Change search
Refine search result
1234567 1 - 50 of 321
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.
  • 1.
    Adolfsson, Hans
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Transition metal-catalyzed epoxidation of alkenes2010In: Modern Oxidation Methods / [ed] Jan-Erling Bäckvall, Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA , 2010, 2, p. 37-84Chapter in book (Other academic)
  • 2.
    Adrian Meredith, Jenny
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Design and Synthesis of Inhibitors Targeting the Aspartic Proteases HIV-1 PR and BACE-12009Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis describes the synthesis of molecules designed for inhibition of two aspartic proteases, viral HIV-1 PR and human BACE-1. It also reports on the structure activity relationships of the targeted enzyme inhibitors.

    It is estimated that currently 33 million people are infected with HIV, the causative agent of AIDS. The virus targets T-lymphocytes and macrophages of the human immune system. The HIV-1 PR plays an important role in the viral replication, and by inhibiting the enzyme the disease progression can be slowed down or even halted.

    Herein is reported the design and synthesis of a series of HIV-1 PR inhibitors with novel P2 substituents of which several inhibit the enzyme in the nanomolar range. The aim of the second work was to further develop the inhibitors by the introduction of fluorine. Several attempts were performed to fluorinate different P2-substituents.

    Alzheimer’s disease (AD) is neurodegenerative, progressive and fatal disorder of the brain. It is associated with accumulation of plaques and tangles that cause impairment and functional decline of brain tissue which result in loss of memory and cognition. The plaques are mainly constituted of amyloid-β peptides that are generated in two steps from the amyloid precursor protein (APP). The cleavage sequence is initiated by the aspartic protease BACE-1, which makes the enzyme a key target in the effort of finding a therapy that aim to slow down the progression of AD.

    Herein are enclosed the development of two series of potent BACE-1 inhibitors. In the first work a synthetic strategy was developed to truncate a previously reported hydroxyethylene core structure in order to generate more drug-like inhibitors. This generated a series of truncated inhibitors where two amide bonds have been replaced with an ether - or alternatively a secondary amine linkage. A number of these inhibitors show potency against BACE-1. In the second part of the work the aim was investigate the effect of alterations in the P1 position. Five scaffolds with new P1 substituents were designed, synthesized and coupled with two different P2-P3 substituents. This resulted in a series of potent inhibitors that inhibit BACE-1 in the nanomolar range.

  • 3.
    Ahlford, Katrin
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Asymmetric transfer hydrogenation of ketones: Catalyst development and mechanistic investigation2011Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The development of ligands derived from natural amino acids for asymmetric transfer hydrogenation (ATH) of prochiral ketones is described herein. In the first part, reductions performed in alcoholic media are examined, where it is found that amino acid-derived hydroxamic acids and thioamides, respectively, are simple and versatile ligands that in combination with [RhCp*Cl2]2 efficiently catalyze this particular transformation. Selectivities up to 97% ee of the corresponding secondary alcohols are obtained, and it is furthermore observed that the two different ligand classes, albeit based on the same amino acid scaffold, give rise to products of opposite configuration.

    The highly interesting enantioswitchable nature of the two abovementioned catalysts is studied in detail by mechanistic investigations. A structure/activity correlation analysis is performed, which reveals that the diverse behavior of the catalysts arise from different interactions between the ligands and the metal. Kinetic studies furthermore stress the catalyst divergence, since a difference in the rate determining step is established from initial rate measurements. In addition, rate constants are determined for each step of the overall reduction process.

    In the last part, catalyst development for ATH executed in water is discussed. The applicability of hydroxamic acid ligands is further extended, and catalysts based on these compounds are found to be efficient and compatible with aqueous conditions. The structurally even simpler amino acid amide is also evaluated as a ligand, and selectivities up to 90% ee are obtained in the reduction of a number of aryl alkyl ketones. The very challenging reduction of dialkyl ketones is moreover examined in the Rh-catalyzed aqueous ATH, where a modified surfactant-resembling sulfonylated diamine is used as ligand, and the reaction is carried out in the presence of SDS-micelles. A positive effect is to some extent found on the catalyst performance upon addition of phase-transfer components, especially regarding the catalytic activity in the reduction of more hydrophobic substrates.

  • 4.
    Ahlford, Katrin
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Ryberg, Per
    Eriksson, Lars
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Adolfsson, Hans
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Nordin, Mikael
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Mechanistic investigation of enantioswitchable catalysts for asymmetric transfer hydrogenation2010In: Abstracts of Papers, 239th ACS National Meeting, San Francisco , CA, United States, March 21-25, 2010, Washington: American Chemical Society , 2010Conference paper (Other academic)
  • 5.
    Ahlsten, Nanna
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Transition metal-catalysed enol formation from allylic alcohols: Isomerisation, C−C and C−F bond formations 2011Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis describes the isomerisation of allylic alcohols into enols and enolates catalysed by transition metal complexes. The transformation has been used to prepare both unsubstituted and α-substituted carbonyl compounds. Significant attention has been given to the mechanistic aspects of the reactions.

    In the first part of this thesis, an environmentally benign procedure for the redox isomerisation of allylic alcohols into ketones is described. The reaction takes place in water and at room temperature using a cationic rhodium complex in combination with water-soluble phosphines. A variety of allylic alcohols could be isomerised in high yields using this procedure.

    The second part describes the combination of an allylic alcohol isomerisation with a C−C bond formation, catalysed by a rhodium complex. In this way, allylic alcohols were coupled with aldehydes and N-tosyl imines forming aldol and Mannich-type products. In addition, homoallylic and bishomoallylic alcohols were for the first time isomerised into the corresponding enolates and coupled using this methodology.

    In the third part of this thesis, the isomerisation of allylic alcohols was coupled with a C−F bond formation using an iridium complex and electrophilic fluorinating reagents. This novel transformation was used to convert allylic alcohols into single regioisomers of α-fluoroketones. The reaction is tolerant to air and water and takes place at room temperature.

    All of the reactions described take place under mild conditions, are operationally simple, and utilise catalysts formed in situ from commercially available metal complexes and ligands.

  • 6.
    Ahlsten, Nanna
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Transition metal-catalysed isomerisation of allylic alcohols: Applications to C−C, C−F and C−Cl bond formation2013Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The focus of this thesis has been to develop selective and atom-economical methods for carbon-carbon and carbon-heteroatom bond formation, and to some extent improve on existing findings in this area. More specifically, methods for the catalytic generation of enolates from allylic alcohols and their in situ functionalisation with electrophilic reagents are described.  

    In the first part of this thesis, a method for the Rh-catalysed redox-isomerisation of allylic alcohols into carbonyl compounds under environmentally benign conditions is described. The reaction takes place at room temperature, in the absence of acids or bases, using water as the only solvent, and it is applicable to both primary and secondary allylic alcohols.

    The second part describes the combination of an isomerisation reaction of allylic alcohols with a C−C bond formation, catalysed by a rhodium complex. In this way, allylic alcohols were coupled with aldehydes and N-tosylimines to give aldol and Mannich-type products. In addition to allylic alcohols, homoallylic and bishomoallylic alcohols could be used as enolate precursors, and this is the first report where the latter two substrate types have been used in such a reaction.       

    In the remaining parts of the thesis, an iridium-catalysed isomerisation of allylic alcohols has been combined with an electrophilic halogenation step to provide a conceptually new method for the synthesis of α-halogenated carbonyl compounds. In this way, α-fluoro and α-chloroketones have been synthesised as single constitutional isomers, with the regiochemistry of the final products determined by the position of the double bond in the allylic alcohols. The reactions are tolerant to air, run in water-organic solvent mixtures, and proceed at room temperature.

  • 7.
    Ahlsten, Nanna
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bermejo-Gómez, Antonio
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Martín-Matute, Belén
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Synthesis of α-chlorinated ketones and aldehydes: Iridium-catalyzed tandem 1,3-H shift/chlorination of allylic alcoholsManuscript (preprint) (Other academic)
  • 8.
    Ahlsten, Nanna
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Martín-Matute, Belén
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Rhodium-catalysed coupling of allylic, homoallylic, and bishomoallylic alcohols with aldehydes and N-tosylimines2010In: Abstracts of Papers, 239th ACS National Meeting, San Francisco, CA, United States, March 21-25, 2010, American Chemical Society , 2010Conference paper (Other academic)
  • 9.
    Alam, Rauful
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Catalytic Regio- and Stereoselective Reactions for the Synthesis of Allylic and Homoallylic Compounds2015Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis is focused on two main areas of organic synthesis, palladium-catalyzed functionalization of alkenes and allylic alcohols, as well as development of new allylboration reactions.

    We have developed a palladium-catalyzed selective allylic trifluoroacetoxylation reaction based on C−H functionalization. Allylic trifluoroacetates were synthesized from functionalized olefins under oxidative conditions. The reactions proceed under mild conditions with a high level of diastereoselectivity. Mechanistic studies of the allylic C−H trifluoroacetoxylation indicate that the reaction proceeds via (η3-allyl)palladium(IV) intermediate.

    Palladium-catalyzed regio- and stereoselective synthesis of allylboronic acids from allylic alcohols has been demonstrated. Diboronic acid B2(OH)4 was used as the boron source in this process.

    The reactivity of the allylboronic acids were studied in three types of allylboration reactions: allylboration of ketones, imines and acyl hydrazones. All three processes are conducted under mild conditions without any additives. The reactions proceeded with remarkably high regio- and stereoselectivity.

    An asymmetric version of the allylboration of ketones was also developed. In this process chiral BINOL derivatives were used as catalysts. The reaction using γ-disubstituted allylboronic acids and various aromatic and aliphatic ketones afforded homoallylic alcohols bearing two adjacent quaternary stereocenters with excellent regio-, diastereo- and enantioselectivity (up to 97:3 er) in high yield. The stereoselectivity in the allylboration reactions could be rationalized on the basis of the Zimmerman-Traxler TS model.

  • 10.
    Alam, Rauful
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Palladium-catalyzed Allylic C-H and C-OH Functionalization. Reactions of the Obtained Allylboronic Acids2014Licentiate thesis, monograph (Other academic)
    Abstract [en]

    This thesis is focused on the studies of two major transformations. The first transformation deals with the development of palladium-catalyzed selective allylic trifluoroacetoxylation reactions based on C-H functionalization, whereas the second comprises the synthesis and isolation of allylboronic acids using diboronic acid B2(OH)4 as boron source. Both reactions proceed with a very high regio- and stereoselectivity. The mechanistic studies of the allylic C-H trifluoroacetoxylation indicate that the reaction proceeds via (η3-allyl)palladium intermediate.

    The reactivity of the allylboronic acids was studied with ketone and imine substrates. Unlikeother boronates (such as allyl-Bpin derivatives), allylboronic acids react with ketones and imines without any additives under neutral and mild conditions (typically at room temperature). The regio- and stereoselectivity of this reaction is remarkably high. Using functionalized allylboronic acids (prepared in the above mentioned Pd-catalyzed reactions) homoallylic alcohols and amines with adjacent tertiary and quaternary centers could be obtained with high selectivity. Interestingly, both the ketones and the imines reacted with anti-stereoselectivity. This was surprising for the imines. Our mechanistic study has shown that the acyclic aldimines undergo cis/trans isomerization prior to the allylation reaction.

  • 11.
    Ali, Tara
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Structural Studies of O-Polysaccharides from Diarrhoeal Escherichia coli2007Doctoral thesis, monograph (Other academic)
    Abstract [en]

    This thesis describes the structural analysis of O-polysaccharides from the Gram-negative bacterium Escherichia coli that is a diarrhoeal pathogen. The Escherichia coli serotypes investigated were O178, O171, O166 and O128. The methods used in these studies were nuclear magnetic resonance spectroscopy and component analysis.

    All analysed serotypes had pentasaccharide repeating units. E. coli strain O128 and O166 was shown to have the topology of four carbohydrate residues in the backbone while the 5-residue backbone is found in E. coli O178 and O171.

    The biological repeating units have been determined for the analysed polysaccharides and it was shown that all of the serotypes studied had a 3-substituted N-acetylgalactosamine residue at the reducing end. From this it was deduced that the terminal end of E. coli O171 and O128 have sialic acid and blood type antigens, respectively. This should make E. coli O171 and O128 less recognizable to the immune system as a foreign invader. This can result in that E. coli O171 and O128 may evade the immune system more easily.

  • 12.
    Almer, Helena
    Stockholm University, Faculty of Science.
    Studies on formation and stability of phosphorothioate RNA1995Doctoral thesis, comprehensive summary (Other academic)
  • 13.
    Alpe, Marianne
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Synthesis of oligosaccharides related to the capsular polysaccharides of Streptococcus pneumoniae serotype 9 and of Cryptococcus neoformans2003Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    In the present investigation, synthesis of oligosaccharides corresponding to structural elements present in the capsular polysaccharides of Streptococcus pneumoniae and Cryptococcus neoformans has been achieved. The first two sections describe the synthesis of spacer-equipped oligosaccharides corresponding to structures from the CPS of Streptococcus pneumoniae serotypes 9N, 9A and 9L, the production of which involved synthetic challenges such as the construction of β-ManNAc and α-GlcA linkages. The former challenge was met by employing azide displacement of a 2-O-triflate substituent on a β-glucoside, whereas the latter task was accomplished utilizing thioethyl glucuronic acid donors in the presence of various promoters. The pentasaccharide product obtained correspond to the complete repeating unit of the CPS of serotype 9A.

    The last two sections of this thesis describe the construction of thioglycoside di- and trisaccharide building blocks containing α-Man, β-Xyl, β-GlcA and 6-O-acetyl motifs, as well as subsequent assembly of these building blocks into oligosaccharides corresponding to the repeating units of the capsular polysaccharide of the yeast Cryptococcus neoformans. The GlcA moiety was introduced via trichloroacetimidate coupling involving the peracetylated glucuronic acid methyl ester donor, after which the subsequent necessary benzylation was performed with the di- and trisaccharides. All of the target oligosaccharides were synthesized as amino-spacer glycosides in order to make conjugation to a carrier protein possible.

  • 14.
    Anderlund, Magnus
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Dinuclear Manganese Complexes for Artificial Photosynthesis: Synthesis and Properties2005Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis deals with the synthesis and characterisation of a series of dinuclear manganese complexes. Their ability to donate electrons to photo-generated ruthenium(III) has been investigated in flash photolysis experiments followed by EPR-spectroscopy. These experiment shows several consecutive one-electron transfer steps from the manganese moiety to ruthenium(III), that mimics the electron transfer from the oxygen evolving centre in photosystem II.

    The redox properties of these complexes have been investigated with electro chemical methods and the structure of the complexes has been investigated with different X-ray techniques. Structural aspects and the effect of water on the redox properties have been shown.

    One of the manganese complexes has been covalently linked in a triad donor-photosensitizer-acceptor (D–P–A) system. The kinetics of this triad has been investigated in detail after photo excitation with both optical and EPR spectroscopy. The formed charge separated state (D–P–A+) showed an unusual long lifetime for triad based on ruthenium photosensitizers.

    The thesis also includes a study of manganese-salen epoxidation reactions that we believe can give an insight in the oxygen transfer mechanism in the water oxidising complex in photosystem II.

  • 15.
    Andersson, Linnéa
    Stockholm University, Faculty of Science, Department of Physical, Inorganic and Structural Chemistry. Oorganisk kemi.
    Exploring expandable microspheres as a novel pore former in gel-cast macroporous alumina2008Licentiate thesis, monograph (Other academic)
    Abstract [en]

    Expandable microspheres have been explored as sacrificial templates for the production of macroporous ceramics. Concentrated alumina powder suspensions that contain expandable microspheres have been consolidated by gel-casting. The temperature range for the setting of the monomers and cross-linkers in the gel-casting system was tailored to allow the gas-filled polymer spheres to expand before the surrounding powder body became rigid. It has been demonstrated that it is possible to tune and tailor the porosity up to 86 % and the pore size distribution from 15 up to 150 micrometers by controlling the amount and size of the expandable microspheres. Scanning electron microscopy showed that the porosity became more and more open as the total porosity increased. This was corroborated by a preliminary study by X-ray µ Computed Tomography, which showed a very high connectivity between the pores, in a macroporous alumina body with a high porosity. The connectivity was reduced when alumina particles were deposited as a homogenous coating of on the expandable microspheres by a layer-by-layer coating process. The expandable microspheres has the advantage that a relatively low amount of organic material results in a large pore volume, which allow rapid and facile burn-out. It was demonstrated that the temperature induced expansion of the microspheres, and the associated increase of the suspension volume could be used as a novel casting method to yield macroporous alumina bodies with complex shapes. Ceramics produced with this method could find application ranging from bone scaffolds to low mass kiln furniture.

  • 16.
    Andersson, Mats
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Determination of the structures of three bacterial polysaccharides and synthesis and use of new spacers for glycoconjugate formation1993Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The first part of this work describes studies on the structures of three bacterial polysaccharides, i.e., the extracellular polysaccharides of Streptococcus pneumoniae type 2 and Butyrivibrio fibrisolvens strain X6C61 and the O-antigenic side-chain of the lipopolysaccharide of Escherichia coli 086.

    The second part describes the synthesis of new spacer molecules for oligosaccharide immobilization and their use in glycoconjugate formation.

  • 17.
    Andersson, Nina
    Stockholm University, Faculty of Science, Department of Physical, Inorganic and Structural Chemistry.
    Mesostructured materials: Synthesis towards applications2007Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    A new class of materials with well-defined structures on mesoscopic (2-50 nm) length scales has attracted considerable interest during the last decade. These mesostructured mataterials are formed from the self-assembly of amphiphillic molecules and inorganic precursors. The aim of this thesis has been to develop preparation methods that are scalable, and at the same time allow for efficient structural control coupled with possibility to incorporate different functionalities.

    Two different industrial processes for production of particles with spherical morphology were successfully tailored for synthesis of well-ordered mesostructured particles. An existing spray drying method for a fast and continuous production was further developed, and for the first time, an emulsion-based method was implemented. The latter method resulted in superior control of both particle size and internal mesostructure.

    Mesostructured photochromic pigments were synthesised by incorporating photochromic dyes in the organic domains of the surfactant templated inorganic/organic mesostructured silica particles. The pigments were produced using a one-pot synthesis method employing an aerosol reactor, allowing control over both the internal mesostructure and the dye content. We show that transparent photochromic films can be prepared using latex binders and conventional coating technology.

    Mesoporous magnetic carrier materials were prepared by adding iron oxide nanoparticles during either the emulsion- or aerosol processing. The surfactant templated silica matrix displayed well-ordered internal pore architecture with limited pore blocking caused by the incorporated iron oxide nanoparticles. The iron oxide content was precisely controlled, and the magnetic properties were preserved during the processing. Finally we demonstrate that these materials can be used to magnetically separate water-soluble dyes from solution.

  • 18.
    Angles d'Ortoli, Thibault
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Assembling and Unraveling Carbohydrates Structures: Conformational analysis of synthesized branched oligosaccharides2016Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Advances in the elaboration of vaccines and enzyme inhibitors rely on acquiring more knowledge about protein-carbohydrate binding events. Furthermore, the relationships between biological function and the three-dimensional properties of large glycans can be studied by focusing on the structural components they contained, namely, by scaling down the system under analysis. Chemical methods are useful assets as they allow the isolation and determination of epitopes; these small and recognizable fragments that lead to very specific interactions. In this thesis, biologically relevant saccharides were obtained using recently developed concepts in carbohydrate synthesis and NMR spectroscopy was used to unravel their conformational preferences.

    In paper I, the convergent synthesis of the tetrasaccharide found in the natural product solaradixine is described. Reactivity enhanced disaccharide glycosyl donors were coupled to a disaccharide acceptor in a 2 + 2 fashion. The computer program CASPER was subsequently used to verify the synthesized structure.

    The conformation arming concept employed in paper I was further investigated in paper II. An NMR-based methodology enabled the determination of the ring conformations of a set of donors. Subsequently, glycosylation reactions were performed and yields were correlated to donors ring shapes. Perturbations in the rings shape caused by bulky silyl ether protective groups were sufficient to boost the potency of several donors. As a matter of fact, complex branched oligosaccharides could be obtained in good to excellent yields.

    In paper III, NMR spectroscopy observables were measured to elucidate the ring shape, the mutual orientation of the rings across the glycosidic bond and the positions of the side chains of 5 trisaccharides found in larger structures. With the aid of molecular dynamics simulations, their overall conformational propensities were revealed.

    Finally, the software CASPER prediction skills were improved by adding, inter alia, NMR information of synthesized mono- and disaccharides to its database. Unassigned chemical shifts from polysaccharides served as input to challenge its ability to solve large carbohydrate structures.

  • 19.
    Angles d'Ortoli, Thibault
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Mobarak, Hani
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Ståhle, Jonas
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Hamark, Christoffer
    Fontana, Carolina
    Engström, Olof
    Apostolica, Patricia
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Complete 1H and 13C NMR chemical shift assignments of mono- to tetrasaccharides as basis for NMR chemical shift predictions of oligo- and polysaccharides using the computer program CASPERManuscript (preprint) (Other academic)
  • 20.
    Aydin, Juhanes
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Szabó, Kálmán
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Enantioselective palladium pincer complex catalyzed carbon carbon coupling reactions between tosylimines and various nucleophiles2008In: Abstracts of Papers, 236th ACS National Meeting, Philadelphia, PA, United States, August 17-21, 2008, Washington, DC: American Chemical Society , 2008Conference paper (Other academic)
  • 21.
    Aydin, Juhanes
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Szabó, Kálmán J.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Mechanistic considerations for the enantioselective palladium pincer complex catalyzed carbon-carbon coupling reactions2008In: Abstracts of Papers, 236th ACS National Meeting, Philadelphia, PA, United States, August 17-21, 2008, Washington, DC: American Chemical Society , 2008Conference paper (Other academic)
  • 22.
    Ayesa Alvarez, Susana
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Design and Synthesis of Amine Building Blocks and Protease Inhibitors2008Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The first part of this thesis addresses the design and synthesis of amine building blocks accomplished by applying two different synthetic procedures, both of which were developed using solid-phase chemistry. Chapter 1 presents the first of these methods, entailing a practical solid-phase parallel synthesis route to N-monoalkylated aminopiperidines and aminopyrrolidines achieved by selective reductive alkylation of primary and/or secondary amines. Solid-phase NMR spectroscopy was used to monitor the reactions for which a new pulse sequence was developed. The second method, reported in Chapter 2, involves a novel approach to the synthesis of secondary amines starting from reactive alkyl halides and azides. The convenient solid-phase protocol that was devised made use of the Staudinger reaction in order to accomplish highly efficient alkylations of N-alkyl phosphimines or N-aryl phosphimines with reactive alkyl halides.

    The second part of the thesis describes the design and synthesis of three classes of protease inhibitors targeting the cysteine proteases cathepsins S and K, and the serine protease hepatitis C virus (HCV) NS3 protease. Chapter 4 covers the design, solid-phase synthesis, and structure-activity relationships of 4-amidofurane-3-one P1-containing inhibitors of cathepsin S and the effects of P3 sulfonamide groups on the potency and selectivity towards related cathepsin proteases. This work resulted in the discovery of highly potent and selective inhibitors of cathepsin S. Two parallel solid-phase approaches to the synthesis of a series of aminoethylamide inhibitors of cathepsin K are presented in Chapter 5. Finally, Chapter 6 reports peptide-based HCV NS3 protease inhibitors containing a non-electrophilic allylic alcohol moiety as P1 group and also outlines efforts to incorporate this new template into low-molecular-weight drug-like molecules.

  • 23. Back, Marcus
    et al.
    Nyhlén, Jonas
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kvarnström, Ingemar
    Rosenquist, Åsa
    Samuelsson, Bertil
    Design, synthesis and SAR of potent statin-based β-secretase inhibitors: Exploration of P1 phenoxy and benzyloxy residues2007Conference paper (Other academic)
  • 24.
    Balan, Daniela
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    The three-component aza-Baylis-Hillman reaction: development and application2004Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The current thesis presents the optimization and generalization of the Baylis-Hillman reaction applied to in situ generated imines, i.e. a three-component aza- Baylis-Hillman reaction. We found that the title reaction proceeds most efficiently in the presence of a combination of catalysts, i.e. 3-hydroxyquinuclidine (0.15 equiv) and titanium isopropoxide (0.02 equiv), together with molecular sieves (4 Å; activated powder; 200 mg/mmol substrate) at ambient temperature.

    Our study of the scope and limitations of this reaction, revealed that arylaldehydes and sulfonamides are the only imine precursors which both generate the corresponding imines in situ and facilitate a further reaction with the Michael acceptor in a Baylis-Hillman fashion. Among the Michael acceptors tested, acrylates and acrylonitrile demonstrate high reactivity, while acrylamides and β-substituted acrylates do not participate in the reaction.

    The optimized conditions applied to the above range of substrates results in good-to-excellent yields of the desired amine-products (53-94%) and very high chemoselectivity (83- >99%). Furthermore, the reaction times observed under these conditions are considerably shorter than those previously reported for the aza-Baylis-Hillman reaction.

    In the development of a stereoselective version of the title reaction, the use of a chiral catalyst proved to be most effective. Thus, an enantiomeric excess up to 74% can be obtained with β-Isocupreidine. With chiral imine precursors or chiral acrylates, the diastereoselectivity attained was poor. No asymmetric induction was observed when chiral Lewis acids were employed as a co-catalyst.

    The α-methylene-β-amino acid derivatives obtained via the three-component aza-Baylis-Hillman reaction were subjected to further transformation. Carbon chain elongation at the olefinic end of the amine-adduct was attempted. For this purpose, the Miyaura borylation protocol could be successfully applied. The subsequent Suzuki-type cross-coupling reaction resulted predominantly in hydrolysis of the boronate intermediate, together with formation of the amine-adduct via β-hydride elimination. The optimal conditions for this latter reaction remain to be found.

    Finally, 2,5-dihydropyrroles have been synthesized from aza-Baylis-Hillman adducts, via a short and efficient route in which the key step is a microwave-assisted ring-closing metathesis of the N-allylated amine-adducts.

  • 25.
    Bartholomeyzik, Teresa
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Investigation of Selectivity in Palladium-Catalyzed Oxidative Arylating Carbocyclization of Allenynes.Manuscript (preprint) (Other academic)
  • 26.
    Bartholomeyzik, Teresa
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Palladium(II)-Catalyzed Oxidative Carbocyclization/Functionalization of Allenynes2014Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The selective formation of carbon-carbon bonds constitutes a key transformation in organic synthesis with useful applications in pharmaceutical or material industry. A particularly versatile tool for carbon-carbon as well as carbon-heteroatom bond formation is palladium catalysis, which allows for mild and selective routes even towards complex structures.

    The work in this thesis describes the development and the mechanistic investigation of a palladium(II)-catalyzed oxidative carbocyclization/functionalization methodology, which converts 1,5-allenynes into either arylated or borylated carbocycles. To this end, either boronic acids or B2pin2 are employed and 1,4-benzoquinone serves as the stoichiometric oxidant. These protocols provide access to two products, a cyclic triene and a cyclic vinylallene. Their formation is dependent on the substrate structure as the latter product requires a propargylic C–H bond to be present in the substrate. Based on kinetic isotope effects, mechanisms involving either an initial allenic or propargylic C–H abstraction, respectively, were proposed. Full control of product selectivity to give either trienes or vinylallenes was achieved by modifying the reaction conditions with additives. Using substoichiometric amounts of BF3·OEt2 leads selectively to borylated or arylated vinylallenes. Under arylating conditions the reaction is zero order in allenyne and oxidant, and first order in phenylboronic acid. Transmetalation and, to some extent, propargylic C–H cleavage were found to be turnover-limiting. The selective reaction towards functionalized trienes was achieved by addition of either substoichiometric LiOAc·2H2O (borylation) or excess amounts of H2O (arylation). For the latter case, a kinetic study revealed an unusually slow catalyst activation. Lower concentrations of H2O gave product mixtures, and it was shown that vinylallenes are formed with either boronic acid or boroxine, whereas the formation of trienes requires boronic acid.

  • 27.
    Bartholomeyzik, Teresa
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Palladium(II)-Catalyzed Oxidative Carbocyclization/Functionalization of Allenynes2013Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    Palladium catalysis has emerged as an outstanding tool in synthetic organic chemistry for the mild and selective formation of carbon-carbon and carbon-heteroatom bonds. This thesis has been directed towards the extension of palladium(II)-catalyzed carbocyclization chemistry under oxidative conditions. An oxidative carbocyclization/functionalization methodology utilizing boron-containing transmetalation reagents was exploited to convert 1,5-allenynes into either arylated or borylated carbocycles. Two protocols were developed that use minimal amounts of Pd(OAc)2, stoichiometric para-benzoquinone as the oxidant and either bis(pinacolato)diboron or different arylboronic acids under mild conditions. A wide substrate scope is applicable to both methods. When the allenyne substrate bears a propargylic hydrogen, two isomeric functionalized carbocycles can be formed. By controlling the reaction conditions the reaction can be directed towards either of these two isomeric products. Kinetic isotope effect studies suggest that the mechanism leading to the different products proceeds through allylic or propargylic C-H bond cleavage, respectively. Moreover, it was observed that water has an interesting effect on the product selectivity when arylboronic acids are used in the oxidative carbocyclization of allenynes.

  • 28.
    Bartholomeyzik, Teresa
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Pendrill, Robert
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Jiang, Tuo
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Complex Kinetics in a Palladium(II)-Catalyzed Oxidative Carbocyclization: Untangling of Competing Pathways, Pre-Catalyst Activation, and Product MixturesManuscript (preprint) (Other academic)
  • 29.
    Bartoszewicz, Agnieszka
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Building molecular complexity via tandem Ru-catalyzed reactions of allylic alcohols2009Licentiate thesis, comprehensive summary (Other academic)
  • 30.
    Bartoszewicz, Agnieszka
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Transition metal-catalysed hydrogen transfer processes for C-C and C-N bond formation: Synthetic studies and mechanistic investigations2012Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis focusses on synthetic studies and mechanistic investigations into reactions involving hydrogen-transfer processes.

    In the first part, the development of an efficient method for the synthesis of β-hydroxy ketones (aldols) and β-amino ketones (Mannich products) from allylic alcohols and aldehydes is described. These reactions use  Ru(η5-C5Ph5)(CO)2Cl as the catalyst. The reaction parameters were optimised in order to suppress the formation of undesired by-products. Neutral and mild reaction conditions enabled the synthesis of a variety of aldol products in up to 99% yield, with a good syn/anti ratio. The influence of the stereoelectronic properties of the catalyst on the reaction outcome was also studied. Based on the results obtained, a plausible reaction mechanism has been proposed, involving as the key steps the 1,4-addition of hydride to α,β-unsaturated ketones and the formation of ruthenium (Z)-enolates.

    In the second part of this thesis, a ruthenium-catalysed tandem isomerisation/C-H activation reaction is presented. A number of ruthenium complexes, phosphine ligands, and additives were evaluated in order to establish the optimal reaction conditions. It was found that the use of a stable ruthenium catalyst, Ru(PPh3)3Cl2, together with PtBu3 and HCO2Na resulted in an efficient tandem transformation. Using this procedure, a variety of ortho-alkylated ketones were obtained in excellent yields. Moreover, homoallylic alcohols could also be used as starting materials for the reaction, which further expands the substrate scope. Mechanistic investigations into the isomerisation part of the process were carried out.

    The last project described in the thesis deals with the design and preparation of novel bifunctional iridium complexes containing an N-(2-hydroxy-isobutyl)-N-Heterocyclic carbene ligand. These complexes were used as catalysts to alkylate amines using alcohols as latent electrophiles. The catalytic system developed here was found to be one of the most active systems reported to date, allowing the reaction to be performed at temperatures as low as 50 °C for the first time. A broad substrate scope was examined. Combined experimental and theoretical studies into the reaction mechanism are consistent with a metal-ligand bifunctional activity of the new catalyst.

  • 31.
    Baumann, Herbert
    Stockholm University, Faculty of Science.
    Synthesis of and NMR and conformational studies on some 3-O-, 4-O- and 3,4-di-O-glycopyranosyl-substituted methyl d-glycopyranosides1988Doctoral thesis, comprehensive summary (Other academic)
  • 32.
    Bedecs, Katarina
    Stockholm University, Faculty of Science, Department of Neurochemistry and Neurotoxicology.
    Galanin in the rat dorsal spinal cord: an inhibitor peptide in sensory processing1995Doctoral thesis, comprehensive summary (Other academic)
  • 33.
    Bermejo-Gómez, Antonio
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Ahlsten, Nanna
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Martín-Matute, Belén
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Synthesis of 4,5-disubstituted 2-amino-1,3-thiazoles from α,β-unsaturated ketones: Preparation of 5-Benzyl-4-methyl-1,3-thiazol-2-amine hydrochlorideManuscript (preprint) (Other academic)
  • 34.
    Bernlind, Christian
    Stockholm University, Faculty of Science.
    Synthesis of LPS epitopes containing Kdo, L-, and D-Glycero-D-manno-heptose to be used in potential conjugate vaccines against Haemophilus species1998Doctoral thesis, comprehensive summary (Other academic)
  • 35.
    Berthold, Malin
    Stockholm University, Faculty of Science.
    Galanin: ligand - receptor interactions1997Doctoral thesis, comprehensive summary (Other academic)
  • 36.
    Bielawski, Marcin
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Diaryliodonium Salts: Development of Synthetic Methodologies and α-Arylation of Enolates2011Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis describes novel reaction protocols for the synthesis of diaryliodonium salts and also provides an insight to the mechanism of α-arylation of carbonyl compounds with diaryliodonium salts.

     The first chapter gives a general introduction to the field of hypervalent iodine chemistry, mainly focusing on recent developments and applications of diaryliodonium salts.

    Chapter two describes the synthesis of electron-rich to electron-poor diaryliodonium triflates, in moderate to excellent yields from a range of arenes and iodoarenes.

    In chapter three, it is described that molecular iodine can be used together with arenes in a direct one-pot, three-step synthesis of symmetric diaryliodonium triflates. A large scale synthesis of bis(4-tert-butylphenyl)iodonium triflate is also described, controlled and verified by an external research group, further demonstrating the reliability of this methodology.

    The fourth chapter describes the development of a sequential one-pot synthesis of diaryliodonium salts from aryl iodides and boronic acids, furnishing symmetric and unsymmetric, electron-rich to electron-poor diaryliodonium tetrafluoroborates in moderate to excellent yields. This method was developed to overcome the regiochemical limitations imposed by the reaction mechanism in the protocols described in the preceding chapters.

    Chapter five describes a one-pot synthesis of heteroaromatic iodonium salts under similar conditions described in chapter two.

    The final chapter describes the reaction of enolates with chiral diaryliodonium salts or together with a phase transfer catalyst yielding racemic products. DFT calculations were performed, which revealed a low lying energy transition state (TS) between intermediates, which is believed to be responsible for the lack of selectivity observed in the experimental work. It is also proposed that a [2,3] rearrangement is preferred over a [1,2] rearrangement in the α-arylation of carbonyl compounds.

    The synthetic methodology described in this thesis is the most generally applicable, efficient and high-yielding to date for the synthesis of diaryliodonium salts, making these reagents readily available for various applications in synthesis.

  • 37.
    Bielawski, Marcin
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Efficient and High-Yielding Routes to Diaryliodonium Salts2008Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis summarizes three novel and general reaction protocols for the synthesis of diaryliodonium salts. All protocols utilize mCPBA as oxidant and the acids used are either TfOH, to obtain triflate salts, or BF3•Et2O that gives the corresponding tetrafluoroborate salts in situ.

    Chapter two describes the reaction of various arenes and aryl iodides, delivering electron-rich and electron-deficient triflates in moderate to excellent yields.

    In chapter three, it is shown that the need of aryl iodides can be circumvented, as molecular iodine can be used together with arenes in a direct one-pot, three-step synthesis of symmetric diaryliodonium triflates.

    The final and fourth chapter describes the development of a sequential one-pot reaction from aryl iodides and boronic acids, delivering symmetric and unsymmetric, electron-rich and electron-deficient iodonium tetrafluoroborates in moderate to excellent yields. This protocol was developed to overcome mechanistic limitations existing in the protocols described in chapter two and three.

    The methodology described in this thesis is the most general, efficient and high-yielding existing up to date, making diaryliodonium salts easily available for various applications in synthesis.

  • 38.
    Bielawski, Marcin
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Zhu, Mingzhao
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Olofsson, Berit
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Efficient and general one-pot synthesis of diaryliodonium triflates: scope and limitations2007In: SIS Report: The 10th Symposium on Iodine Science, Chiba University, Japan 2007, 2007, p. 19-22Conference paper (Other academic)
  • 39.
    Björklund, Catarina
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Design and Synthesis of BACE-1 Inhibitors: Novel Compounds Targeting an Aspartic Protease Important in the Pathogenesis of Alzheimer’s Disease2009Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis deals with the design and synthesis of protease inhibitors targeting the aspartic protease BACE-1 (β-site APP cleaving enzyme-1), an enzyme important in the pathogenesis of Alzheimer’s disease. The inhibitors are evaluated with respect to inhibition data, in a structure-activity relationship part.

    Alzheimer’s disease is a disabling, progressive and ultimately fatal form of dementia afflicting approximately 40 percent of the population over 80 years, with over 30 million people suffering from Alzheimer’s disease worldwide. This makes Alzheimer’s disease the most common form of dementia. The identification of the amyloid-β peptide (Aβ) as the main constituent of extracellular plaques, which characterize Alzheimer’s disease, suggests that Aβ plays a vital role in the pathology of Alzheimer’s disease. The formation of Aβ occurs when amyloid-β precursor protein (APP) is cleaved by β-secretase (BACE-1) and γ-secretase, which differ in length by 39-42 amino acids. This suggests that β-secretase is a suitable target for the development of therapeutics against Alzheimer’s disease.

    The synthetic work of this thesis comprises development of BACE-1 inhibitors containing a hydroxyethylene (HE) central core transition state isostere. The target molecules were readily synthesized from chiral carbohydrate starting materials. Highly potent inhibitors were produced by varying the substituents coupled to the HE central core. Selecting an aryloxymethyl P1 side-chain and a methoxy P1’ side-chain resulted in exceptionally potent BACE-1 inhibitors that also exhibit high selectivity over cathepsin D. In a further development, the ether oxygen linkage in the P1 side-chain was removed, resulting in a carba analogue, providing improved potency in a cell-based assay.

  • 40.
    Björsne, Magnus
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Synthesis of potential candidates for therapeutic intervention against the human immunodeficiency virus1995Doctoral thesis, comprehensive summary (Other academic)
  • 41.
    Bogár, Krisztián
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Synthetic Transformations via Metal- and Enzyme-Catalyzed Dynamic Kinetic Resolution2007Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis deals with the preparation of a new half-sandwich type ruthenium(II)- catalyst for racemization of optically active secondary alcohols and the development of a highly efficient method in combination with lipases such as Candida antarctica lipase B and Pseudomonas cepacia lipase for dynamic kinetic resolution of various functionalized alcohols under mild reaction conditions.

    It was shown that the RuCl(CO)25-C5Ph5) complex can racemize optically active aliphatic and aromatic secondary alcohols at room temperature in rather short times. Different parameters, such as the nature of the catalyst, catalyst loading and solvent effect were studied. After the optimization steps, the Ru-catalyzed racemization of (S)-1-phenylethanol in the presence of Candida antarctica lipase B was also investigated. The compatibility of the metal- and enzyme-catalyzed reactions led to a highly efficient coupled catalytic system for transformation of racemic alcohols to their enantiomerically pure acetates. This protocol was applied for a wide range of secondary alcohols. It was shown that in the case of allylic alcohols the obtained enantiopure allylic acetates are useful compounds for synthesis of α-methyl carboxylic acids such as (R)-Flurbiprofen and acyloin acetates. Highly selective dynamic kinetic asymmetric transformation of 3,5-piperidine diol to deliver various 3,5-dioxygenated piperidines is also described.

  • 42. Bogár, Krisztián
    et al.
    Krumlinde, Patrik
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Hydrogenized Wilkinson´s Catalyst for Transfer Hydrogenation of Carbonyl CompoundsManuscript (preprint) (Other academic)
    Abstract [en]

    Combining the advantages of homogeneous and heterogeneous catalysis is possible by heterogenization of homogeneous transition metal complexes based on a grafting/anchoring technique. Wilkinson’s catalyst ((RhCl(PPh3)3) immobilized on common silica showed high activity and selectivity in transfer hydrogenation reactions of different carbonyl compounds in isopropanol. Reactions conducted at reflux in isopropanol afforded the corresponding carbinols in high yields in short reaction times. The heterogeneous feature of the catalyst allows easy recovery and efficient reuse in the same reaction up to 5 times without loss of catalytic activity.

  • 43.
    Bollmark, Martin
    Stockholm University.
    Studies on the synthesis of nucleotide analogues containing P-F and P-Se bonds2001Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    In the present work, new synthetic approaches to the synthesis of nucleoside phosphorofluoridate and phosphorofluoridothioate diesters have been developed. These procedures involve either oxidative transformation of the corresponding H-phosphonate or H-phosphonothioate diesters in the presence of fluoride anion or iodine-promoted desulfurization of phosphorothioate or phosphorodithioate diesters in the presence of fluoride anion. Also, efficient protocols for the synthesis of nucleoside phosphorofluoridate, nucleoside phosphorofluoridothioate and nucleoside phosphorofluoridodithioate monoesters were developed.

    Furthermore, the chemistry of a new class of P(III) compounds containing selenium, i. e. H-phosphonoselenoate monoesters was developed and synthetic procedures for the conversion of these compounds into the corresponding diesters were designed. In addition, the usefulness of H-phosphonoselenoate diesters for the preparation of various selenium-containing nucleotide analogues was demonstrated.

    Finally, the possibility of employing triphenylphosphine selenide as a reagent for selenizing P(III) compounds was examined. Under mild conditions, this commercially available reagent was found to convert phosphite triesters and H-phosphonate diesters efficiently into the corresponding phosphoroselenoate derivatives.

  • 44.
    Borén, Linnéa
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Enantioselective Synthesis of Sec-Alcohol Derivatives and Diols via Combined Ruthenium and Enzyme Catalysis2008Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The first part of this thesis describes the synthesis of enantiopure secondary alcohol derivatives. These syntheses are carried out via the combination of an enzyme as a resolution catalyst and a ruthenium catalyst as a racemization catalyst, in what is called dynamic kinetic resolution (DKR). By varying the resolution catalyst enantio-complementary processes can be obtained. A lipase (PS-C II) catalyzed DKR of γ-hydroxyamides gave the corresponding (R)-acetates in high yields and with high enantioselectivity. The synthetic usefulness of these obtained (R)-acetates was demonstrated by the synthesis of (R)-5-methyltetrahydrofurane-2-one. A protease (Subtilisin Carlsberg) catalyzed DKR of various secondary alcohols gave the corresponding (S)-acetates in high yields and with high enantioselectivity. In the second part of this thesis the DKR process has been extended into a dynamic kinetic asymmetric transformation (DYKAT) of diols. Various 1,5- and 1,4-diols were transformed into enantiopure diacetates in a lipase (CALB and PS-C II) catalyzed DYKAT. The synthetic utility of the obtained enantiopure diacetates were demonstrated by the synthesis of various enantiopure disubstituted heterocycles.

  • 45.
    Bowden, Tim
    Stockholm University.
    Studies on glycosylation mechanisms and synthesis of structures related to inositolphosphoglycans2000Doctoral thesis, comprehensive summary (Other academic)
  • 46.
    Buitrago, Elina
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Transition metal catalyzed reduction of ketones2010Licentiate thesis, comprehensive summary (Other academic)
  • 47.
    Buitrago, Elina
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Transition metal-catalyzed reduction of carbonyl compounds: Fe, Ru and Rh complexes as powerful hydride mediators2012Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    A detailed mechanistic investigation of the previously reported ruthenium pseudo-dipeptide-catalyzed asymmetric transfer hydrogenation (ATH) of aromatic ketones was performed. It was found that the addition of alkali metals has a large influence on both the reaction rate and the selectivity, and that the rate of the reaction was substantially increased when THF was used as a co-solvent. A novel bimetallic mechanism for the ruthenium pseudo-dipeptide-catalyzed asymmetric reduction of prochiral ketones was proposed.

    There is a demand for a larger substrate scope in the ATH reaction, and heteroaromatic ketones are traditionally more challenging substrates. Normally a catalyst is developed for one benchmark substrate, and a substrate screen is carried out with the best performing catalyst. There is a high probability that for different substrates, another catalyst could outperform the one used. To circumvent this issue, a multiple screen was executed, employing a variety of ligands from different families within our group’s ligand library, and different heteroaromatic ketones to fine-tune and to find the optimum catalyst depending on the substrate. The acquired information was used in the formal total syntheses of (R)-fluoxetine and (S)-duloxetine, where the key reduction step was performed with high enantioselectivities and high yield, in each case.

    Furthermore, a new iron-N-heterocyclic carbene (NHC)-catalyzed hydrosilylation (HS) protocol was developed. An active catalyst was formed in situ from readily available imidazolium salts together with an iron source, and the inexpensive and benign polymethylhydrosiloxane (PMHS) was used as hydride donor. A set of sterically less demanding, potentially bidentate NHC precursors was prepared. The effect proved to be remarkable, and an unprecedented activity was observed when combining them with iron. The same system was also explored in the reduction of amides to amines with satisfactory results.

  • 48.
    Buitrago, Elina
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Lundberg, Helena
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Andersson, Hans
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Ryberg, Per
    Aztra Zeneca, Global Process R&D, Södertälje, Sweden.
    Adolfsson, Hans
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Selective reduction of heteroaromatic ketones: A combinatorial approach2011Conference paper (Other academic)
    Abstract [en]

    The enantioselective reduction of prochiral ketones is a most productiveway towards enantio enriched secondary alcohols used in the preparation of biologically active compounds. There are numerous transition metal catalyzed methods for this transformation, particularly based on Ru(II)-and Rh(I)-complexes, but there is a demand for a larger substrate scope. Heteroaromatic ketones are traditionally more challenging substrates. Normally a catalyst is developed for one benchmark substrate, and asubstrate screen is made with the best performing catalyst. Using this methodology, there is a high probability that for different substrates, another catalyst could outperform the one used. We have executed a multiple screen, containing a variety of different ligands together with both Ru and Rh, and heteroaromatic ketones to fine-tune, and find the optimum catalyst depending on the substrate. The acquired information was used to synthesize known, biologically active compounds, where the key reduction steps were performed with high enantioselectivities and yields.

  • 49.
    Buitrago, Elina
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Zani, Lorenzo
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Adolfsson, Hans
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Fe/NHC-catalyzed hydrosilylation of aromatic ketones2009In: Abstracts of Papers, 238th ACS National Meeting, Washington, DC, United States, August 16-20, 2009, Washington, DC: American Chemical Society , 2009Conference paper (Other academic)
  • 50.
    Bunrit, Anon
    Stockholm University, Faculty of Science, Department of Organic Chemistry. Stockholm University.
    Direct Catalytic Nucleophilic Substitution of Non-Derivatized Alcohols2017Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis focuses on the development of methods for the activation of the hydroxyl group in non-derivatized alcohols in substitution reactions. The thesis is divided into two parts, describing three different catalytic systems.

    The first part of the thesis (Chapter 2) describes nucleophilic allylation of amines with allylic alcohols, using a palladium catalyst to generate unsymmetrical diallylated amines. The corresponding amines were further transformed by a one-pot ring-closing metathesis and aromatization reaction to afford β-substituted pyrroles with linear and branched alkyl, benzyl, and aryl groups in overall moderate to good yields.

    The second part (Chapters 3 and 4) describes the direct intramolecular stereospecific nucleophilic substitution of the hydroxyl group in enantioenriched alcohols by Lewis acid and Brønsted acid/base catalysis.

    In Chapter 3, the direct intramolecular substitution of non-derivatized alcohols has been developed using Fe(OTf)3 as catalyst. The hydroxyl groups of aryl, allyl, and alkyl alcohols were substituted by the attack of O- and N-centered nucleophiles, to provide five- and six-membered heterocycles in up to excellent yields with high enantiospecificities. Experimental studies showed that the reaction follows first-order dependence with respect to the catalyst, the internal nucleophile, and the internal electrophile of the substrate. Competition and catalyst-substrate interaction experiments demonstrated that this transformation proceeds via an SN2-type reaction pathway.

    In Chapter 4, a Brønsted acid/base catalyzed intramolecular substitution of non-derivatized alcohols was developed. The direct intramolecular and stereospecific substitution of different alcohols was successfully catalyzed by phosphinic acid (H3PO2). The hydroxyl groups of aryl, allyl, propargyl, and alkyl alcohols were substituted by O-, N-, and S-centered nucleophiles to generate five- and six-membered heterocycles in good to excellent yields with high enantiospecificities. Mechanistic studies (both experiments and density functional theory calculations) have been performed on the reaction forming five-membered heterocyclic compounds. Experimental studies showed that phosphinic acid does not promote SN1 reactivity. Rate-order determination indicated that the reaction follows first-order dependence with respect to the catalyst, the internal nucleophile, and the internal electrophile. DFT calculations corroborated with a reaction pathway in which the phosphinic acid has a dual activation mode and operates as a bifunctional Brønsted acid/Brønsted base to simultaneously activate both the nucleophile and nucleofuge, resulting in a unique bridging transition state in an SN2-type reaction mechanism.

1234567 1 - 50 of 321
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf