Change search
Refine search result
1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Bogár, Krisztián
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Olofsson, Berit
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Fransson, Ann-Britt L.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Asymmetric synthesis of 3,5-disubstituted piperidines by enzyme-metal combo catalysis2006In: Enzymatic Synthesis, Stockholm, Sweden, 2006Conference paper (Other (popular science, discussion, etc.))
  • 2. Hafrén, Jonas F.
    et al.
    Córdova, Armando
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Modification of substrates bearing amino and alcohol groups2007Patent (Other (popular science, discussion, etc.))
  • 3. Naderi, Ali
    et al.
    Córdova, Armando
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Metod för att tillverka en vattenavvisande cellulosatextil samt motsvarande textilprodukt2011Patent (Other (popular science, discussion, etc.))
  • 4.
    Nozière, Barbara
    et al.
    Stockholm University, Faculty of Science, Department of Applied Environmental Science (ITM). Stockholm University, Faculty of Science, Department of Applied Environmental Science (ITM).
    Dziedzic, Pawel
    Stockholm University, Faculty of Science, Department of Organic Chemistry. Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Córdova, Armando
    Stockholm University, Faculty of Science, Department of Organic Chemistry. Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Common inorganic ions are efficient catalysts for organic reactions in atmospheric aerosols and other natural environments2009In: Atmospheric Chemistry and Physics Discussion, Vol. 9, no 1, p. 1-21Article in journal (Other (popular science, discussion, etc.))
    Abstract [en]

    In this work, inorganic ammonium ions, NH4+, and carbonate ions, CO32-, are reported for the first time as catalysts for organic reactions in atmospheric aerosols and other natural environments at the Earth’s surface. These reactions include the formation of C-C and C-O bonds by aldol condensation and acetal formation, and reveal a new aspect of the interactions between organic and inorganic materials in natural environments. The catalytic properties of inorganic ammonium ions, in particular, were not previously known in chemistry. The reactions were found to be as fast in tropospheric ammonium sulfate composition as in concentrated sulfuric acid. The ubiquitous presence and large concentrations of ammonium ions in tropospheric aerosols would make of ammonium catalysis a main consumption pathway for organic compounds in these aerosols, while acid catalysis would have a minor contribution. In particular, ammonium catalysis would account quantitatively for the aging of carbonyl compounds into secondary “fulvic” compounds in tropospheric aerosols, a transformation affecting the optical properties of these aerosols. In general, ammonium catalysis is likely to be responsible for many observations previously attributed to acid catalysis in the troposphere.

  • 5.
    Olofsson, Berit
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Aggarwal, Varinder K.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Enantioselective alfa-Arylation of Ketones: Application to the Synthesis of (–)-Epibatidine2006In: Sterochemistry, Bürgenstock, Switzerland, 2006Conference paper (Other (popular science, discussion, etc.))
  • 6.
    Olofsson, Berit
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Aggarwal, Varinder K.
    Bristol University, UK.
    Enantioselective alfa-Arylation of Ketones: Application to the Synthesis of (–)-Epibatidine2006In: Organikerdagarna, Kalmar, Sweden, 2006, p. Le21, P47-Conference paper (Other (popular science, discussion, etc.))
    Abstract [en]

    The enantioselective introduction of electrophiles alfa to carbonyl compounds occupies a central position in asymmetric synthesis. Although asymmetric alkylations have been well developed, high enantioselectivity in α-arylation of ketones has only been achieved in a limited number of cases.

    We have developed a direct arylation reaction of cyclohexanones, employing diaryl iodonium(III) salts as electrophiles. The reaction was made enantioselective by the use of a chiral base, resulting in 2,4-substituted cyclohexanones in high yields and with high enantiomeric excesses and diastereoselectivities.

    This methodology was applied in a short, enantioselective synthesis of (–)-Epibatidine, an alkaloid recently isolated from the Ecuadorian poison frog Epipedobates tricolor. The synthesis was accomplished in 6 steps and 31% overall yield, thus providing the shortest and most efficient asymmetric route to this important compound to date.

1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf