Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.
  • 1.
    Manta, Bianca
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Quantum Chemical Studies of Enzymatic Reaction Mechanisms: Investigations of Cytosine Deaminase and ω-Transaminase2014Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    In this thesis, density functional theory is used to study the reaction mechanisms of two dierent enzymes. Quantum chemical cluster models of the active sites were designed using available crystal structures. In this approach only the active site residues are considered and the effects of the surroundings are accounted for by a coordinate-locking scheme and a polarizable continuum model.

    The enzymes studied are cytosine deaminase (CDA) from Escherichia coli and ω-transaminase from Chromobacterium violaceum (Cv-ωTA). CDA is a zinc-dependentenzyme that catalyzes the hydrolytic deamination of cytosine into uracil and ammonia. Cv-ωTA carries out the interchange of amino and keto groups by utilizing the cofactor pyridoxal-5’-phosphate (PLP). The calculations provide optimized geometries and energies of transition states and intermediates, which are analyzed and used to construct a potential energy prole for the reaction and to identify the rate-limiting step. Each theoretical investigation provides a detailed description of the catalytic mechanism and establishes the roleof important active site residues.

    In the rst study (Paper I), it was found that a glutamate and an aspartate residue assist in the proton transfer events throughout the reaction. In the second study (Paper II), it was found that the lysine residue, which in the holo enzyme binds the cofactor PLP, assists in several proton transfer events once it has been replaced by the amino substrate. It was also found that the water substrate can be utilized as a proton shuttle before it is consumed at a later stage in the reaction mechanism.

    Apart from the detailed chemical insight, the results in this thesis confirmthat density functional theory together with cluster models of active sites is a very useful approach for studying diverse enzymatic reaction mechanisms.

  • 2.
    Manta, Bianca
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Raushel, Frank M.
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Reaction Mechanism of Zinc-Dependent Cytosine Deaminase from Escherichia coli: A Quantum-Chemical Study2014In: Journal of Physical Chemistry B, ISSN 1520-6106, E-ISSN 1520-5207, Vol. 118, no 21, p. 5644-5652Article in journal (Refereed)
    Abstract [en]

    The reaction mechanism of cytosine deaminase from Escherichia coli is studied using density functional theory. This zinc-dependent enzyme catalyzes the deamination of cytosine to form uracil and ammonia. The calculations give a detailed description of the catalytic mechanism and establish the role of important active-site residues. It is shown that Glu217 is essential for the initial deprotonation of the metal-bound water nucleophile and the subsequent protonation of the substrate. It is also demonstrated that His246 is unlikely to function as a proton shuttle in the nucleophile activation step, as previously proposed. The steps that follow are nucleophilic attack by the metal-bound hydroxide, protonation of the leaving group assisted by Asp313, and C-N bond cleavage. The calculated overall barrier is in good agreement with the experimental findings. Finally, the calculations reproduce the experimentally determined inverse solvent deuterium isotope effect, which further corroborates the suggested reaction mechanism.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf