Change search
Refine search result
1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Bollmark, Martin
    Stockholm University.
    Studies on the synthesis of nucleotide analogues containing P-F and P-Se bonds2001Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    In the present work, new synthetic approaches to the synthesis of nucleoside phosphorofluoridate and phosphorofluoridothioate diesters have been developed. These procedures involve either oxidative transformation of the corresponding H-phosphonate or H-phosphonothioate diesters in the presence of fluoride anion or iodine-promoted desulfurization of phosphorothioate or phosphorodithioate diesters in the presence of fluoride anion. Also, efficient protocols for the synthesis of nucleoside phosphorofluoridate, nucleoside phosphorofluoridothioate and nucleoside phosphorofluoridodithioate monoesters were developed.

    Furthermore, the chemistry of a new class of P(III) compounds containing selenium, i. e. H-phosphonoselenoate monoesters was developed and synthetic procedures for the conversion of these compounds into the corresponding diesters were designed. In addition, the usefulness of H-phosphonoselenoate diesters for the preparation of various selenium-containing nucleotide analogues was demonstrated.

    Finally, the possibility of employing triphenylphosphine selenide as a reagent for selenizing P(III) compounds was examined. Under mild conditions, this commercially available reagent was found to convert phosphite triesters and H-phosphonate diesters efficiently into the corresponding phosphoroselenoate derivatives.

  • 2.
    Johansson, Tommy
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kers, Annika
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Stawinski, Jacek
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    2-Pyridylphosphonates: A New type of Modification for Nucleotide Analogues2001In: Tetrahedron Letters, ISSN 0040-4039, Vol. 42, no 11, p. 2217-2220Article in journal (Refereed)
    Abstract [en]

    Suitably protected dithymidine H-phosphonates afforded the corresponding dinucleoside 2-pyridylphosphonates upon treatment with N-methoxypyridinium tosylate in acetonitrile in the presence of 1,8-diazabicylo[5.4.0]undec-7-ene (DBU). The reaction was rapid (ca. 5 min), practically quantitative and proceeded stereospecifically, most likely with retention of configuration at the phosphorus centre.

    A simple and efficient protocol for the preparation of a new type of oligonucleotide analogue bearing a 2-pyridylphosphonate internucleotide linkage was developed

  • 3.
    Johansson, Tommy
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Stawinski, Jacek
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Synthesis of Dinucleoside Pyridylphosphonates Involving Palladium(0)-catalysed Phosphorus-carbon Bond Formation as a Key Step2001In: Chemical Communications, ISSN 1359-7345, no 24, p. 2564-2565Article in journal (Refereed)
    Abstract [en]

    Dinucleoside 3-pyridylphosphonates, as well as their 2- and 4-pyridyl positional isomers, have been synthesised using a palladium(0)-catalysed cross coupling strategy

  • 4.
    Johansson, Tommy
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Stawinski, Jacek
    The Case for Configurational Stability of H-Phosphonate Diesters in the Presence of Diazabicyclo[5.4.0]undec-7-ene (DBU)2001In: Bioorganic & Medicinal Chemistry, ISSN 0968-0896, Vol. 9, no 9, p. 2315-2322Article in journal (Refereed)
    Abstract [en]

    Configurational stability of dinucleoside H-phosphonates and the stereochemical course of their sulfurisation in the presence of diazabicyclo[5.4.0]undec-7-ene (DBU) were investigated using 31P NMR spectroscopy. It was found that under the reaction conditions and irrespective of the type of protecting groups present in the nucleoside moieties, the H-phosphonate diesters investigated did not undergo any detectable epimerisation at the phosphorus centre, and their sulfurisation with elemental sulfur in the presence of DBU, proceeded stereospecifically. Thus, we could not confirm reports from another laboratory on a stereoselective course of sulfurisation of H-phosphonate diesters and the corresponding acylphosphonates in the presence of DBU.

  • 5. Macsári, István
    Application of π-allylpalladium chemistry to the synthesis and transformation of allylsilanes2001Doctoral thesis, comprehensive summary (Other academic)
1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf