cosmic microwave background anisotropies and the thermal Sunyaev-Zeldovich effect (tSZ) signal, which dominate at v <= 353 GHz. By excluding dominant spurious signals or systematic effects, averaged detections are reported at frequencies 353 GHz <= v <= 5000 GHz. We confirm the presence of dust in clusters of galaxies at low and intermediate redshifts, yielding an SED with a shape similar to that of the Milky Way. Planck's resolution does not allow us to investigate the detailed spatial distribution of this emission (e.g. whether it comes from intergalactic dust or simply the dust content of the cluster galaxies), but the radial distribution of the emission appears to follow that of the stacked SZ signal, and thus the extent of the clusters. The recovered SED allows us to constrain the dust mass responsible for the signal and its temperature.

  • 9. Adam, R.
    et al.
    Ade, P. A. R.
    Alves, M. I. R.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Banday, A. J.
    Barreiro, R. B.
    Bartolo, N.
    Battaner, E.
    Benabed, K.
    Benoit-Levy, A.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Boulanger, F.
    Bucher, M.
    Burigana, C.
    Butler, R. C.
    Calabrese, E.
    Cardoso, J. -F.
    Catalano, A.
    Chiang, H. C.
    Christensen, P. R.
    Colombo, L. P. L.
    Combet, C.
    Couchot, F.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Danese, L.
    Davis, R. J.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouille, J.
    Dickinson, C.
    Diego, J. M.
    Dolag, K.
    Dore, O.
    Ducout, A.
    Dupac, X.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Ferriere, K.
    Finelli, F.
    Forni, O.
    Frailis, M.
    Fraisse, A. A.
    Franceschi, E.
    Galeotta, S.
    Ganga, K.
    Ghosh, T.
    Giard, M.
    Gjerlow, E.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gregorio, A.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita). Princeton University, USA.
    Hansen, F. K.
    Harrison, D. L.
    Hernandez-Monteagudo, C.
    Herranz, D.
    Hildebrandt, S. R.
    Hobson, M.
    Hornstrup, A.
    Hurier, G.
    Jaffe, A. H.
    Jaffe, T. R.
    Jones, W. C.
    Juvela, M.
    Keihanen, E.
    Keskitalo, R.
    Kisner, T. S.
    Knoche, J.
    Kunz, M.
    Kurki-Suonio, H.
    Lamarre, J. -M.
    Lasenby, A.
    Lattanzi, M.
    Lawrence, C. R.
    Leahy, J. P.
    Leonardi, R.
    Levrier, F.
    Liguori, M.
    Lilje, P. B.
    Linden-Vornle, M.
    Lopez-Caniego, M.
    Lubin, P. M.
    Macias-Perez, J. F.
    Maggio, G.
    Maino, D.
    Mandolesi, N.
    Mangilli, A.
    Maris, M.
    Martin, P. G.
    Martinez-Gonzalez, E.
    Masi, S.
    Matarrese, S.
    Melchiorri, A.
    Mennella, A.
    Migliaccio, M.
    Miville-Deschenes, M. -A.
    Moneti, A.
    Montier, L.
    Morgante, G.
    Munshi, D.
    Murphy, J. A.
    Naselsky, P.
    Nati, F.
    Natoli, P.
    Norgaard-Nielsen, H. U.
    Oppermann, N.
    Orlando, E.
    Pagano, L.
    Pajot, F.
    Paladini, R.
    Paoletti, D.
    Pasian, F.
    Perotto, L.
    Pettorino, V.
    Piacentini, F.
    Piat, M.
    Pierpaoli, E.
    Plaszczynski, S.
    Pointecouteau, E.
    Polenta, G.
    Ponthieu, N.
    Pratt, G. W.
    Prunet, S.
    Puget, J. -L.
    Rachen, J. P.
    Reinecke, M.
    Remazeilles, M.
    Renault, C.
    Renzi, A.
    Ristorcelli, I.
    Rocha, G.
    Rossetti, M.
    Roudier, G.
    Rubino-Martin, J. A.
    Rusholme, B.
    Sandri, M.
    Santos, D.
    Savelainen, M.
    Scott, D.
    Spencer, L. D.
    Stolyarov, V.
    Stompor, R.
    Strong, A. W.
    Sudiwala, R.
    Sunyaev, R.
    Suur-Uski, A. -S.
    Sygnet, J. -F.
    Tauber, J. A.
    Terenzi, L.
    Toffolatti, L.
    Tomasi, M.
    Tristram, M.
    Tucci, M.
    Valenziano, L.
    Valiviita, J.
    Van Tent, F.
    Vielva, P.
    Villa, F.
    Wade, L. A.
    Wandelt, B. D.
    Wehus, I. K.
    Yvon, D.
    Zacchei, A.
    Zonca, A.
    Planck intermediate results XLII. Large-scale Galactic magnetic fields2016Inngår i: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 596, artikkel-id A103Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Recent models for the large-scale Galactic magnetic fields in the literature have been largely constrained by synchrotron emission and Faraday rotation measures. We use three different but representative models to compare their predicted polarized synchrotron and dust emission with that measured by the Planck satellite. We first update these models to match the Planck synchrotron products using a common model for the cosmic-ray leptons. We discuss the impact on this analysis of the ongoing problems of component separation in the Planck microwave bands and of the uncertain cosmic-ray spectrum. In particular, the inferred degree of ordering in the magnetic fields is sensitive to these systematic uncertainties, and we further show the importance of considering the expected variations in the observables in addition to their mean morphology. We then compare the resulting simulated emission to the observed dust polarization and find that the dust predictions do not match the morphology in the Planck data but underpredict the dust polarization away from the plane. We modify one of the models to roughly match both observables at high latitudes by increasing the field ordering in the thin disc near the observer. Though this specific analysis is dependent on the component separation issues, we present the improved model as a proof of concept for how these studies can be advanced in future using complementary information from ongoing and planned observational projects.

  • 10. Adam, R.
    et al.
    Aghanim, N.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Ballardini, M.
    Banday, A. J.
    Barreiro, R. B.
    Bartolo, N.
    Basak, S.
    Battye, R.
    Benabed, K.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bock, J. J.
    Bonaldi, A.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Boulanger, F.
    Bucher, M.
    Burigana, C.
    Calabrese, E.
    Cardoso, J. -F.
    Carron, J.
    Chiang, H. C.
    Colombo, L. P. L.
    Combet, C.
    Comis, B.
    Couchot, F.
    Coulais, A.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Davis, R. J.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouille, J.
    Di Valentino, E.
    Dickinson, C.
    Diego, J. M.
    Dore, O.
    Douspis, M.
    Ducout, A.
    Dupac, X.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Falgarone, E.
    Fantaye, Y.
    Finelli, F.
    Forastieri, F.
    Frailis, M.
    Fraisse, A. A.
    Franceschi, E.
    Frolov, A.
    Galeotta, S.
    Galli, S.
    Ganga, K.
    Genova-Santos, R. T.
    Gerbino, Martina
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita). Università La Sapienza, Italy.
    Ghosh, T.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita). Princeton University, USA.
    Hansen, F. K.
    Helou, G.
    Henrot-Versille, S.
    Herranz, D.
    Hivon, E.
    Huang, Z.
    Ilic, S.
    Jaffe, A. H.
    Jones, W. C.
    Keihanen, E.
    Keskitalo, R.
    Kisner, T. S.
    Knox, L.
    Krachmalnicoff, N.
    Kunz, M.
    Kurki-Suonio, H.
    Lagache, G.
    Lahteenmaki, A.
    Lamarre, J. -M.
    Langer, M.
    Lasenby, A.
    Lattanzi, M.
    Lawrence, C. R.
    Le Jeune, M.
    Levrier, F.
    Lewis, A.
    Liguori, M.
    Lilje, P. B.
    Lopez-Caniego, M.
    Ma, Y. -Z.
    Macias-Perez, J. F.
    Maggio, G.
    Mangilli, A.
    Maris, M.
    Martin, P. G.
    Martinez-Gonzalez, E.
    Matarrese, S.
    Mauri, N.
    McEwen, J. D.
    Meinhold, P. R.
    Melchiorri, A.
    Mennella, A.
    Migliaccio, M.
    Miville-Deschenes, M. -A.
    Molinari, D.
    Moneti, A.
    Montier, L.
    Morgante, G.
    Moss, A.
    Naselsky, P.
    Natoli, P.
    Oxborrow, C. A.
    Pagano, L.
    Paoletti, D.
    Partridge, B.
    Patanchon, G.
    Patrizii, L.
    Perdereau, O.
    Perotto, L.
    Pettorino, V.
    Piacentini, F.
    Plaszczynski, S.
    Polastri, L.
    Polenta, G.
    Puget, J. -L
    Rachen, J. P.
    Racine, B.
    Reinecke, M.
    Remazeilles, M.
    Renzi, A.
    Rocha, G.
    Rossetti, M.
    Roudier, G.
    Rubino-Martin, J. A.
    Ruiz-Granados, B.
    Salvati, L.
    Sandri, M.
    Savelainen, M.
    Scott, D.
    Sirri, G.
    Sunyaev, R.
    Suur-Uski, A. -S.
    Tauber, J. A.
    Tenti, M.
    Toffolatti, L.
    Tomasi, M.
    Tristram, M.
    Trombetti, T.
    Valiviita, J.
    Van Tent, F.
    Vielva, P.
    Villa, F.
    Vittorio, N.
    Wandelt, B. D.
    Wehus, I. K.
    White, M.
    Zacchei, A.
    Zonca, A.
    Planck intermediate results XLVII. Planck constraints on reionization history2016Inngår i: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 596, artikkel-id A108Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We investigate constraints on cosmic reionization extracted from the Planck cosmic microwave background (CMB) data. We combine the Planck CMB anisotropy data in temperature with the low-multipole polarization data to fit Lambda CDM models with various parameterizations of the reionization history. We obtain a Thomson optical depth tau = 0.058 +/- 0.012 for the commonly adopted instantaneous reionization model. This confirms, with data solely from CMB anisotropies, the low value suggested by combining Planck 2015 results with other data sets, and also reduces the uncertainties. We reconstruct the history of the ionization fraction using either a symmetric or an asymmetric model for the transition between the neutral and ionized phases. To determine better constraints on the duration of the reionization process, we also make use of measurements of the amplitude of the kinetic Sunyaev-Zeldovich (kSZ) effect using additional information from the high-resolution Atacama Cosmology Telescope and South Pole Telescope experiments. The average redshift at which reionization occurs is found to lie between z = 7.8 and 8.8, depending on the model of reionization adopted. Using kSZ constraints and a redshift-symmetric reionization model, we find an upper limit to the width of the reionization period of Delta z < 2.8. In all cases, we find that the Universe is ionized at less than the 10% level at redshifts above z similar or equal to 10. This suggests that an early onset of reionization is strongly disfavoured by the Planck data. We show that this result also reduces the tension between CMB-based analyses and constraints from other astrophysical sources.

  • 11. Adam, R.
    et al.
    Gerbino, Martina
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita). Università La Sapienza, Italy.
    Gudmundsson, Jón E.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita). Princeton University, USA.
    Lawrence, C. R.
    Zonca, A.
    Planck 2015 results I. Overview of products and scientific results2016Inngår i: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 594, artikkel-id A1Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The European Space Agency's Planck satellite, which is dedicated to studying the early Universe and its subsequent evolution, was launched on 14 May 2009. It scanned the microwave and submillimetre sky continuously between 12 August 2009 and 23 October 2013. In February 2015, ESA and the Planck Collaboration released the second set of cosmology products based on data from the entire Planck mission, including both temperature and polarization, along with a set of scientific and technical papers and a web-based explanatory supplement. This paper gives an overview of the main characteristics of the data and the data products in the release, as well as the associated cosmological and astrophysical science results and papers. The data products include maps of the cosmic microwave background (CMB), the thermal Sunyaev-Zeldovich effect, diffuse foregrounds in temperature and polarization, catalogues of compact Galactic and extragalactic sources (including separate catalogues of Sunyaev-Zeldovich clusters and Galactic cold clumps), and extensive simulations of signals and noise used in assessing uncertainties and the performance of the analysis methods. The likelihood code used to assess cosmological models against the Planck data is described, along with a CMB lensing likelihood. Scientific results include cosmological parameters derived from CMB power spectra, gravitational lensing, and cluster counts, as well as constraints on inflation, non-Gaussianity, primordial magnetic fields, dark energy, and modified gravity, and new results on low-frequency Galactic foregrounds.

  • 12. Ade, P. A. R.
    et al.
    Aghanim, N.
    Alves, M. I. R.
    Arnaud, M.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Banday, A. J.
    Barreiro, R. B.
    Bartlett, J. G.
    Bartolo, N.
    Battaner, E.
    Benabed, K.
    Benoit, A.
    Benoit-Levy, A.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bock, J. J.
    Bonaldi, A.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Boulanger, F.
    Bucher, M.
    Burigana, C.
    Butler, R. C.
    Calabrese, E.
    Cardoso, J. -F.
    Catalano, A.
    Challinor, A.
    Chamballu, A.
    Chary, R. -R.
    Chiang, H. C.
    Christensen, P. R.
    Colombi, S.
    Colombo, L. P. L.
    Combet, C.
    Couchot, F.
    Coulais, A.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Danese, L.
    Davies, R. D.
    Davis, R. J.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouille, J.
    Delouis, J. -M.
    Desert, F. -X.
    Dickinson, C.
    Diego, J. M.
    Dole, H.
    Donzelli, S.
    Dore, O.
    Douspis, M.
    Ducout, A.
    Dupac, X.
    Efstathiou, G.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Falgarone, E.
    Fergusson, J.
    Finelli, F.
    Forni, O.
    Frailis, M.
    Fraisse, A. A.
    Franceschi, E.
    Frejsel, A.
    Galeotta, S.
    Galli, S.
    Ganga, K.
    Ghosh, T.
    Giard, M.
    Giraud-Heraud, Y.
    Gjerlow, E.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gratton, S.
    Gregorio, A.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita). Princeton University, USA.
    Hansen, F. K.
    Hanson, D.
    Harrison, D. L.
    Helou, G.
    Henrot-Versille, S.
    Hernandez-Monteagudo, C.
    Herranz, D.
    Hildebrandt, S. R.
    Hivon, E.
    Hobson, M.
    Holmes, W. A.
    Hornstrup, A.
    Hovest, W.
    Huffenberger, K. M.
    Hurier, G.
    Jaffe, A. H.
    Jaffe, T. R.
    Jones, W. C.
    Juvela, M.
    Keihanen, E.
    Keskitalo, R.
    Kisner, T. S.
    Kneissl, R.
    Knoche, J.
    Kunz, M.
    Kurki-Suonio, H.
    Lagache, G.
    Lahteenmaki, A.
    Lamarre, J. -M.
    Lasenby, A.
    Lattanzi, M.
    Lawrence, C. R.
    Leahy, J. P.
    Leonardi, R.
    Lesgourgues, J.
    Levrier, F.
    Liguori, M.
    Lilje, P. B.
    Linden-Vornle, M.
    Lopez-Caniego, M.
    Lubin, P. M.
    Macias-Perez, J. F.
    Maggio, G.
    Maino, D.
    Mandolesi, N.
    Mangilli, A.
    Maris, M.
    Marshall, D. J.
    Martin, P. G.
    Martinez-Gonzalez, E.
    Masi, S.
    Matarrese, S.
    McGehee, P.
    Meinhold, P. R.
    Melchiorri, A.
    Mendes, L.
    Mennella, A.
    Migliaccio, M.
    Mitra, S.
    Miville-Deschenes, M. -A.
    Moneti, A.
    Montier, L.
    Morgante, G.
    Mortlock, D.
    Moss, A.
    Munshi, D.
    Murphy, J. A.
    Nati, F.
    Natoli, P.
    Netterfield, C. B.
    Norgaard-Nielsen, H. U.
    Noviello, F.
    Novikov, D.
    Novikov, I.
    Orlando, E.
    Oxborrow, C. A.
    Paci, F.
    Pagano, L.
    Pajot, F.
    Paladini, R.
    Paoletti, D.
    Partridge, B.
    Pasian, F.
    Patanchon, G.
    Pearson, T. J.
    Peel, M.
    Perdereau, O.
    Perotto, L.
    Perrotta, F.
    Pettorino, V.
    Piacentini, F.
    Piat, M.
    Pierpaoli, E.
    Pietrobon, D.
    Plaszczynski, S.
    Pointecouteau, E.
    Polenta, G.
    Pratt, G. W.
    Prezeau, G.
    Prunet, S.
    Puget, J. -L.
    Rachen, J. P.
    Reach, W. T.
    Rebolo, R.
    Reinecke, M.
    Remazeilles, M.
    Renault, C.
    Renzi, A.
    Ristorcelli, I.
    Rocha, G.
    Rosset, C.
    Rossetti, M.
    Roudier, G.
    Rubino-Martin, J. A.
    Rusholme, B.
    Sandri, M.
    Santos, D.
    Savelainen, M.
    Savini, G.
    Scott, D.
    Seiffert, M. D.
    Shellard, E. P. S.
    Spencer, L. D.
    Stolyarov, V.
    Stompor, R.
    Strong, A. W.
    Sudiwala, R.
    Sunyaev, R.
    Sutton, D.
    Suur-Uski, A. -S.
    Sygnet, J. -F.
    Tauber, J. A.
    Terenzi, L.
    Toffolatti, L.
    Tomasi, M.
    Tristram, M.
    Tucci, M.
    Tuovinen, J.
    Umana, G.
    Valenziano, L.
    Valiviita, J.
    Van Tent, F.
    Vidal, M.
    Vielva, P.
    Villa, F.
    Wade, L. A.
    Wandelt, B. D.
    Watson, R.
    Wehus, I. K.
    Wilkinson, A.
    Yvon, D.
    Zacchei, A.
    Zonca, A.
    Planck 2015 results XXV. Diffuse low-frequency Galactic foregrounds2016Inngår i: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 594, artikkel-id A25Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We discuss the Galactic foreground emission between 20 and 100 GHz based on observations by Planck and WMAP. The total intensity in this part of the spectrum is dominated by free-free and spinning dust emission, whereas the polarized intensity is dominated by synchrotron emission. The Commander component-separation tool has been used to separate the various astrophysical processes in total intensity. Comparison with radio recombination line templates verifies the recovery of the free-free emission along the Galactic plane. Comparison of the high-latitude H alpha emission with our free-free map shows residuals that correlate with dust optical depth, consistent with a fraction (approximate to 30%) of H alpha having been scattered by high-latitude dust. We highlight a number of diffuse spinning dust morphological features at high latitude. There is substantial spatial variation in the spinning dust spectrum, with the emission peak (in I-v) ranging from below 20 GHz to more than 50 GHz. There is a strong tendency for the spinning dust component near many prominent H Pi regions to have a higher peak frequency, suggesting that this increase in peak frequency is associated with dust in the photo-dissociation regions around the nebulae. The emissivity of spinning dust in these diffuse regions is of the same order as previous detections in the literature. Over the entire sky, the Commander solution finds more anomalous microwave emission (AME) than the WMAP component maps, at the expense of synchrotron and free-free emission. This can be explained by the difficulty in separating multiple broadband components with a limited number of frequency maps. Future surveys, particularly at 5-20 GHz, will greatly improve the separation by constraining the synchrotron spectrum. We combine Planck and WMAP data to make the highest signal-to-noise ratio maps yet of the intensity of the all-sky polarized synchrotron emission at frequencies above a few GHz. Most of the high-latitude polarized emission is associated with distinct large-scale loops and spurs, and we re-discuss their structure. We argue that nearly all the emission at 40 degrees > l > -90 degrees is part of the Loop I structure, and show that the emission extends much further in to the southern Galactic hemisphere than previously recognised, giving Loop I an ovoid rather than circular outline. However, it does not continue as far as the Fermi bubble/microwave haze, making it less probable that these are part of the same structure. We identify a number of new faint features in the polarized sky, including a dearth of polarized synchrotron emission directly correlated with a narrow, roughly 20 degrees long filament seen in H alpha at high Galactic latitude. Finally, we look for evidence of polarized AME, however many AME regions are significantly contaminated by polarized synchrotron emission, and we find a 2 sigma upper limit of 1.6% in the Perseus region.

  • 13. Ade, P. A. R.
    et al.
    Aghanim, N.
    Argueeso, F.
    Arnaud, M.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Banday, A. J.
    Barreiro, R. B.
    Bartolo, N.
    Battaner, E.
    Beichman, C.
    Benabed, K.
    Benoit, A.
    Benoit-Levy, A.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bock, J. J.
    Boehringer, H.
    Bonaldi, A.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Boulanger, F.
    Bucher, M.
    Burigana, C.
    Butler, R. C.
    Calabrese, E.
    Cardoso, J. -F.
    Carvalho, P.
    Catalano, A.
    Challinor, A.
    Chamballu, A.
    Chary, R. -R.
    Chiang, H. C.
    Christensen, P. R.
    Clemens, M.
    Clements, D. L.
    Colombi, S.
    Colombo, L. P. L.
    Combet, C.
    Couchot, F.
    Coulais, A.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Danese, L.
    Davies, R. D.
    Davis, R. J.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouille, J.
    Desert, F. -X.
    Dickinson, C.
    Diego, J. M.
    Dole, H.
    Donzelli, S.
    Dore, O.
    Douspis, M.
    Ducout, A.
    Dupac, X.
    Efstathiou, G.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Falgarone, E.
    Fergusson, J.
    Finelli, F.
    Forni, O.
    Frailis, M.
    Fraisse, A. A.
    Franceschi, E.
    Frejsel, A.
    Galeotta, S.
    Galli, S.
    Ganga, K.
    Giard, M.
    Giraud-Heraud, Y.
    Gjerlow, E.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gratton, S.
    Gregorio, A.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita). Princeton University, USA.
    Hansen, F. K.
    Hanson, D.
    Harrison, D. L.
    Helou, G.
    Henrot-Versille, S.
    Hernandez-Monteagudo, C.
    Herranz, D.
    Hildebrandt, S. R.
    Hivon, E.
    Hobson, M.
    Holmes, W. A.
    Hornstrup, A.
    Hovest, W.
    Huffenberger, K. M.
    Hurier, G.
    Jaffe, A. H.
    Jaffe, T. R.
    Jones, W. C.
    Juvela, M.
    Keihanen, E.
    Keskitalo, R.
    Kisner, T. S.
    Kneissl, R.
    Knoche, J.
    Kunz, M.
    Kurki-Suonio, H.
    Lagache, G.
    Lahteenmaki, A.
    Lamarre, J. -M.
    Lasenby, A.
    Lattanzi, M.
    Lawrence, C. R.
    Leahy, J. P.
    Leonardi, R.
    Leon-Tavares, J.
    Lesgourgues, J.
    Levrier, F.
    Liguori, M.
    Lilje, P. B.
    Linden-Vornle, M.
    Lopez-Caniego, M.
    Lubin, P. M.
    Macias-Perez, J. F.
    Maggio, G.
    Maino, D.
    Mandolesi, N.
    Mangilli, A.
    Maris, M.
    Marshall, D. J.
    Martin, P. G.
    Martinez-Gonzalez, E.
    Masi, S.
    Matarrese, S.
    McGehee, P.
    Meinhold, P. R.
    Melchiorri, A.
    Mendes, L.
    Mennella, A.
    Migliaccio, M.
    Mitra, S.
    Miville-Deschenes, M. -A.
    Moneti, A.
    Montier, L.
    Morgante, G.
    Mortlock, D.
    Moss, A.
    Munshi, D.
    Murphy, J. A.
    Naselsky, P.
    Nati, F.
    Natoli, P.
    Negrello, M.
    Netterfield, C. B.
    Norgaard-Nielsen, H. U.
    Noviello, F.
    Novikov, D.
    Novikov, I.
    Oxborrow, C. A.
    Paci, F.
    Pagano, L.
    Pajot, F.
    Paladini, R.
    Paoletti, D.
    Partridge, B.
    Pasian, F.
    Patanchon, G.
    Pearson, T. J.
    Perdereau, O.
    Perotto, L.
    Perrotta, F.
    Pettorino, V.
    Piacentini, F.
    Piat, M.
    Pierpaoli, E.
    Pietrobon, D.
    Plaszczynski, S.
    Pointecouteau, E.
    Polenta, G.
    Pratt, G. W.
    Prezeau, G.
    Prunet, S.
    Puget, J. -L.
    Rachen, J. P.
    Reach, W. T.
    Rebolo, R.
    Reinecke, M.
    Remazeilles, M.
    Renault, C.
    Renzi, A.
    Ristorcelli, I.
    Rocha, G.
    Rosset, C.
    Rossetti, M.
    Roudier, G.
    Rowan-Robinson, M.
    Rubino-Martin, J. A.
    Rusholme, B.
    Sandri, M.
    Sanghera, H. S.
    Santos, D.
    Savelainen, M.
    Savini, G.
    Scott, D.
    Seiffert, M. D.
    Shellard, E. P. S.
    Spencer, L. D.
    Stolyarov, V.
    Sudiwala, R.
    Sunyaev, R.
    Sutton, D.
    Suur-Uski, A. -S.
    Sygnet, J. -F.
    Tauber, J. A.
    Terenzi, L.
    Toffolatti, L.
    Tomasi, M.
    Tornikoski, M.
    Tristram, M.
    Tucci, M.
    Tuovinen, J.
    Turler, M.
    Umana, G.
    Valenziano, L.
    Valiviita, J.
    Van Tent, B.
    Vielva, P.
    Villa, F.
    Wade, L. A.
    Walter, B.
    Wandelt, B. D.
    Wehus, I. K.
    Yvon, D.
    Zacchei, A.
    Zonca, A.
    Planck 2015 results XXVI. The Second Planck Catalogue of Compact Sources2016Inngår i: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 594, artikkel-id A26Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The Second Planck Catalogue of Compact Sources is a list of discrete objects detected in single-frequency maps from the full duration of the Planck mission and supersedes previous versions. It consists of compact sources, both Galactic and extragalactic, detected over the entire sky. Compact sources detected in the lower frequency channels are assigned to the PCCS2, while at higher frequencies they are assigned to one of two subcatalogues, the PCCS2 or PCCS2E, depending on their location on the sky. The first of these (PCCS2) covers most of the sky and allows the user to produce subsamples at higher reliabilities than the target 80% integral reliability of the catalogue. The second ( PCCS2E) contains sources detected in sky regions where the diffuse emission makes it difficult to quantify the reliability of the detections. Both the PCCS2 and PCCS2E include polarization measurements, in the form of polarized flux densities, or upper limits, and orientation angles for all seven polarization-sensitive Planck channels. The improved data-processing of the full-mission maps and their reduced noise levels allow us to increase the number of objects in the catalogue, improving its completeness for the target 80% reliability as compared with the previous versions, the PCCS and the Early Release Compact Source Catalogue (ERCSC).

  • 14. Ade, P. A. R.
    et al.
    Aghanim, N.
    Arnaud, M.
    Arroja, F.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Ballardini, M.
    Banday, A. J.
    Barreiro, R. B.
    Bartolo, N.
    Battaner, E.
    Benabed, K.
    Benoit, A.
    Benoit-Levy, A.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bock, J. J.
    Bonaldi, A.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Bucher, M.
    Burigana, C.
    Butler, R. C.
    Calabrese, E.
    Cardoso, J. -F.
    Catalano, A.
    Chamballu, A.
    Chiang, H. C.
    Chluba, J.
    Christensen, P. R.
    Church, S.
    Clements, D. L.
    Colombi, S.
    Colombo, L. P. L.
    Combet, C.
    Couchot, F.
    Coulais, A.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Danese, L.
    Davies, R. D.
    Davis, R. J.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouille, J.
    Desert, F. -X.
    Diego, J. M.
    Dolag, K.
    Dole, H.
    Donzelli, S.
    Dore, A.
    Douspis, M.
    Ducout, A.
    Dupac, X.
    Efstathiou, G.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Fergusson, J.
    Finelli, F.
    Florido, E.
    Forni, O.
    Frailis, M.
    Fraisse, A. A.
    Franceschi, E.
    Frejsel, A.
    Galeotta, S.
    Galli, S.
    Ganga, K.
    Giard, M.
    Giraud-Heraud, Y.
    Gjerlow, E.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gratton, S.
    Gregorio, A.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita). Princeton University, USA.
    Hansen, F. K.
    Hanson, D.
    Harrison, D. L.
    Helou, G.
    Henrot-Versille, S.
    Hernandez-Monteagudo, C.
    Herranz, D.
    Hildebrandt, S. R.
    Hivon, E.
    Hobson, M.
    Holmes, W. A.
    Hornstrup, A.
    Hovest, W.
    Huffenberger, K. M.
    Hurier, G.
    Jaffe, A. H.
    Jaffe, T. R.
    Jones, W. C.
    Juvela, M.
    Keihanen, E.
    Keskitalo, R.
    Kim, J.
    Kisner, T. S.
    Knoche, J.
    Kunz, M.
    Kurki-Suonio, H.
    Lagache, G.
    Lahteenmaki, A.
    Lamarre, J. -M.
    Lasenby, A.
    Lattanzi, M.
    Lawrence, C. R.
    Leahy, J. P.
    Leonardi, R.
    Lesgourgues, J.
    Levrier, F.
    Liguori, M.
    Lilje, P. B.
    Linden-Vornle, M.
    Lopez-Caniego, M.
    Lubin, P. M.
    Macias-Perez, J. F.
    Maggio, G.
    Maino, D.
    Mandolesi, N.
    Mangilli, A.
    Maris, M.
    Martin, P. G.
    Martinez-Gonzalez, E.
    Masi, S.
    Matarrese, S.
    McGehee, P.
    Meinhold, P. R.
    Melchiorri, A.
    Mendes, L.
    Mennella, A.
    Migliaccio, M.
    Mitra, S.
    Miville-Deschenes, M. -A.
    Molinari, D.
    Moneti, A.
    Montier, L.
    Morgante, G.
    Mortlock, D.
    Moss, A.
    Munshi, D.
    Murphy, J. A.
    Naselsky, P.
    Nati, F.
    Natoli, P.
    Netterfield, C. B.
    Norgaard-Nielsen, H. U.
    Noviello, F.
    Novikov, D.
    Novikov, I.
    Oppermann, N.
    Oxborrow, C. A.
    Paci, F.
    Pagano, L.
    Pajot, F.
    Paoletti, D.
    Pasian, F.
    Patanchon, G.
    Perdereau, O.
    Perotto, L.
    Perrotta, F.
    Pettorino, V.
    Piacentini, F.
    Piat, M.
    Pierpaoli, E.
    Pietrobon, D.
    Plaszczynski, S.
    Pointecouteau, E.
    Polenta, G.
    Popa, L.
    Pratt, G. W.
    Prezeau, G.
    Prunet, S.
    Puget, J. -L.
    Rachen, J. P.
    Rebolo, R.
    Reinecke, M.
    Remazeilles, M.
    Renault, C.
    Renzi, A.
    Ristorcelli, I.
    Rocha, G.
    Rosset, C.
    Rossetti, M.
    Roudier, G.
    Rubino-Martin, J. A.
    Ruiz-Granados, B.
    Rusholme, B.
    Sandri, M.
    Santos, D.
    Savelainen, M.
    Savini, G.
    Scott, D.
    Seiffert, M. D.
    Shellard, E. P. S.
    Shiraishi, M.
    Spencer, L. D.
    Stolyarov, V.
    Stompor, R.
    Sudiwala, R.
    Sunyaev, R.
    Sutton, D.
    Suur-Uski, A. -S.
    Sygnet, J. -F.
    Tauber, J. A.
    Terenzi, L.
    Toffolatti, L.
    Tomasi, M.
    Tristram, M.
    Tucci, M.
    Tuovinen, J.
    Umana, G.
    Valenziano, L.
    Valiviita, J.
    Van Tent, B.
    Vielva, P.
    Villa, F.
    Wade, L. A.
    Wandelt, B. D.
    Wehus, I. K.
    Yvon, D.
    Zacchei, A.
    Zonca, A.
    Planck 2015 results XIX. Constraints on primordial magnetic fields2016Inngår i: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 594, artikkel-id A19Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We compute and investigate four types of imprint of a stochastic background of primordial magnetic fields (PMFs) on the cosmic microwave background (CMB) anisotropies: the impact of PMFs on the CMB temperature and polarization spectra, which is related to their contribution to cosmological perturbations; the effect on CMB polarization induced by Faraday rotation; the impact of PMFs on the ionization history; magnetically-induced non-Gaussianities and related non-zero bispectra; and the magnetically-induced breaking of statistical isotropy. We present constraints on the amplitude of PMFs that are derived from different Planck data products, depending on the specific effect that is being analysed. Overall, Planck data constrain the amplitude of PMFs to less than a few nanoGauss, with different bounds that depend on the considered model. In particular, individual limits coming from the analysis of the CMB angular power spectra, using the Planck likelihood, are B-1 (Mpc) < 4.4 nG (where B1 Mpc is the comoving field amplitude at a scale of 1 Mpc) at 95% confidence level, assuming zero helicity. By considering the Planck likelihood, based only on parity-even angular power spectra, we obtain B-1 (Mpc) < 5.6 nG for a maximally helical field. For nearly scale-invariant PMFs we obtain B-1 (Mpc) < 2.0 nG and B-1 (Mpc) < 0.9 nG if the impact of PMFs on the ionization history of the Universe is included in the analysis. From the analysis of magnetically-induced non-Gaussianity, we obtain three different values, corresponding to three applied methods, all below 5 nG. The constraint from the magnetically-induced passive-tensor bispectrum is B-1 (Mpc) < 2.8 nG. A search for preferred directions in the magnetically-induced passive bispectrum yields B-1 (Mpc) < 4.5 nG, whereas the compensated-scalar bispectrum gives B-1 (Mpc) < 3 nG. The analysis of the Faraday rotation of CMB polarization by PMFs uses the Planck power spectra in EE and BB at 70 GHz and gives B-1 (Mpc) < 1380 nG. In our final analysis, we consider the harmonic-space correlations produced by Alfven waves, finding no significant evidence for the presence of these waves. Together, these results comprise a comprehensive set of constraints on possible PMFs with Planck data.

  • 15. Ade, P. A. R.
    et al.
    Aghanim, N.
    Arnaud, M.
    Arroja, F.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Ballardini, M.
    Banday, A. J.
    Barreiro, R. B.
    Bartolo, N.
    Battaner, E.
    Benabed, K.
    Benoit, A.
    Benoit-Levy, A.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bock, J. J.
    Bonaldi, A.
    Bonavera, L.
    Bondi, J. R.
    Borrillu, J.
    Bouchet, F. R.
    Boulanger, F.
    Bucher, M.
    Burigana, C.
    Butler, R. C.
    Calabrese, E.
    Cardoso, J. -F.
    Catalano, A.
    Challinor, A.
    Chamballu, A.
    Chary, R. -R.
    Chiang, H. C.
    Christensen, P. R.
    Churchl, S.
    Clements, D. L.
    Colombi, S.
    Colombo, L. P. L.
    Combet, C.
    Contreras, D.
    Couchot, F.
    Coulais, A.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Danese, L.
    Davies, R. D.
    Davis, R. J.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouillei, J.
    Desert, F. -X.
    Diego, J. M.
    Dole, H.
    Donzelli, S.
    Dore, O.
    Douspis, M.
    Ducout, A.
    Dupac, X.
    Efstathiou, G.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Fergusson, J.
    Finelli, F.
    Forni, O.
    Frailis, M.
    Fraisse, A. A.
    Franceschi, E.
    Frejsel, A.
    Frolov, A.
    Galeotta, S.
    Galli, S.
    Ganga, K.
    Gauthier, C.
    Giard, M.
    Giraud-Heraud, Y.
    Gjerlow, E.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gratton, S.
    Gregorio, A.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita). Princeton University, USA.
    Hamann, J.
    Handley, W.
    Hansen, F. K.
    Hanson, D.
    Harrison, D. L.
    Henrot-Versille, S.
    Hernandez-Monteagudo, C.
    Herranz, D.
    Hildebrandt, S. R.
    Hivon, E.
    Hobson, M.
    Holmes, W. A.
    Hornstrup, A.
    Hovest, W.
    Huang, Z.
    Huffenberger, K. M.
    Hurier, G.
    Jaffe, A. H.
    Jaffe, T. R.
    Jones, W. C.
    Juvela, M.
    Keihanen, E.
    Keskitalo, R.
    Kim, J.
    Kisner, T. S.
    Kneissl, R.
    Knoche, J.
    Kunz, M.
    Kurki-Suonio, H.
    Lagache, G.
    Lahteenmaki, A.
    Lamarre, J. -M.
    Lasenby, A.
    Lattanzi, M.
    Lawrence, C. R.
    Leonardi, R.
    Lesgourgues, J.
    Levrier, F.
    Lewis, A.
    Liguori, M.
    Lilje, P. B.
    Linden-Vornle, M.
    Lopez-Caniego, M.
    Lubin, P. M.
    Ma, Y. -Z.
    Macias-Perez, J. F.
    Maggio, G.
    Maino, D.
    Mandolesi, N.
    Mangilli, A.
    Maris, M.
    Martini, P. G.
    Martinez-Gonzalez, E.
    Masi, S.
    Matarrese, S.
    McGehee, P.
    Meinhold, P. R.
    Melchiorri, A.
    Mendes, L.
    Mennella, A.
    Migliaccio, M.
    Mitra, S.
    Miville-Deschenes, M. -A.
    Molinari, D.
    Moneti, A.
    Montier, L.
    Morgante, G.
    Mortlock, D.
    Moss, A.
    Munchmeyer, M.
    Munshi, D.
    Murphy, J. A.
    Naselsky, P.
    Nati, F.
    Natoli, P.
    Netterfield, C. B.
    Norgaard-Nielsen, H. U.
    Noviello, F.
    Novikov, D.
    Novikov, I.
    Oxborrow, C. A.
    Paci, F.
    Pagano, L.
    Pajot, F.
    Paladini, R.
    Pandolfi, S.
    Paoletti, D.
    Pasian, F.
    Patanchon, G.
    Pearson, T. J.
    Peiris, H. V.
    Perdereau, O.
    Perotto, L.
    Perrotta, F.
    Pettorino, V.
    Piacentini, F.
    Piat, M.
    Pierpaoli, E.
    Pietrobon, D.
    Plaszczynski, S.
    Pointecouteau, E.
    Polenta, G.
    Popa, L.
    Pratt, G. W.
    Prezeau, G.
    Prunet, S.
    Puget, J. -L.
    Rachen, J. P.
    Reach, W. T.
    Rebolo, R.
    Reinecke, M.
    Remazeilles, M.
    Renault, C.
    Renzi, A.
    Ristorcelli, I.
    Rocha, G.
    Rosset, C.
    Rossetti, M.
    Roudier, G.
    Rowan-Robinson, M.
    Rubino-Martin, J. A.
    Rusholme, B.
    Sandri, M.
    Santos, D.
    Savelainen, M.
    Savini, G.
    Scott, D.
    Seiffert, M. D.
    Shellard, E. P. S.
    Shiraishi, M.
    Spencer, L. D.
    Stolyarov, V.
    Stompori, R.
    Sudiwala, R.
    Sunyaev, R.
    Sutton, D.
    Suur-Uski, A. -S.
    Sygnet, J. -F.
    Tauber, J. A.
    Terenzi, L.
    Toffolatti, L.
    Tomasi, M.
    Tristram, M.
    Trombetti, T.
    Tucci, M.
    Tuovinen, J.
    Valenziano, L.
    Valiviita, J.
    Van Tent, B.
    Vielva, P.
    Villa, F.
    Wade, L. A.
    Wandelt, B. D.
    Wehus, I. K.
    White, M.
    Yvon, D.
    Zacchei, A.
    Zibin, J. P.
    Zonca, A.
    Planck 2015 results XX. Constraints on inflation2016Inngår i: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 594, artikkel-id A20Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We present the implications for cosmic inflation of the Planck measurements of the cosmic microwave background (CMB) anisotropies in both temperature and polarization based on the full Planck survey, which includes more than twice the integration time of the nominal survey used for the 2013 release papers. The Planck full mission temperature data and a first release of polarization data on large angular scales measure the spectral index of curvature perturbations to be n(s) = 0.968 +/- 0.006 and tightly constrain its scale dependence to dn(s)/dln k = -0.003 +/- 0.007 when combined with the Planck lensing likelihood. When the Planck high-l polarization data are included, the results are consistent and uncertainties are further reduced. The upper bound on the tensor-to-scalar ratio is r(0).(002) < 0.11 (95% CL). This upper limit is consistent with the B-mode polarization constraint r < 0.12 (95% CL) obtained from a joint analysis of the BICEP2/Keck Array and Planck data. These results imply that V(phi) proportional to phi(2) and natural inflation are now disfavoured compared to models predicting a smaller tensor-to-scalar ratio, such as R-2 inflation. We search for several physically motivated deviations from a simple power-law spectrum of curvature perturbations, including those motivated by a reconstruction of the inflaton potential not relying on the slow-roll approximation. We find that such models are not preferred, either according to a Bayesian model comparison or according to a frequentist simulation-based analysis. Three independent methods reconstructing the primordial power spectrum consistently recover a featureless and smooth P-R (k) over the range of scales 0.008 Mpc(-1) less than or similar to k less than or similar to 0.1 Mpc(-1). At large scales, each method finds deviations from a power law, connected to a deficit at multipoles l approximate to 20-40 in the temperature power spectrum, but at an uncompelling statistical significance owing to the large cosmic variance present at these multipoles. By combining power spectrum and non-Gaussianity bounds, we constrain models with generalized Lagrangians, including Galileon models and axion monodromy models. The Planck data are consistent with adiabatic primordial perturbations, and the estimated values for the parameters of the base Lambda cold dark matter (Lambda CDM) model are not significantly altered when more general initial conditions are admitted. In correlated mixed adiabatic and isocurvature models, the 95% CL upper bound for the non-adiabatic contribution to the observed CMB temperature variance is vertical bar alpha(non-adi)vertical bar < 1.9%, 4.0%, and 2.9% for CDM, neutrino density, and neutrino velocity isocurvature modes, respectively. We have tested inflationary models producing an anisotropic modulation of the primordial curvature power spectrum finding that the dipolar modulation in the CMB temperature field induced by a CDM isocurvature perturbation is not preferred at a statistically significant level. We also establish tight constraints on a possible quadrupolar modulation of the curvature perturbation. These results are consistent with the Planck 2013 analysis based on the nominal mission data and further constrain slow-roll single-field inflationary models, as expected from the increased precision of Planck data using the full set of observations.

  • 16. Ade, P. A. R.
    et al.
    Aghanim, N.
    Arnaud, M.
    Arrojam, F.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Ballardini, M.
    Banday, A. J.
    Barreiro, R. B.
    Bartolo, N.
    Basak, S.
    Battaner, E.
    Benabed, K.
    Benoit, A.
    Benoit-Levy, A.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bock, J. J.
    Bonaldi, A.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Boulanger, F.
    Bucher, M.
    Burigana, C.
    Butler, R. C.
    Calabrese, E.
    Cardoso, J. -F.
    Catalano, A.
    Challinor, A.
    Chamballu, A.
    Chiang, H. C.
    Christensen, P. R.
    Church, S.
    Clements, D. L.
    Colombi, S.
    Colombo, L. P. L.
    Combet, C.
    Couchot, F.
    Coulais, A.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Danese, L.
    Davies, R. D.
    Davis, R. J.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouille, J.
    Desert, F. -X.
    Diego, J. M.
    Dole, H.
    Donzelli, S.
    Dore, O.
    Douspis, M.
    Ducout, A.
    Dupac, X.
    Efstathiou, G.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Fergusson, J.
    Finelli, F.
    Forni, O.
    Frailis, M.
    Fraisse, A. A.
    Franceschi, E.
    Frejsel, A.
    Galeotta, S.
    Galli, S.
    Ganga, K.
    Gauthier, C.
    Ghosh, T.
    Giard, M.
    Giraud-Heraud, Y.
    Gjerlow, E.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gratton, S.
    Gregorio, A.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita). Princeton University, USA.
    Hamann, J.
    Hansen, F. K.
    Hanson, D.
    Harrison, D. L.
    Heavens, A.
    Helou, G.
    Henrot-Versille, S.
    Hernandez-Monteagudo, C.
    Herranz, D.
    Hildebrandt, S. R.
    Hivon, E.
    Hobson, M.
    Holmes, W. A.
    Hornstrup, A.
    Hovest, W.
    Huang, Z.
    Huffenberger, K. M.
    Hurier, G.
    Jaffe, A. H.
    Jaffe, T. R.
    Jones, W. C.
    Juvela, M.
    Keihanen, E.
    Keskitalo, R.
    Kim, J.
    Kisner, T. S.
    Knoche, J.
    Kunz, M.
    Kurki-Suonio, H.
    Lacasa, F.
    Lagache, G.
    Lahteenmaki, A.
    Lamarre, J. -M.
    Lasenby, A.
    Lattanzi, M.
    Lawrence, C. R.
    Leonardi, R.
    Lesgourgues, J.
    Levrier, F.
    Lewis, A.
    Liguori, M.
    Lilje, P. B.
    Linden-Vornle, M.
    Lopez-Caniego, M.
    Lubin, P. M.
    Macias-Perez, J. F.
    Maggio, G.
    Maino, D.
    Mandolesi, N.
    Mangilli, A.
    Marinucci, D.
    Maris, M.
    Martin, P. G.
    Martinez-Gonzalez, E.
    Masi, S.
    Matarrese, S.
    McGehee, P.
    Meinhold, P. R.
    Melchiorri, A.
    Mendes, L.
    Mennella, A.
    Migliaccio, M.
    Mitra, S.
    Miville-Deschenes, M. -A.
    Moneti, A.
    Montier, L.
    Morgante, G.
    Mortlock, D.
    Moss, A.
    Munchmeyer, M.
    Munshi, D.
    Murphy, J. A.
    Naselsky, P.
    Nati, F.
    Natoli, P.
    Netterfield, C. B.
    Norgaard-Nielsen, H. U.
    Noviello, F.
    Novikov, D.
    Novikov, I.
    Oxborrow, C. A.
    Paci, F.
    Pagano, L.
    Pajot, F.
    Paoletti, D.
    Pasian, F.
    Patanchon, G.
    Peiris, H. V.
    Perdereau, O.
    Perotto, L.
    Perrotta, F.
    Pettorino, V.
    Piacentini, F.
    Piat, M.
    Pierpaoli, E.
    Pietrobon, D.
    Plaszczynski, S.
    Pointecouteau, E.
    Polenta, G.
    Popa, L.
    Pratt, G. W.
    Prezeau, G.
    Prunet, S.
    Puget, J. -L.
    Rachen, J. P.
    Racine, B.
    Rebolo, R.
    Reinecke, M.
    Remazeilles, M.
    Renault, C.
    Renzi, A.
    Ristorcelli, I.
    Rocha, G.
    Rosset, C.
    Rossetti, M.
    Roudier, G.
    Rubino-Martin, J. A.
    Rusholme, B.
    Sandri, M.
    Santos, D.
    Savelainen, M.
    Savini, G.
    Scott, D.
    Seiffert, M. D.
    Shellard, E. P. S.
    Shiraishi, M.
    Smith, K.
    Spencer, L. D.
    Stolyarov, V.
    Stompor, R.
    Sudiwala, R.
    Sunyaev, R.
    Sutter, P.
    Sutton, D.
    Suur-Uski, A. -S.
    Sygnet, J. -F.
    Tauber, J. A.
    Terenzi, L.
    Toffolatti, L.
    Tomasi, M.
    Tristram, M.
    Troja, A.
    Tucci, M.
    Tuovinen, J.
    Valenziano, L.
    Valiyiita, J.
    Van Tent, B.
    Vielva, P.
    Villas, F.
    Wade, L. A.
    Wandelt, B. D.
    Wehus, I. K.
    Yvon, D.
    Zacchei, A.
    Zonca, A.
    Planck 2015 results XVII. Constraints on primordial non-Gaussianity2016Inngår i: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 594, artikkel-id A17Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The Planck full mission cosmic microwave background (CMB) temperature and E-mode polarization maps are analysed to obtain constraints on primordial non-Gaussianity (NG). Using three classes of optimal bispectrum estimators - separable template-fitting (KSW), binned, and modal we obtain consistent values for the primordial local, equilateral, and orthogonal bispectrum amplitudes, quoting as our final result from temperature alone f(NL)(local) = 2.5 +/- 5.7, f(NL)(equil) = 16 +/- 70, and f(NL)(ortho) = 34 +/- 33 (68% CL, statistical). Combining temperature and polarization data we obtain f(NL)(local) = 0.8 +/- 5.0, f(NL)(equil) = 4 +/- 43, and f(NL)(ortho) = 26 +/- 21 (68% CL, statistical). The results are based on comprehensive cross-validation of these estimators on Gaussian and non-Gaussian simulations, are stable across component separation techniques, pass an extensive suite of tests, and are consistent with estimators based on measuring the Minkowski functionals of the CMB. The effect of time-domain de-glitching systematics on the bispectrum is negligible. In spite of these test outcomes we conservatively label the results including polarization data as preliminary, owing to a known mismatch of the noise model in simulations and the data. Beyond estimates of individual shape amplitudes, we present model-independent, three-dimensional reconstructions of the Planck CMB bispectrum and derive constraints on early universe scenarios that generate primordial NG, including general single-field models of inflation, axion inflation, initial state modifications, models producing parity-violating tensor bispectra, and directionally dependent vector models. We present a wide survey of scale-dependent feature and resonance models, accounting for the look elsewhere effect in estimating the statistical significance of features. We also look for isocurvature NG, and find no signal, but we obtain constraints that improve significantly with the inclusion of polarization. The primordial trispectrum amplitude in the local model is constrained to be g(NL)(local) = (9.0 +/- 7.7) x 10(4) (68% CL statistical), and we perform an analysis of trispectrum shapes beyond the local case. The global picture that emerges is one of consistency with the premises of the Lambda CDM cosmology, namely that the structure we observe today was sourced by adiabatic, passive, Gaussian, and primordial seed perturbations.

  • 17. Ade, P. A. R.
    et al.
    Aghanim, N.
    Arnaud, M.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Banday, A. J.
    Barreiro, R. B.
    Bartlett, J. G.
    Bartolo, N.
    Basak, S.
    Battaner, E.
    Benabed, K.
    Benoit, A.
    Benoit-Levy, A.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bock, J. J.
    Bonaldi, A.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Boulanger, F.
    Bucher, M.
    Burigana, C.
    Butler, R. C.
    Calabrese, E.
    Cardoso, J. -F.
    Catalano, A.
    Challinor, A.
    Chamballu, A.
    Chiang, H. C.
    Christensen, P. R.
    Church, S.
    Clements, D. L.
    Colombi, S.
    Colombo, L. P. L.
    Combet, C.
    Couchot, F.
    Coulais, A.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Danese, L.
    Davies, R. D.
    Davis, R. J.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouille, J.
    Desert, F. -X.
    Diego, J. M.
    Dole, H.
    Donzelli, S.
    Dore, O.
    Douspis, M.
    Ducout, A.
    Dunkley, J.
    Dupac, X.
    Efstathiou, G.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Fergusson, J.
    Finelli, F.
    Forni, O.
    Frailis, M.
    Fraisse, A. A.
    Franceschi, E.
    Frejsel, A.
    Galeotta, S.
    Gallin, S.
    Ganga, K.
    Giard, M.
    Giraud-Heraud, Y.
    Gjerlow, E.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gratton, S.
    Gregorio, A.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita). Princeton University, USA.
    Hansen, F. K.
    Hanson, D.
    Harrison, D. L.
    Henrot-Versille, S.
    Hernandez-Monteagudo, C.
    Herranz, D.
    Hildebrandt, S. R.
    Hivon, E.
    Hobson, M.
    Holmes, W. A.
    Hornstrup, A.
    Hovest, W.
    Huffenberger, K. M.
    Hurier, G.
    Jaffe, A. H.
    Jaffe, T. R.
    Jones, W. C.
    Juvela, M.
    Keihanen, E.
    Keskitalo, R.
    Kisner, T. S.
    Kneissl, R.
    Knoche, J.
    Kunz, M.
    Kurki-Suonio, H.
    Lagache, G.
    Lahteenmaki, A.
    Lamarre, J. -M.
    Lasenby, A.
    Lattanzi, M.
    Lawrence, C. R.
    Leonardi, R.
    Lesgourgues, J.
    Levrier, F.
    Lewis, A.
    Liguori, M.
    Lilje, P. B.
    Linden-Vornle, M.
    Lopez-Caniego, M.
    Lubin, P. M.
    Macias-Perez, J. F.
    Maggio, G.
    Maino, D.
    Mandolesi, N.
    Mangilli, A.
    Maris, M.
    Martin, P. G.
    Martinez-Gonzalez, E.
    Masi, S.
    Matarrese, S.
    McGehee, P.
    Meinhold, P. R.
    Melchiorri, A.
    Mendes, L.
    Mennella, A.
    Migliaccio, M.
    Mitra, S.
    Miville-Deschenes, M. -A.
    Moneti, A.
    Montier, L.
    Morgante, G.
    Mortlock, D.
    Moss, A.
    Munshi, D.
    Murphy, J. A.
    Naselsky, P.
    Nati, F.
    Natoli, P.
    Netterfield, C. B.
    Norgaard-Nielsen, H. U.
    Noviello, F.
    Novikov, D.
    Novikov, I.
    Oxborrow, C. A.
    Paci, F.
    Pagano, L.
    Pajot, F.
    Paoletti, D.
    Pasian, F.
    Patanchon, G.
    Perdereau, O.
    Perotto, L.
    Perrotta, F.
    Pettorino, V.
    Piacentini, F.
    Piat, M.
    Pierpaoli, E.
    Pietrobon, D.
    Plaszczynski, S.
    Pointecouteau, E.
    Polenta, G.
    Popa, L.
    Pratt, G. W.
    Prezeau, G.
    Prunet, S.
    Puget, J. -L.
    Rachen, J. P.
    Reach, W. T.
    Rebolo, R.
    Reinecke, M.
    Remazeilles, M.
    Renault, C.
    Renzi, A.
    Ristorcelli, I.
    Rocha, G.
    Rosset, C.
    Rossetti, M.
    Roudier, G.
    Rowan-Robinson, M.
    Rubino-Martin, J. A.
    Rusholme, B.
    Sandri, M.
    Santos, D.
    Savelainen, M.
    Savini, G.
    Scott, D.
    Seiffert, M. D.
    Shellard, E. P. S.
    Spencer, L. D.
    Stolyarov, V.
    Stompor, R.
    Sudiwala, R.
    Sunyaev, R.
    Sutton, D.
    Suur-Uski, A. -S.
    Sygnet, J. -F.
    Tauber, J. A.
    Terenzi, L.
    Toffolatti, L.
    Tomasi, M.
    Tristram, M.
    Tucci, M.
    Tuovinen, J.
    Valenziano, L.
    Valiviita, J.
    Van Tent, B.
    Vielva, P.
    Villa, F.
    Wade, L. A.
    Wandelt, B. D.
    Wehus, I. K.
    White, M.
    Yvon, D.
    Zacchei, A.
    Zonca, A.
    Planck 2015 results XV. Gravitational lensing2016Inngår i: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 594, artikkel-id A15Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We present the most significant measurement of the cosmic microwave background (CMB) lensing potential to date (at a level of 40 sigma), using temperature and polarization data from the Planck 2015 full-mission release. Using a polarization-only estimator, we detect lensing at a significance of 5 sigma. We cross-check the accuracy of our measurement using the wide frequency coverage and complementarity of the temperature and polarization measurements. Public products based on this measurement include an estimate of the lensing potential over approximately 70% of the sky, an estimate of the lensing potential power spectrum in bandpowers for the multipole range 40 <= L <= 400, and an associated likelihood for cosmological parameter constraints. We find good agreement between our measurement of the lensing potential power spectrum and that found in the Lambda CDM model that best fits the Planck temperature and polarization power spectra. Using the lensing likelihood alone we obtain a percent-level measurement of the parameter combination sigma(8) Omega(0.25)(m) = 0.591 +/- 0.021. We combine our determination of the lensing potential with the E-mode polarization, also measured by Planck, to generate an estimate of the lensing B-mode. We show that this lensing B-mode estimate is correlated with the B-modes observed directly by Planck at the expected level and with a statistical significance of 10 sigma, confirming Planck's sensitivity to this known sky signal. We also correlate our lensing potential estimate with the large-scale temperature anisotropies, detecting a cross-correlation at the 3 sigma level, as expected because of dark energy in the concordance Lambda CDM model.

  • 18. Ade, P. A. R.
    et al.
    Aghanim, N.
    Arnaud, M.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Banday, A. J.
    Barreiro, R. B.
    Bartlett, J. G.
    Bartolo, N.
    Battaner, E.
    Battye, R.
    Benabed, K.
    Benoit, A.
    Benoit-Levy, A.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bock, J. J.
    Bonaldi, A.
    Bonavera, L.
    Bond, J. R.
    Borrinll, J.
    Bouchet, F. R.
    Bucher, M.
    Burigana, C.
    Butler, R. C.
    Calabrese, E.
    Cardoso, J. -F.
    Catalano, A.
    Challinor, A.
    Chamballu, A.
    Chary, R. -R.
    Chiang, H. C.
    Christensen, P. R.
    Church, S.
    Clements, D. L.
    Colombi, S.
    Colombo, L. P. L.
    Combet, C.
    Comis, B.
    Couchot, F.
    Coulais, A.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Danese, L.
    Davies, R. D.
    Davis, R. J.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouille, J.
    Desert, F. -X.
    Diego, J. M.
    Dolag, K.
    Dole, H.
    Donzelli, S.
    Dore, O.
    Douspis, M.
    Ducout, A.
    Dupac, X.
    Efstathiou, G.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Falgarone, E.
    Fergusson, J.
    Finelli, F.
    Forni, O.
    Frailis, M.
    Fraisse, A. A.
    Franceschi, E.
    Frejsel, A.
    Galeotta, S.
    Galli, S.
    Ganga, K.
    Giard, M.
    Giraud-Heraud, Y.
    Gjerlow, E.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gratton, S.
    Gregorio, A.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita). Princeton University, USA.
    Hansen, F. K.
    Hanson, D.
    Harrison, D. L.
    Henrot-Versille, S.
    Hernandez-Monteagudo, C.
    Herranz, D.
    Hildebrandt, S. R.
    Hivon, E.
    Hobson, M.
    Holmes, W. A.
    Hornstrup, A.
    Hovest, W.
    Huffenberger, K. M.
    Hurier, G.
    Jaffe, A. H.
    Jaffe, T. R.
    Jones, W. C.
    Juvela, M.
    Keihanen, E.
    Keskitalo, R.
    Kisner, T. S.
    Kneissl, R.
    Knoche, J.
    Kunzo, M.
    Kurki-Suonio, H.
    Lagache, G.
    Lahteennmaki, A.
    Lamarre, J. -M.
    Lasenby, A.
    Lattanzi, M.
    Lawrence, C. R.
    Leonardi, R.
    Lesgourgues, J.
    Levrier, F.
    Liguori, M.
    Lilje, P. B.
    Linden-Vornle, M.
    Lopez-Caniego, M.
    Lubin, P. M.
    Macias-Perez, J. F.
    Maggio, G.
    Maino, D.
    Mandolesi, N.
    Mangilli, A.
    Maris, M.
    Martin, P. G.
    Martinez-Gonzalez, E.
    Masi, S.
    Matarrese, S.
    McGehee, P.
    Meinhold, P. R.
    Melchiorri', A.
    Melin, J. -B.
    Mendes, L.
    Mennella, A.
    Migliaccio, M.
    Mitrao, S.
    Miville-Deschenes, M. -A.
    Moneti, A.
    Montier, L.
    Morgante, G.
    Mortlock, D.
    Moss, A.
    Munshi, D.
    Murphy, J. A.
    Naselsky, P.
    Nati, F.
    Natoli, P.
    Netterfield, C. B.
    Norgaard-Nielsen, H. U.
    Noviello, F.
    Novikov, D.
    Novikov, I.
    Oxborrow, C. A.
    Paci, F.
    Pagano, L.
    Pajot, F.
    Paoletti, D.
    Partridge, B.
    Pasian, F.
    Patanchon, G.
    Pearson, T. J.
    Perdereau, O.
    Perotto, L.
    Perrotta, F.
    Pettorino, V.
    Piacentini, F.
    Piat, M.
    Pierpaoli, E.
    Pietrobon, D.
    Plaszczynski, S.
    Pointecouteau, E.
    Polenta, G.
    Popa, L.
    Prate, G. W.
    Prezeau, G.
    Prunet, S.
    Puget, J. -L.
    Rachen, J. P.
    Rebolo, R.
    Reinecke, M.
    Remazeilles, M.
    Renault, C.
    Renzi, A.
    Ristorcelli, I.
    Rocha, G.
    Roman, M.
    Rosset, C.
    Rossetti, M.
    Roudier, G.
    Rubino-Martin, J. A.
    Rusholme, B.
    Sandri, M.
    Santos, D.
    Savelainen, M.
    Savini, G.
    Scott, D.
    Seiffert, M. D.
    Shellard, E. P. S.
    Spencer, L. D.
    Stolyarov, V.
    Stompor, R.
    Sudiwala, R.
    Sunyaev, R.
    Sutton, D.
    Suur-Uski, A. -S.
    Sygnet, J. -F.
    Tauber, J. A.
    Terenzi, L.
    Toffolatti, L.
    Tomasi, M.
    Tristram, M.
    Tucci, M.
    Tuovinen, J.
    Turler, M.
    Umana, G.
    Valenziano, L.
    Valiviita', J.
    Van Tent, B.
    Vielva, P.
    Villa, F.
    Wade, L. A.
    Wandelt, B. D.
    Wehus, I. K.
    Weller, J.
    White, S. D. M.
    Yvon, D.
    Zacchei, A.
    Zonca, A.
    XXIV. Cosmology from Sunyaev-Zeldovich cluster counts2016Inngår i: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 594, artikkel-id A24Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We present cluster counts and corresponding cosmological constraints from the Planck full mission data set. Our catalogue consists of 439 clusters detected via their Sunyaev-Zeldovich (SZ) signal down to a signal-to-noise ratio of 6, and is more than a factor of 2 larger than the 2013 Planck cluster cosmology sample. The counts are consistent with those from 2013 and yield compatible constraints under the same modelling assumptions. Taking advantage of the larger catalogue, we extend our analysis to the two-dimensional distribution in redshift and signal-to-noise. We use mass estimates from two recent studies of gravitational lensing of background galaxies by Planck clusters to provide priors on the hydrostatic bias parameter, (1 - b). In addition, we use lensing of cosmic microwave background (CMB) temperature fluctuations by Planck clusters as an independent constraint on this parameter. These various calibrations imply constraints on the present-day amplitude of matter fluctuations in varying degrees of tension with those from the Planck analysis of primary fluctuations in the CMB; for the lowest estimated values of (1 b) the tension is mild, only a little over one standard deviation, while it remains substantial (3.7 sigma) for the largest estimated value. We also examine constraints on extensions to the base flat Lambda CDM model by combining the cluster and CMB constraints. The combination appears to favour non-minimal neutrino masses, but this possibility does little to relieve the overall tension because it simultaneously lowers the implied value of the Hubble parameter, thereby exacerbating the discrepancy with most current astrophysical estimates. Improving the precision of cluster mass calibrations from the current 10%-level to 1% would significantly strengthen these combined analyses and provide a stringent test of the base Lambda CDM model.

  • 19. Ade, P. A. R.
    et al.
    Aghanim, N.
    Arnaud, M.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Banday, A. J.
    Barreiro, R. B.
    Bartolo, N.
    Basak, S.
    Battaner, E.
    Benabed, K.
    Benoit, A.
    Benoit-Levy, A.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bock, J. J.
    Bonaldi, A.
    Bonavera, L.
    Bond, J. R.
    Borri, J.
    Bouchet, F. R.
    Bucher, M.
    Burigana, C.
    Butler, R. C.
    Calabrese, E.
    Cardoso, J. -F.
    Casaponsa, B.
    Catalano, A.
    Challinor, A.
    Chamballu, A.
    Chiang, H. C.
    Christensen, P. R.
    Church, S.
    Clements, D. L.
    Colombi, S.
    Colombo, L. P. L.
    Combet, C.
    Couchot, F.
    Coulais, A.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Danese, L.
    Davies, R. D.
    Davis, R. J.
    de Bernardis, P.
    de Rosa, A.
    de Zotti, G.
    Delabrouille, J.
    Desert, F. -X.
    Diego, J. M.
    Dole, H.
    Donzelli, S.
    Dore, O.
    Douspis, M.
    Ducout, A.
    Dupac, X.
    Efstathiou, G.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Fergusson, J.
    Fernandez-Cobos, R.
    Finelli, F.
    Forni, O.
    Frailis, M.
    Fraisse, A. A.
    Franceschi, E.
    Frejsel, A.
    Galeotta, S.
    Galli, S.
    Ganga, K.
    Genova-Santos, R. T.
    Girad, M.
    Giraud-Heraud, Y.
    Gjerlow, E.
    Gonzalez-Nuevo, J.
    Gorski, K. M.
    Gratton, S.
    Gregorio, A.
    Gruppuso, A.
    Gudmundsson, Jón E.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita). Princeton University, USA.
    Hansen, F. K.
    Hanson, D.
    Harrison, D. L.
    Henrot-Versille, S.
    Hernandez-Monteagudo, C.
    Herranz, D.
    Hildebrandt, S. R.
    Hivon, E.
    Hobson, M.
    Holmes, W. A.
    Hornstrup, A.
    Hovest, W.
    Huffenberger, K. M.
    Hurier, G.
    Ilic, S.
    Jaffe, A. H.
    Jaffe, T. R.
    Jones, W. C.
    Juvela, M.
    Keihanen, E.
    Keskitalo, R.
    Kisner, T. S.
    Kneiss, R.
    Knoche, J.
    Kunz, M.
    Kurki-Suonio, H.
    Lagache, G.
    Lahteenmaki, A.
    Lamarre, J. -M.
    Langer, M.
    Lasenby, A.
    Lattanzi, M.
    Lawrence, C. R.
    Leonardi, R.
    Lesgourgues, J.
    Levrier, F.
    Liguori, M.
    Lilje, P. B.
    Linden-Vornle, M.
    Lopez-Caniego, M.
    Lubin, P. M.
    Ma, Y. -Z.
    Macias-Perez, J. F.
    Maggio, G.
    Maino, D.
    Mandolesi, N.
    Mangilli, A.
    Marcos-Caballero, A.
    Maris, M.
    Martin, P. G.
    Martinez-Gonzalez, E.
    Masi, S.
    Matarrese, S.
    McGehee, P.
    Meinhold, P. R.
    Melchiorri, A.
    Mendes, L.
    Mennella, A.
    Migliaccio, M.
    Mitra, S.
    Miville-Deschenes, M. -A.
    Moneti, A.
    Montier, L.
    Morgante, G.
    Mortlock, D.
    Moss, A.
    Munshi, D.
    Murphy, J. A.
    Naselsky, P.
    Nati, F.
    Natoli, P.
    Netterfield, C. B.
    Norgaard-Nielsen, H. U.
    Noviello, F.
    Novikov, D.
    Novikov, I.
    Oxborrow, C. A.
    Paci, F.
    Pagano, L.
    Pajot, F.
    Paoletti, D.
    Pasian, F.
    Patanchon, G.
    Perdereau, O.
    Perotto, L.
    Perrotta, F.
    Pettorino, V.
    Piacentini, F.
    Piat, M.
    Pierpaoli, E.
    Pietrobon, D.
    Plaszczynski, S.
    Pointecouteau, E.
    Polenta, G.
    Popa, L.
    Pratt, G. W.
    Prezeau, G.
    Prunet, S.
    Puget, J. -L.
    Rachen, J. P.
    Reach, W. T.
    Rebolo, R.
    Reinecke, M.
    Remazeilles, M.
    Renault, C.
    Renzi, A.
    Ristorcelli, I.
    Rocha, G.
    Rosset, C.
    Rossetti, M.
    Roudier, G.
    Rubino-Martin, J. A.
    Rusholme, B.
    Sandri, M.
    Santos, D.
    Savelainen, M.
    Savini, G.
    Schaefer, B. M.
    Scott, D.
    Seiffert, M. D.
    Shellard, E. P. S.
    Spencer, L. D.
    Stolyarov, V.
    Stompor, R.
    Sudiwala, R.
    Sunyaev, R.
    Sutton, D.
    Suur-Uski, A. -S.
    Sygnet, J. -F.
    Tauber, J. A.
    Terenzi, L.
    Toffolatti, L.
    Tomasi, M.
    Tristram, M.
    Tucci, M.
    Tuovinen, J.
    Valenziano, L.
    Valiviita, J.
    Van Tent, F.
    Vielva, P.
    Villa, F.
    Wade, L. A.
    Wandelt, B. D.
    Wehus, I. K.
    Yvon, D.
    Zacchei, A.
    Zonca, A.
    XXI. The integrated Sachs-Wolfe effect2016Inngår i: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 594, artikkel-id A21Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    This paper presents a study of the integrated Sachs-Wolfe (ISW) effect from the Planck 2015 temperature and polarization data release. This secondary cosmic microwave background (CMB) anisotropy caused by the large-scale time-evolving gravitational potential is probed from different perspectives. The CMB is cross-correlated with different large-scale structure (LSS) tracers: radio sources from the NVSS catalogue; galaxies from the optical SDSS and the infrared WISE surveys; and the Planck 2015 convergence lensing map. The joint cross-correlation of the CMB with the tracers yields a detection at 4 sigma where most of the signal-to-noise is due to the Planck lensing and the NVSS radio catalogue. In fact, the ISW effect is detected from the Planck data only at approximate to 3 sigma (through the ISW-lensing bispectrum), which is similar to the detection level achieved by combining the cross-correlation signal coming from all the galaxy catalogues mentioned above. We study the ability of the ISW effect to place constraints on the dark-energy parameters; in particular, we show that Omega(Lambda) is detected at more than 3 sigma. This cross-correlation analysis is performed only with the Planck temperature data, since the polarization scales available in the 2015 release do not permit significant improvement of the CMB-LSS cross-correlation detectability. Nevertheless, the Planck polarization data are used to study the anomalously large ISW signal previously reported through the aperture photometry on stacked CMB features at the locations of known superclusters and supervoids, which is in conflict with Lambda CDM expectations. We find that the current Planck polarization data do not exclude that this signal could be caused by the ISW effect. In addition, the stacking of the Planck lensing map on the locations of superstructures exhibits a positive cross-correlation with these large-scale structures. Finally, we have improved our previous reconstruction of the ISW temperature fluctuations by combining the information encoded in all the previously mentioned LSS tracers. In particular, we construct a map of the ISW secondary anisotropies and the corresponding uncertainties map, obtained from simulations. We also explore the reconstruction of the ISW anisotropies caused by the large-scale structure traced by the 2MASS Photometric Redshift Survey (2MPZ) by directly inverting the density field into the gravitational potential field.

  • 20. Ade, P. A. R.
    et al.
    Aghanim, N.
    Arnaud, M.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Banday, A. J.
    Barreiro, R. B.
    Bartolo, N.
    Basak, S.
    Battaner, E.
    Benabed, K.
    Benoit, A.
    Benoit-Levy, A.
    Bernard, J-P.
    Bersanelli, M.
    Bielewicz