Change search
Refine search result
12 1 - 50 of 54
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.
  • 1.
    Abdel-Magied, Ahmed F.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Shatskiy, Andrey
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Liao, Rong-Zhen
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Laine, Tanja M.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Arafa, Wael A. A.
    Stockholm University, Faculty of Science, Department of Organic Chemistry. University Fayoum, Egypt.
    Siegbahn, Per E. M.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kärkäs, Markus D.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Bjorn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Johnston, Eric V.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Chemical and Photochemical Water Oxidation Mediated by an Efficient Single-Site Ruthenium Catalyst2016In: ChemSusChem, ISSN 1864-5631, E-ISSN 1864-564X, Vol. 9, no 24, p. 3448-3456Article in journal (Refereed)
    Abstract [en]

    Water oxidation is a fundamental step in artificial photosynthesis for solar fuels production. In this study, we report a single-site Ru-based water oxidation catalyst, housing a dicarboxylate-benzimidazole ligand, that mediates both chemical and light-driven oxidation of water efficiently under neutral conditions. The importance of the incorporation of the negatively charged ligand framework is manifested in the low redox potentials of the developed complex, which allows water oxidation to be driven by the mild one-electron oxidant [Ru(bpy)(3)](3+) (bpy = 2,2'-bipyridine). Furthermore, combined experimental and DFT studies provide insight into the mechanistic details of the catalytic cycle.

  • 2.
    Angles d'Ortoli, Thibault
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Assembling and Unraveling Carbohydrates Structures: Conformational analysis of synthesized branched oligosaccharides2016Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Advances in the elaboration of vaccines and enzyme inhibitors rely on acquiring more knowledge about protein-carbohydrate binding events. Furthermore, the relationships between biological function and the three-dimensional properties of large glycans can be studied by focusing on the structural components they contained, namely, by scaling down the system under analysis. Chemical methods are useful assets as they allow the isolation and determination of epitopes; these small and recognizable fragments that lead to very specific interactions. In this thesis, biologically relevant saccharides were obtained using recently developed concepts in carbohydrate synthesis and NMR spectroscopy was used to unravel their conformational preferences.

    In paper I, the convergent synthesis of the tetrasaccharide found in the natural product solaradixine is described. Reactivity enhanced disaccharide glycosyl donors were coupled to a disaccharide acceptor in a 2 + 2 fashion. The computer program CASPER was subsequently used to verify the synthesized structure.

    The conformation arming concept employed in paper I was further investigated in paper II. An NMR-based methodology enabled the determination of the ring conformations of a set of donors. Subsequently, glycosylation reactions were performed and yields were correlated to donors ring shapes. Perturbations in the rings shape caused by bulky silyl ether protective groups were sufficient to boost the potency of several donors. As a matter of fact, complex branched oligosaccharides could be obtained in good to excellent yields.

    In paper III, NMR spectroscopy observables were measured to elucidate the ring shape, the mutual orientation of the rings across the glycosidic bond and the positions of the side chains of 5 trisaccharides found in larger structures. With the aid of molecular dynamics simulations, their overall conformational propensities were revealed.

    Finally, the software CASPER prediction skills were improved by adding, inter alia, NMR information of synthesized mono- and disaccharides to its database. Unassigned chemical shifts from polysaccharides served as input to challenge its ability to solve large carbohydrate structures.

  • 3.
    Angles d'Ortoli, Thibault
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Synthesis of the tetrasaccharide glycoside moiety of Solaradixine and rapid NMR-based structure verification using the program CASPER2016In: Tetrahedron, ISSN 0040-4020, E-ISSN 1464-5416, Vol. 72, no 7, p. 912-927Article in journal (Refereed)
    Abstract [en]

    The major glycoalkaloid in the roots of Solanum laciniatum is Solaradixine having the branched tetrasaccharide beta-D-Glcp-(1 -> 2)-beta-D-Glcp-(1 -> 3)[alpha-L-Rhap-(1 -> 2)]-beta-D-Galp linked to O3 of the steroidal alkaloid Solasodine. We herein describe the synthesis of the methyl glycoside of the tetrasaccharide using a super-armed disaccharide as a donor molecule. A 2-(naphthyl)methyl protecting group was used in the synthesis of the donor since it was tolerant to a wide range of reaction conditions. The 6-O-benzylated-hexa-O-tert-butyldimethylsilyi-protected beta-D-Glcp-(1 -> 2)-beta-D-Glcp-SEt donor, which avoided 1,6-anydro formation, was successfully glycosylated at O3 of a galactoside acceptor molecule. However, subsequent glycosylation at O2 by a rhamnosyl donor was unsuccessful and instead a suitably protected alpha-L-Rhap(1 -> 2)-beta-D-Galp-OMe disaccharide was used as the acceptor molecule together with a super-armed beta-D-Glcp-(1 -> 2)-beta-D-Glcp-SEt donor in the glycosylation reaction, to give a tetrasaccharide in a yield of 55%, which after deprotection resulted in the target molecule, the structure of which was verified by the NMR chemical shift prediction program CASPER.

  • 4. Ashour, Radwa M.
    et al.
    Abdel-Magied, Ahmed F.
    Stockholm University, Faculty of Science, Department of Organic Chemistry. Nuclear Materials Authority, Egypt.
    Abdel-Khalek, Ahmed A.
    Helaly, O. S.
    Ali, M. M.
    Preparation and characterization of magnetic iron oxide nanoparticles functionalized by L-cysteine: Adsorption and desorption behavior for rare earth metal ions2016In: Journal of Environmental Chemical Engineering, ISSN 2160-6544, E-ISSN 2213-3437, Vol. 4, no 3, p. 3114-3121Article in journal (Refereed)
    Abstract [en]

    In this work, magnetic iron oxide nanoparticles functionalized with L-cysteine (Cys-Fe3O4 NPs) was synthesized and fully characterized by transmission electron microscopy (TEM), X-ray powder diffraction (XRD), Fourier transform infra-red (FTIR), thermogravimetric analysis (TGA) and zeta potential measurements. The synthesized Cys-Fe(3)O(4)NPs has been evaluated as a highly adsorbent for the adsorption of a mixture of four rare earths RE3+ ions (La3+, Nd3+, Gd3+ and Y3+) from digested monazite solutions. The influence of various factors on the adsorption efficiency such as, the contact time, sample pH, temperature, and concentration of the stripping solution were investigated. The results indicate that Cys-Fe3O4 NPs achieve high removal efficiency 96.7, 99.3, 96.5 and 87% for La3+, Nd3+, Gd3+ and Y3+ ions, respectively, at pH = 6 within 15 min, and the adsorbent affinity for metal ions was found to be in order of Nd3+ > La3+ > Gd3+ > Y3+ ions. Using the Langmuir model, a maximum adsorption capacity of La3+, Nd3+, Gd3+ and Y3+ at room temperature was found to be 71.5, 145.5, 64.5 and 13.6 mg g (1), respectively. The Langmuir isotherm and pseudo-second order model fitted much better than the other isotherms and kinetic models. The obtained results for the thermodynamic parameters confirmed the spontaneous and endothermic nature of the process. Moreover, the desorption was carried out with 0.1 M nitric acid solutions. In addition, Cys-Fe3O4 NPs can be used as a highly efficient adsorbent for the adsorption of La3+, Nd3+, Gd3+ and Y3+ ions from digested monazite solutions.

  • 5. Bergenstråhle-Wohlert, Malin
    et al.
    Angles d'Ortoli, Thibault
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Sjöberg, Nils A.
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Wohlert, Jakob
    On the anomalous temperature dependence of cellulose aqueous solubility2016In: Cellulose (London), ISSN 0969-0239, E-ISSN 1572-882X, Vol. 23, no 4, p. 2375-2387Article in journal (Refereed)
    Abstract [en]

    The solubility of cellulose in water-based media is promoted by low temperature, which may appear counter-intuitive. An explanation to this phenomenon has been proposed that is based on a temperature-dependent orientation of the hydroxymethyl group. In this paper, this hypothesis is investigated using molecular dynamics computer simulations and NMR spectroscopy, and is discussed in conjunction with alternative explanations based on solvent–solute and solvent–solvent hydrogen bond formation respectively. It is shown that neither simulations nor experiments lend support to the proposed mechanism based on the hydroxymethyl orientation, whereas the two alternative explanations give rise to two distinct contributions to the hydration free energy of cellooligomers.

  • 6. Berglund, Jennie
    et al.
    Angles d'Ortoli, Thibault
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Vilaplana, Francisco
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bergenstråhle-Wohlert, Malin
    Lawoko, Martin
    Henriksson, Gunnar
    Lindström, Mikael
    Wohlert, Jakob
    A molecular dynamics study of the effect of glycosidic linkage type in the hemicellulose backbone on the molecular chain flexibility2016In: The Plant Journal, ISSN 0960-7412, E-ISSN 1365-313X, Vol. 88, no 1, p. 56-70Article in journal (Refereed)
    Abstract [en]

    The macromolecular conformation of the constituent polysaccharides in lignocellulosic biomass influences their supramolecular interactions, and therefore their function in plants and their performance in technical products. The flexibility of glycosidic linkages from the backbone of hemicelluloses was studied by evaluating the conformational freedom of the φ and ψ dihedral angles using molecular dynamic simulations, additionally selected molecules were correlated with experimental data by NMR spectroscopy. Three types of β-(1→4) glycosidic linkages involving the monosaccharides (Glcp, Xylp and Manp) present in the backbone of hemicelluloses were defined. Different di- and tetrasaccharides with combinations of such sugar monomers from hemicelluloses were simulated and free energy maps of the φ - ψ space and hydrogen bonding patterns were obtained. The glycosidic linkage between Glc-Glc or Glc-Man (C-type) was the stiffest with mainly one probable conformation; the linkage from Man-Man or Man-Glc (M-type) was similar but with an increased probability for an alternative conformation making it more flexible, and the linkage between two Xyl-units (X-type) was the most flexible with two almost equally populated conformations. Glycosidic linkages of the same type showed essentially the same conformational space in both disaccharides and in the central region of tetrasaccharides. Different probabilities of glycosidic linkage conformations in the backbone of hemicelluloses can be directly estimated from the free energy maps, which to a large degree affect the overall macromolecular conformations of these polymers. The information gained contributes to an increased understanding of hemicelluloses’ function both in the cell wall and in technical products.

  • 7.
    Blomberg, Margareta R. A.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Mechanism of Oxygen Reduction in Cytochrome c Oxidase and the Role of the Active Site Tyrosine2016In: Biochemistry, ISSN 0006-2960, E-ISSN 1520-4995, Vol. 55, no 3, p. 489-500Article in journal (Refereed)
    Abstract [en]

    Cytochrome c oxidase, the terminal enzyme in the respiratory chain, reduces molecular oxygen to water and stores the released energy through electrogenic chemistry and proton pumping across the membrane. Apart from the heme-copper binuclear center, there is a conserved tyrosine residue in the active site (BNC). The tyrosine delivers both an electron and a proton during the O-O bond cleavage step, forming a tyrosyl radical. The catalytic cycle then occurs in four reduction steps, each taking up one proton for the chemistry (water formation) and one proton to be pumped. It is here suggested that in three of the reduction steps the chemical proton enters the center of the BNC, leaving the tyrosine unprotonated with radical character. The reproprotonation of the tyrosine occurs first in the final reduction step before binding the next oxygen molecule. It is also suggested that this reduction mechanism and the presence of the tyrosine are essential for the proton pumping. Density functional theory calculations on large cluster models of the active site show that only the intermediates with the proton in the center of the BNC and with an unprotonated tyrosyl radical have a high electron affinity of similar size as the electron donor, which is essential for the ability to take up two protons per electron and thus for the proton pumping. This type of reduction mechanism is also the only one that gives a free energy profile in accordance with experimental observations for the amount of proton pumping in the working enzyme.

  • 8.
    Blomberg, Margareta R. A.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Siegbahn, Per E. M.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Improved free energy profile for reduction of NO in cytochrome c dependent nitric oxide reductase (cNOR)2016In: Journal of Computational Chemistry, ISSN 0192-8651, E-ISSN 1096-987X, Vol. 37, no 19, p. 1810-1818Article in journal (Refereed)
    Abstract [en]

    Quantum chemical calculations play an essential role in the elucidation of reaction mechanisms for redox-active metalloenzymes. For example, the cleavage and the formation of covalent bonds can usually not be described only on the basis of experimental information, but can be followed by the calculations. Conversely, there are properties, like reduction potentials, which cannot be accurately calculated. Therefore, computational and experimental data has to be carefully combined to obtain reliable descriptions of entire catalytic cycles involving electron and proton uptake from donors outside the enzyme. Such a procedure is illustrated here, for the reduction of nitric oxide (NO) to nitrous oxide and water in the membrane enzyme, cytochrome c dependent nitric oxide reductase (cNOR). A surprising experimental observation is that this reaction is nonelectrogenic, which means that no energy is conserved. On the basis of hybrid density functional calculations a free energy profile for the entire catalytic cycle is obtained, which agrees much better with experimental information on the active site reduction potentials than previous ones. Most importantly the energy profile shows that the reduction steps are endergonic and that the entire process is rate-limited by high proton uptake barriers during the reduction steps. This result implies that, if the reaction were electrogenic, it would become too slow when the gradient is present across the membrane. This explains why this enzyme does not conserve any of the free energy released.

  • 9. Boutet, Julien
    et al.
    Blasco, Pilar
    Centro de Investigaciones Biológicas, CSIC, Spain.
    Guerreiro, Catherine
    Thouron, Francoise
    Dartevelle, Sylvie
    Nato, Farida
    Javier Canada, F.
    Arda, Ana
    Phalipon, Armelle
    Jimenez-Barbero, Jesus
    Mulard, Laurence A.
    Detailed Investigation of the Immunodominant Role of O-Antigen Stoichiometric O-Acetylation as Revealed by Chemical Synthesis, Immunochemistry, Solution Conformation and STD-NMR Spectroscopy for Shigella flexneri 3a2016In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 22, no 31, p. 10892-10911Article in journal (Refereed)
    Abstract [en]

    Shigella flexneri 3a causes bacillary dysentery. Its O-antigen has the {2)-[alpha-d-Glcp-(1 -> 3)]-alpha-L-Rhap-(1 -> 2)-alpha-L-Rhap-( 1 -> 3)-[Ac -> 2]-alpha-L-Rhap-(1 ->)-[Ac -> 6](approximate to 40%)-beta-D-GlcpNAc-(1 ->} ([(E)AB(Ac)C(Ac)D]) repeating unit, and the non-Oacetylated equivalent defines S. flexneri X. Propyl hepta-, octa-, and decasaccharides sharing the (E') A'BAcCD(E) A sequence, and their non-O-acetylated analogues were synthesized from a fully protected BAcCD(E) A allyl glycoside. The stepwise introduction of orthogonally protected mono-and disaccharide imidate donors was followed by a two-step deprotection process. Monoclonal antibody binding to twenty-six S. flexneri types 3a and X di-to decasaccharides was studied by an inhibition enzyme-linked immunosorbent assay (ELISA) and STD-NMR spectroscopy. Epitope mapping revealed that the 2(C)-acetate dominated the recognition by monoclonal IgG and IgM antibodies and that the BAcCD segment was essential for binding. The glucosyl side chain contributed to a lesser extent, albeit increasingly with the chain length. Moreover, tr-NOESY analysis also showed interaction but did not reveal any meaningful conformational change upon antibody binding.

  • 10. Das, Biswanath
    et al.
    Lee, Bao-Lin
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Karlsson, Erik A.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Torbjörn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Shatskiy, Andrey
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Demeshko, Serhiy
    Liao, Rong-Zhen
    Laine, Tanja M.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Haukka, Matti
    Zeglio, Erica
    Abdel-Magied, Ahmed F.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Siegbahn, Per E. M.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Meyer, Franc
    Kärkäs, Markus D.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Johnston, Eric V.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Nordlander, Ebbe
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Water oxidation catalyzed by molecular di- and nonanuclear Fe complexes: importance of a proper ligand framework2016In: Dalton Transactions, ISSN 1477-9226, E-ISSN 1477-9234, Vol. 45, no 34, p. 13289-13293Article in journal (Refereed)
    Abstract [en]

    The synthesis of two molecular iron complexes, a dinuclear iron(III,III) complex and a nonanuclear iron complex, based on the di-nucleating ligand 2,2'-(2-hydroxy-5-methyl-1,3-phenylene)bis(1H-benzo[d]imidazole-4-carboxylic acid) is described. The two iron complexes were found to drive the oxidation of water by the one-electron oxidant [Ru(bpy)(3)](3+).

  • 11.
    Daver, Henrik
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Das, Biswanath
    Nordlander, Ebbe
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Theoretical Study of Phosphodiester Hydrolysis and Transesterification Catalyzed by an Unsymmetric Biomimetic Dizinc Complex2016In: Inorganic Chemistry, ISSN 0020-1669, E-ISSN 1520-510X, Vol. 55, no 4, p. 1872-1882Article in journal (Refereed)
    Abstract [en]

    Density functional theory calculations have been used to investigate the reaction mechanisms of phosphodiester hydrolysis and transesterification catalyzed by a dinuclear zinc complex of the 2-(N-isopropyl-N-((2-pyridyl)methyl)-aminomethyl)-6-(N-(carboxylmethyl)-N-((2-pyridyl)methyl)amino-methyl)-4-methylphenol (IPCPMP) ligand, mimicking the active site of zinc phosphotriesterase. The substrates bis(2,4)-dinitrophenyl phosphate (BDNPP) and 2-hydroxypropyl-p-nitrophenyl phosphate (HPNP) were employed as analogues of DNA and RNA, respectively. A number of different mechanistic proposals were considered, with the active catalyst harboring either one or two hydroxide ions. It is concluded that for both reactions the catalyst has only one hydroxide bound, as this option yields lower overall energy barriers. For BDNPP hydrolysis, it is suggested that the hydroxide acts as the nucleophile in the reaction, attacking the phosphorus center of the substrate. For HPNP transesterification, on the other hand, the hydroxide is proposed to act as a Bronsted base, deprotonating the alcohol moiety of the substrate, which in turn performs the nucleophilic attack. The calculated overall barriers are in good agreement with measured rates. Both reactions are found to proceed by essentially concerted associative mechanisms, and it is demonstrated that two consecutive catalytic cycles need to be considered in order to determine the rate-determining free energy barrier.

  • 12.
    Fontana, Carolina
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Conde-Alvarez, Raquel
    Ståhle, Jonas
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Holst, Otto
    Iriarte, Maite
    Zhao, Yun
    Arce-Gorvel, Vilma
    Hanniffy, Sean
    Gorvel, Jean-Pierre
    Moriyon, Ignacio
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Structural Studies of Lipopolysaccharide-defective Mutants from Brucella melitensis Identify a Core Oligosaccharide Critical in Virulence2016In: Journal of Biological Chemistry, ISSN 0021-9258, E-ISSN 1083-351X, Vol. 291, no 14, p. 7727-7741Article in journal (Refereed)
    Abstract [en]

    The structures of the lipooligosaccharides from Brucella melitensis mutants affected in the WbkD and ManB(core) proteins have been fully characterized using NMR spectroscopy. The results revealed that disruption of wbkD gives rise to a rough lipopolysaccharide (R-LPS) with a complete core structure (beta-D-Glcp-(1 -> 4)-alpha-Kdop-(2 -> 4)[beta-D-GlcpN-(1 -> 6)-beta-D-GlcpN-(1 -> 4)[beta-D-GlcpN-(1 -> 6)]-beta-D-GlcpN-(1 -> 3)-alpha-D-Manp-(1 -> 5)]-alpha-Kdop-(2 -> 6)-beta-D-GlcpN3N4P-(1 -> 6)-alpha-D-GlcpN3N1P), in addition to components lacking one of the terminal beta-D-GlcpN and/or the beta-D-Glcp residues (48 and 17%, respectively). These structures were identical to those of the R-LPS from B. melitensis EP, a strain simultaneously expressing both smooth and R-LPS, also studied herein. In contrast, disruption of man-B-core gives rise to a deep-rough pentasaccharide core (beta-D-Glcp-(1 -> 4)-alpha-Kdop-(2 -> 4)-alpha-Kdop-(2 -> 6)-beta-D-GlcpN3N4P-(1 -> 6)-alpha-D-GlcpN3N1P) as the major component (63%), as well as a minor tetrasaccharide component lacking the terminal beta-D-Glcp residue (37%). These results are in agreement with the predicted functions of the WbkD (glycosyltransferase involved in the biosynthesis of the O-antigen) and ManB(core) proteins (phosphomannomutase involved in the biosynthesis of a mannosyl precursor needed for the biosynthesis of the core and O-antigen). We also report that deletion of B. melitensis wadC removes the core oligosaccharide branch not linked to the O-antigen causing an increase in overall negative charge of the remaining LPS inner section. This is in agreement with the mannosyltransferase role predicted for WadC and the lack of GlcpN residues in the defective core oligosaccharide. Despite carrying the O-antigen essential in B. melitensis virulence, the core deficiency in the wadC mutant structure resulted in a more efficient detection by innate immunity and attenuation, proving the role of the beta-D-GlcpN-(1 -> 6)-beta-D-GlcpN-(1 -> 4)[beta-D-GlcpN-(1 -> 6)]-beta-D-GlcpN-(1 -> 3)-alpha-D-Manp-(1 -> 5) structure in virulence.

  • 13.
    Fontana, Carolina
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Zaccheus, Mona
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Weintraub, Andrej
    Ansaruzzaman, Mohammad
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Structural studies of a polysaccharide from Vibrio parahaemolyticus strain AN-160002016In: Carbohydrate Research, ISSN 0008-6215, E-ISSN 1873-426X, Vol. 432, p. 41-49Article in journal (Refereed)
    Abstract [en]

    The structure of a polysaccharide from Vibrio parahaemolyticus strain AN-16000 has been investigated. The sugar and absolute configuration analysis revealed D-Glc, D-GalN, D-QuiN and L-FucN as major components. The PS was subjected to dephosphorylation with aqueous 40% HF to obtain an oligosaccharide that was analyzed by H-1 and C-13 NMR spectroscopy. The HR-MS spectrum of the oligosaccharide revealed a pentasaccharide composed of two Glc residues, one QuiNAc and one GalNAc, one FucNAc, as well as a glycerol moiety. The structure of the PS was determined using H-1, C-13, N-15 and P-31 NMR spectroscopy; inter-residue correlations were identified by H-1, C-13-heteronuclear multiple-bond correlation, H-1, H-1-NOESY and H-1, P-31-hetero-TOCSY experiments. The PS backbone has the following teichoic acid-like structure: -> 3)-D-Gro-(1-P-6)-beta-D-Glcp-(1 -> 4)-alpha-L-FucpNAc-(1 -> 3)-beta-D-QuipNAc-(1 -> with a side-chain consisting of alpha-D-Glcp-(1 -> 6)-alpha-D-GalpNAc-(1 -> linked to the O3 position of the FucNAc residue.

  • 14. Hammarström, Lars G. J.
    et al.
    Harmel, Robert K.
    Granath, Mikael
    Ringom, Rune
    Gravenfors, Ylva
    Stockholm University, Faculty of Science, Department of Organic Chemistry. Stockholm University, Science for Life Laboratory (SciLifeLab).
    Färnegårdh, Katarina
    Stockholm University, Faculty of Science, Department of Organic Chemistry. Stockholm University, Science for Life Laboratory (SciLifeLab).
    Svensson, Per H.
    Wennman, David
    Lundin, Göran
    Roddis, Ylva
    Kitambi, Satish S.
    Bernlind, Alexandra
    Lehmann, Fredrik
    Ernfors, Patrik
    The Oncolytic Efficacy and in Vivo Pharmacokinetics of [2-(4-Chlorophenyl)quinolin-4-yl](piperidine-2-yl)methanol (Vacquinol-1) Are Governed by Distinct Stereochemical Features2016In: Journal of Medicinal Chemistry, ISSN 0022-2623, E-ISSN 1520-4804, Vol. 59, no 18, p. 8577-8592Article in journal (Refereed)
    Abstract [en]

    Glioblastoma remains an incurable brain cancer. Drugs developed in the past 20 years have not improved the prognosis for patients, necessitating the development of new treatments. We have previously reported the therapeutic potential of the quinoline methanol Vacquinol-1 (1) that targets glioblastoma cells and induces cell death by catastrophic vacuolization. Compound 1 is a mixture of four stereoisomers due to the two adjacent stereogenic centers in the molecule, complicating further development in the preclinical setting. This work describes the isolation and characterization of the individual isomers of 1 and shows that these display stereospecific pharmacokinetic and pharmacodynamic features. In addition, we present a stereoselective synthesis of the active isomers, providing a basis for further development of this compound series into a novel experimental therapeutic for glioblastoma.

  • 15.
    Ilchenko, Nadia O.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Cortes, Miguel A.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Szabó, Kálmán J.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Palladium-Catalyzed lodofluorination of Alkenes Using Fluorolodoxole Reagent2016In: ACS Catalysis, ISSN 2155-5435, E-ISSN 2155-5435, Vol. 6, no 1, p. 447-450Article in journal (Refereed)
    Abstract [en]

    The application of an air- and moisture-stable fluoroiodane reagent was investigated in the palladium-catalyzed iodofluorination reaction of alkenes. Both the iodo and fluoro substituents arise from the fluoroiodane reagent. In the case of certain palladium catalysts, the alkene substrates undergo allylic rearrangement prior to the iodofluorination process. The reaction is faster for electron-rich alkenes than for electron-deficient ones.

  • 16.
    Jiang, Tuo
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Quan, Xu
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Zhu, Can
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Andersson, Pher G.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Palladium-Catalyzed Oxidative Synthesis of a-Acetoxylated Enones from Alkynes2016In: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 55, no 19, p. 5824-5828Article in journal (Refereed)
    Abstract [en]

    We report a palladium-catalyzed oxidative functionalization of alkynes to generate -acetoxylated enones in one step. A range of functional groups are well-tolerated in this reaction. Mechanistic studies, including the use of O-18-labeled DMSO, revealed that the ketone oxygen atom in the product originates from DMSO.

  • 17. Kazemi, Masoud
    et al.
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åqvist, Johan
    Enzyme catalysis by entropy without Circe effect2016In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 113, no 9, p. 2406-2411Article in journal (Refereed)
    Abstract [en]

    Entropic effects have often been invoked to explain the extraordinary catalytic power of enzymes. In particular, the hypothesis that enzymes can use part of the substrate-binding free energy to reduce the entropic penalty associated with the subsequent chemical transformation has been very influential. The enzymatic reaction of cytidine deaminase appears to be a distinct example. Here, substrate binding is associated with a significant entropy loss that closely matches the activation entropy penalty for the uncatalyzed reaction inwater, whereas the activation entropy for the rate-limiting catalytic step in the enzyme is close to zero. Herein, we report extensive computer simulations of the cytidine deaminase reaction and its temperature dependence. The energetics of the catalytic reaction is first evaluated by density functional theory calculations. These results are then used to parametrize an empirical valence bond description of the reaction, which allows efficient sampling by molecular dynamics simulations and computation of Arrhenius plots. The thermodynamic activation parameters calculated by this approach are in excellent agreement with experimental data and indeed show an activation entropy close to zero for the rate-limiting transition state. However, the origin of this effect is a change of reaction mechanism compared the uncatalyzed reaction. The enzyme operates by hydroxide ion attack, which is intrinsically associated with a favorable activation entropy. Hence, this has little to do with utilization of binding free energy to pay the entropic penalty but rather reflects how a preorganized active site can stabilize a reaction path that is not operational in solution.

  • 18. Kuttel, Michelle M.
    et al.
    Ståhle, Jonas
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    CarbBuilder: Software for building molecular models of complex oligo- and polysaccharide structures2016In: Journal of Computational Chemistry, ISSN 0192-8651, E-ISSN 1096-987X, Vol. 37, no 22, p. 2098-2105Article in journal (Refereed)
    Abstract [en]

    CarbBuilder is a portable software tool for producing three-dimensional molecular models of carbohydrates from the simple text specification of a primary structure. CarbBuilder can generate a wide variety of carbohydrate structures, ranging from monosaccharides to large, branched polysaccharides. Version 2.0 of the software, described in this article, supports monosaccharides of both mammalian and bacterial origin and a range of substituents for derivatization of individual sugar residues. This improved version has a sophisticated building algorithm to explore the range of possible conformations for a specified carbohydrate molecule. Illustrative examples of models of complex polysaccharides produced by CarbBuilder demonstrate the capabilities of the software. CarbBuilder is freely available under the Artistic License 2.0.

  • 19.
    Kärkäs, Markus D.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Liao, Rong-Zhen
    Laine, Tanja M.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Torbjörn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Ghanem, Shams
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Siegbahn, Per E. M.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Molecular ruthenium water oxidation catalysts carrying non-innocent ligands: mechanistic insight through structure-activity relationships and quantum chemical calculations2016In: Catalysis Science & Technology, ISSN 2044-4753, E-ISSN 2044-4761, Vol. 6, no 5, p. 1306-1319Article in journal (Refereed)
    Abstract [en]

    Robust catalysts that mediate H2O oxidation are of fundamental importance for the development of novel carbon-neutral energy technologies. Herein we report the synthesis of a group of single-site Ru complexes. Structure-activity studies revealed that the individual steps in the oxidation of H2O depended differently on the electronic properties of the introduced ligand substituents. The mechanistic details associated with these complexes were investigated experimentally along with quantum chemical calculations. It was found that O-O bond formation for the developed Ru complexes proceeds via high-valent Ru-VI species, where the capability of accessing this species is derived from the non-innocent ligand architecture. This cooperative catalytic involvement and the ability of accessing Ru-VI are intriguing and distinguish these Ru catalysts from a majority of previously reported complexes, and might generate unexplored reaction pathways for activation of small molecules such as H2O.

  • 20.
    Kärkäs, Markus D.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Catalytic Water Oxidation by Ruthenium Complexes Containing Negatively Charged Ligand Frameworks2016In: The chemical record, ISSN 1527-8999, E-ISSN 1528-0691, Vol. 16, no 2, p. 940-963Article in journal (Refereed)
    Abstract [en]

    Artificial photosynthesis represents an attractive way of converting solar energy into storable chemical energy. The H2O oxidation half-reaction, which is essential for producing the necessary reduction equivalents, is an energy-demanding transformation associated with a high kinetic barrier. Herein we present a couple of efficient Ru-based catalysts capable of mediating this four-proton-four-electron oxidation. We have focused on the incorporation of negatively charged ligands, such as carboxylate, phenol, and imidazole, into the catalysts to decrease the redox potentials. This account describes our work in designing Ru catalysts based on this idea. The presence of the negatively charged ligands is crucial for stabilizing the metal centers, allowing for light-driven H2O oxidation. Mechanistic details associated with the designed catalysts are also presented.

  • 21.
    Laine, Tanja M.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Development of Ruthenium Catalysts for Water Oxidation2016Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    An increasing global energy demand requires alternative fuel sources. A promising method is artificial photosynthesis. Although, the artificial processes are different from the natural photosynthetic process, the basic principles are the same, i.e. to split water and to convert solar energy into chemical energy. The energy is stored in bonds, which can at a later stage be released upon combustion. The bottleneck in the artificial systems is the water oxidation. The aim of this research has been to develop catalysts for water oxidation that are stable, yet efficient. The molecular catalysts are comprised of organic ligands that ultimately are responsible for the catalyst structure and activity. These ligands are often based on polypyridines or other nitrogen-containing aromatic compounds. This thesis describes the development of molecular ruthenium catalysts and the evaluation of their ability to mediate chemical and photochemical oxidation of water. Previous work from our group has shown that the introduction of negatively charged groups into the ligand frameworks lowers the redox potentials of the metal complexes. This is beneficial as it makes it possible to drive water oxidation with [Ru(bpy)3]3+-type oxidants (bpy = 2,2’-bipyridine), which can be photochemically generated from the corresponding [Ru(bpy)3]2+ complex. Hence, all the designed ligands herein contain negatively charged groups in the coordination site for ruthenium.

    The first part of this thesis describes the development of two mononuclear ruthenium complexes and the evaluation of these for water oxidation. Both complexes displayed low redox potentials, allowing for water oxidation to be driven either chemically or photochemically using the mild one-electron oxidant [Ru(bpy)3]3+.

    The second part is a structure–activity relationship study on several analogues of mononuclear ruthenium complexes. The complexes were active for water oxidation and the redox potentials of the analogues displayed a linear relationship with the Hammet σmeta parameter. It was also found that the complexes form high-valent Ru(VI) species, which are responsible for mediating O–O bond formation.

    The last part of the thesis describes the development of a dinuclear ruthenium complex and the catalytic performance for chemical and photochemical water oxidation. It was found that the complex undergoes O–O bond formation via a bridging peroxide intermediate, i.e. an I2M–type mechanism.

  • 22. Li, Jia-Qi
    et al.
    Liu, Jianguo
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Krajangsri, Suppachai
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Chumnanvej, Napasawan
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Singh, Thishana
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Andersson, Pher G.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Asymmetric Hydrogenation of Allylic Alcohols Using Ir-N,P-Complexes2016In: ACS Catalysis, ISSN 2155-5435, E-ISSN 2155-5435, Vol. 6, no 12, p. 8342-8349Article in journal (Refereed)
    Abstract [en]

    In this study, a series of gamma,gamma-disubstituted and beta,gamma-disubstituted allylic alcohols were prepared and successfully hydrogenated using suitable N,P-based Ir complexes. High yields and excellent enantioselectivities were obtained for most of the substrates studied. This investigation also revealed the effect of the acidity of the N,P-Ir-complexes on the acid sensitive allylic alcohols. DFT Delta pK(a) calculations were used to explain the effect of the N,P-ligand on the acidity of the corresponding Ir-complex. The selectivity model of the reaction was used to accurately predict the absolute configuration of the hydrogenated alcohols.

  • 23.
    Lindstedt, Erik
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Stridfeldt, Elin
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Olofsson, Berit
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Mild Synthesis of Sterically Congested Alkyl Aryl Ethers2016In: Organic Letters, ISSN 1523-7060, E-ISSN 1523-7052, Vol. 18, no 17, p. 4234-4237Article in journal (Refereed)
    Abstract [en]

    An efficient and transition-metal-free method is presented to access tertiary alkyl aryl ethers by arylation of tertiary alcohols with ortho-substituted diaryliodonium salts. The scope covers cyclic and acyclic aliphatic, benzylic, allylic, and propargylic tertiary alcohols as well as primary and secondary fluorinated alcohols. The methodology gives access to alkyl aryl ethers of previously unprecedented steric congestion. Furthermore, the versatility of the developed procedure was demonstrated by arylation of the pro-drug mestranol.

  • 24.
    Lundberg, Helena
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Adolfsson, Hans
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Catalytic α-Alkylation/Reduction of Ketones with Primary Alcohols To Furnish Secondary Alcohols2016In: Synthesis (Stuttgart), ISSN 0039-7881, E-ISSN 1437-210X, Vol. 48, no 5, p. 644-652Article, review/survey (Refereed)
    Abstract [en]

    The formation of secondary alcohol products via a tandem -alkylation/transfer hydrogenation of ketones with primary alcohols is a little explored reaction with unrealized potential for green synthesis. This review covers the current literature in the field, including asymmetric versions of the reaction, and outlines future possibilities and challenges for the methodology. 1 Introduction 2 Formation of Racemic Alcohols 3 Formation of Enantiomerically Enriched Alcohols 4 Conclusions

  • 25. Miralles, Nuria
    et al.
    Alam, Rauful
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Szabó, Kálmán J.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Fernandez, Elena
    Transition-Metal-Free Borylation of Allylic and Propargylic Alcohols2016In: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 55, no 13, p. 4303-4307Article in journal (Refereed)
    Abstract [en]

    The base-catalyzed allylic borylation of tertiary allylic alcohols allows the synthesis of 1,1-disubstituted allyl boronates, in moderate to high yield. The unexpected tandem performance of the Lewis acid-base adduct, [Hbase](+)[MeO-B(2)pin(2)](-) favored the formation of 1,2,3-triborylated species from the tertiary allylic alcohols and 1-propargylic cyclohexanol at 90 degrees C.

  • 26.
    Nagendiran, Anuja
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Pascanu, Vlad
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bermejo Gómez, Antonio
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    González Miera, Greco
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Tai, Cheuk-Wai
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Verho, Oscar
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Martín-Matute, Belén
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Mild and Selective Catalytic Hydrogenation of the C=C Bond in a,b-Unsaturated Carbonyl Compounds Using Supported Palladium Nanoparticles2016In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 22, no 21, p. 7184-7189Article in journal (Refereed)
    Abstract [en]

    Chemoselective reduction of the C=C bond in a variety of α,β-unsaturated carbonyl compounds using supported palladium nanoparticles is reported. Three different heterogeneous catalysts were compared using 1 atm of H2: 1) nano-Pd on a metal–organic framework (MOF: Pd0-MIL-101-NH2(Cr)), 2) nano-Pd on a siliceous mesocellular foam (MCF: Pd0-AmP-MCF), and 3) commercially available palladium on carbon (Pd/C). Initial studies showed that the Pd@MOF and Pd@MCF nanocatalysts were superior in activity and selectivity compared to commercial Pd/C. Both Pd0-MIL-101-NH2(Cr) and Pd0-AmP-MCF were capable of delivering the desired products in very short reaction times (10–90 min) with low loadings of Pd (0.5–1 mol %). Additionally, the two catalytic systems exhibited high recyclability and very low levels of metal leaching.

  • 27.
    Olofsson, Berit
    Stockholm University, Faculty of Science, Department of Organic Chemistry. Stellenbosch University, South Africa.
    Arylation with Diaryliodonium Salts2016In: Hypervalent Iodine Chemistry / [ed] Thomas Wirth, Springer, 2016, p. 135-166Chapter in book (Refereed)
    Abstract [en]

    This chapter focuses on recent developments in metal-free and metal-catalyzed arylations with diaryliodonium salts (diaryl-λ3-iodanes). Synthetic routes to diaryliodonium salts are briefly described, and chemoselectivity trends with unsymmetric iodonium salts are discussed.

  • 28.
    Pascanu, Vlad
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Catalytic Processes Mediated by Metal−Organic Frameworks: Reactivity and Mechanistic Studies2016Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The present thesis describes the development of heterogeneous catalytic methodologies using metal−organic frameworks (MOFs) as porous matrices for supporting transition metal catalysts. A wide spectrum of chemical reactions is covered. Following the introductory section (Chapter 1), the results are divided between one descriptive part (Chapter 2) and four experimental parts (Chapters 3–6).

    Chapter 2 provides a detailed account of MOFs and their role in heterogeneous catalysis. Specific synthesis methods and characterization techniques that may be unfamiliar to organic chemists are illustrated based on examples from this work.

    Pd-catalyzed heterogeneous C−C coupling and C−H functionalization reactions are studied in Chapter 3, with focus on their practical utility. A vast functional group tolerance is reported, allowing access to substrates of relevance for the pharmaceutical industry. Issues concerning the recyclability of MOF-supported catalysts, leaching and operation under continuous flow are discussed in detail.

    The following chapter explores puzzling questions regarding the nature of the catalytically active species and the pathways of deactivation for Pd@MOF catalysts. These questions are addressed through detailed mechanistic investigations which include in situ XRD and XAS data acquisition. For this purpose a custom reaction cell is also described in Chapter 4.

    The scope of Pd@MOF-catalyzed reactions is expanded in Chapter 5. A strategy for boosting the thermal and chemical robustness of MOF crystals is presented. Pd@MOF catalysts are coated with a protecting SiO2 layer, which improves their mechanical properties without impeding diffusion. The resulting nanocomposite is better suited to withstand the harsh conditions of aerobic oxidation reactions. In this chapter, the influence of the nanoparticles’ geometry over the catalyst’s selectivity is also investigated.

    While Chapters 3–5 dealt with Pd-catalyzed processes, Chapter 6 introduces hybrid materials based on first-row transition metals. Their reactivity is explored towards light-driven water splitting. The heterogenization process leads to stabilized active sites, facilitating the spectroscopic probing of intermediates in the catalytic cycle.

  • 29.
    Pascanu, Vlad
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Carson, Fabian
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Vico Solano, Marta
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Su, Jie
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Zou, Xiaodong
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Johansson, Magnus J.
    Martín-Matute, Belén
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Selective Heterogeneous C−H Activation/Halogenation Reactions Catalyzed by Pd@MOF Nanocomposites2016In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 22, no 11, p. 3729-3737Article in journal (Refereed)
    Abstract [en]

    A directed heterogeneous C−H activation/halogenation reaction catalyzed by readily synthesized Pd@MOF nanocatalysts was developed. The heterogeneous Pd catalysts used were a novel and environmentally benign Fe-based metal–organic framework (MOF) (Pd@MIL-88B-NH2(Fe)) and the previously developed Pd@MIL-101-NH2(Cr). Very high conversions and selectivities were achieved under very mild reaction conditions and in short reaction times. A wide variety of directing groups, halogen sources, and substitution patterns were well tolerated, and valuable polyhalogenated compounds were synthesized in a controlled manner. The synthesis of the Pd-functionalized Fe-based MOF and the recyclability of the two catalysts are also presented.

  • 30.
    Pathipati, Stalin R.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    van der Werf, Angela
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Eriksson, Lars
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Selander, Nicklas
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Diastereoselective Synthesis of Cyclopenta[c]furans by a Catalytic Multicomponent Reaction2016In: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 55, no 39, p. 11863-11866Article in journal (Refereed)
    Abstract [en]

    A diastereoselective three-component reaction between alkynyl enones, aldehydes and secondary amines is reported. With the aid of a benign indium catalyst, a range of highly substituted cyclopenta[c]furan derivatives can be obtained in a single-step procedure. The formation of the stereodefined heterocyclic motifs takes place via in situ generation of enamines followed by two sequential cyclization steps.

  • 31.
    Peters, Byron K.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Liu, Jianguo
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Margarita, Cristiana
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Rabten, Wangchuk
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kerdphon, Sutthichat
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Orebom, Alexander
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Morsch, Thomas
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Andersson, Pher G.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Enantio- and Regioselective Ir-Catalyzed Hydrogenation of Di- and Trisubstituted Cycloalkenes2016In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 138, no 36, p. 11930-11935Article in journal (Refereed)
    Abstract [en]

    A number of cyclic olefins Were prepared and evaluated for the asymmetric hydrogenation reaction using novel N,P-ligated iridium imidazote-based Catalysts (Crabtree type). The diversity of these cyclic olefins spanned those having little functionality to others bearing strongly coordinating substituents and heterocycles. Excellent enantioselectivities were observed both for substrates having little functionality (up to >99% ee) and for substrates possessing functional groups several carbons away from the olefin. Substrates having functionalities such as carboxyl groups, alcohols, or heterocycles in the vicinity of the C=C bond were hydrogenated in high enantiomeric excess (up to >99% ee). The hydrogenation was also found to be regioselective, and by controlling the reaction conditions, selective hydrogenation of one of two trisubstituted olefins can be achieved: Furthermore, trisubstituted olefins can be selectively hydrogenated in the presence of tetrasubstituted olefins.

  • 32.
    Qiu, Youai
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Yang, Bin
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Zhu, Can
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Highly Efficient Cascade Reaction for Selective Formation of Spirocyclobutenes from Dienallenes via Palladium-Catalyzed Oxidative Double Carbocyclization-Carbonylation-Alkynylation2016In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 138, no 42, p. 13846-13849Article in journal (Refereed)
    Abstract [en]

    A highly selective cascade reaction that allows the direct transformation of dienallenes to spirocyclobutenes (spiro[3.4]octenes) as single diastereoisomers has been developed. The reaction involves formation of overall four C-C bonds and proceeds-via a palladium-catalyzed oxidative transformation with insertion of olefin, olefin, and carbon monoxide. Under slightly different reaction conditions, an additional CO insertion takes place to give spiro[4.4]nonenes with formation of overall five C-C bonds.

  • 33.
    Qiu, Youai
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Yang, Bin
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Zhu, Can
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Palladium-Catalyzed Oxidative Carbocyclization–Borylation of Enallenes to Cyclobutenes2016In: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 55, no 22, p. 6520-6524Article in journal (Refereed)
    Abstract [en]

    A highly efficient palladium-catalyzed oxidative borylation of enallenes was developed for the selective formation of cyclobutene derivatives and fully-substituted alkenylboron compounds. Cyclobutenes are formed as the exclusive products in MeOH in the presence of H2O and Et3N, whereas the use of AcOH leads to alkenylboron compounds. Both reactions showed a broad substrate scope and good tolerance for various functional groups, including carboxylic acid ester, free hydroxy, imide, and alkyl groups. Furthermore, transformations of the borylated products were conducted to show their potential applications.

  • 34.
    Quan, Xu
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Liu, Jianguo
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Rabten, Wangchuk
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Diomedi, Simone
    Singh, Thishana
    Andersson, Pher G.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Thiazole, Imidazole and Oxazoline Based N,P-Ligands for Palladium-Catalyzed Cycloisomerization of 1,6-Enynes2016In: European Journal of Organic Chemistry, ISSN 1434-193X, E-ISSN 1099-0690, no 20, p. 3427-3433Article in journal (Refereed)
    Abstract [en]

    A series of N,P-ligands were prepared and evaluated in the asymmetric palladium-catalyzed cycloisomerization of allyl propargyl ether substrates. The reactivity and enantioselectivity of the reaction was shown to be highly dependent on the chiral skeleton of the ligand structures with ee's ranging from 22-99 %. The proton source had a significant impact on the enantioselectivity. The generation of palladium hydride from formic acid led to the highest ee. A selectivity model based on a proposed transition state was used to predict and explain the enantiomeric outcome of the reaction.

  • 35.
    Rabten, Wangchuk
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Torbjörn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kärkäs, Markus D.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Chen, Hong
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). China University of Geosciences, China.
    Sun, Junliang
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). Peking University, China.
    Andersson, Pher G.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    A ruthenium water oxidation catalyst based on a carboxamide ligand2016In: Dalton Transactions, ISSN 1477-9226, E-ISSN 1477-9234, Vol. 45, no 8, p. 3272-3276Article in journal (Refereed)
    Abstract [en]

    Herein is presented a single-site Ru complex bearing a carboxamide-based ligand that efficiently manages to carry out the fourelectron oxidation of H2O. The incorporation of the negatively charged ligand framework significantly lowered the redox potentials of the Ru complex, allowing H2O oxidation to be driven by the mild oxidant [Ru(bpy)(3)](3+). This work highlights that the inclusion of amide moieties into metal complexes thus offers access to highly active H2O oxidation catalysts.

  • 36. Santoro, Stefano
    et al.
    Kalek, Marcin
    Huang, Genping
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Elucidation of Mechanisms and Selectivities of Metal-Catalyzed Reactions using Quantum Chemical Methodology2016In: Accounts of Chemical Research, ISSN 0001-4842, E-ISSN 1520-4898, Vol. 49, no 5, p. 1006-1018Article, review/survey (Refereed)
    Abstract [en]

    Quantum chemical techniques today are indispensable for the detailed mechanistic understanding of catalytic reactions. The development of modem density functional theory approaches combined with the enormous growth in computer power have made it possible to treat quite large systems at a reasonable level of accuracy. Accordingly, quantum chemistry has been applied extensively to a wide variety of catalytic systems. A huge number of problems have been solved successfully, and vast amounts of chemical insights have been gained. In this Account, we summarize some of our recent work in this field. A number of examples concerned with transition metal-catalyzed reactions are selected, with emphasis on reactions with various kinds of selectivities. The discussed cases are (1) copper-catalyzed C-H bond amidation of indoles, (2) iridium-catalyzed C(sp(3))-H borylation of chlorosilanes, (3) vanadium-catalyzed Meyer-Schuster rearrangement and its combination with aldol- and Mannich-type additions, (4) palladium-catalyzed propargylic substitution with phosphorus nucleophiles, (5) rhodium-catalyzed 1:2 coupling of aldehydes and allenes, and finally (6) copper-catalyzed coupling of nitrones and alkynes to produce beta-lactams (Kinugasa reaction). First, the methodology adopted in these studies is presented briefly. The electronic structure method in the great majority of these kinds of mechanistic investigations has for the last two decades been based on density functional theory. In the cases discussed here, mainly the B3LYP functional has been employed in conjunction with Grimme's empirical dispersion correction, which has been shown to improve the calculated energies significantly. The effect of the surrounding solvent is described by implicit solvation techniques, and the thermochemical corrections are included using the rigid-rotor harmonic oscillator approximation. The reviewed examples are chosen to illustrate the usefulness and versatility of the adopted methodology in solving complex problems and proposing new detailed reaction mechanisms that rationalize the experimental findings. For each of the considered reactions, a consistent mechanism is presented, the experimentally observed selectivities are reproduced, and their sources are identified. Reproducing selectivities requires high accuracy in computing relative transition state energies. As demonstrated by the results summarized in this Account, this accuracy is possible with the use of the presented methodology, benefiting of course from a large extent of cancellation of systematic errors. It is argued that as the employed models become larger, the number of rotamers and isomers that have to be considered for every stationary point increases and a careful assessment of their energies is therefore necessary in order to ensure that the lowest energy conformation is located. This issue constitutes a bottleneck of the investigation in some cases and is particularly important when analyzing selectivities, since small energy differences need to be reproduced.

  • 37. Shashkov, Alexander S.
    et al.
    Zhang, Wenwen
    Perepelov, Andrei V.
    Weintraub, Andrej
    Liu, Bin
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Knirel, Yuriy A.
    Structure of the O-polysaccharide of Escherichia coli O1322016In: Carbohydrate Research, ISSN 0008-6215, E-ISSN 1873-426X, Vol. 427, p. 44-47Article in journal (Refereed)
    Abstract [en]

    Mild acid degradation of the lipopolysaccharide of Escherichia coli O132 released its O-polysaccharide. Analysis by 1D and 2D H-1 and C-13 NMR spectroscopy prior and subsequent to O-deacetylation, in conjunction with sugar analysis, revealed a linear pentasaccharide repeating unit of the O-polysaccharide having the following structure: -> 2)-alpha-D-Galf-(1 -> 3)-alpha-L-Rhap2Ac-(1 -> 4)-alpha-D-Glcp-(1 -> 2)-alpha-L-Rhap-(1 -> 3)-beta-D-GlcpNAc-(1 -> Putative functions of genes in the O-antigen gene cluster of E. coli O132 are consistent with the O-polysaccharide structure.

  • 38.
    Shatskiy, Andrey
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Lomoth, Reiner
    Abdel-Magied, Ahmed F.
    Stockholm University, Faculty of Science, Department of Organic Chemistry. Nuclear Materials Authority, Egypt.
    Rabten, Wangchuk
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Laine, Tanja M.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Chen, Hong
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). KTH Royal Institute of Technology, Sweden.
    Sun, Junliang
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Andersson, Pher G.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kärkäs, Markus D.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Johnston, Eric V.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Catalyst-solvent interactions in a dinuclear Ru-based water oxidation catalyst2016In: Dalton Transactions, ISSN 1477-9226, E-ISSN 1477-9234, Vol. 45, no 47, p. 19024-19033Article in journal (Refereed)
    Abstract [en]

    Photocatalytic water oxidation represents a key process in conversion of solar energy into fuels and can be facilitated by the use of molecular transition metal-based catalysts. A novel straightforward approach for covalent linking of the catalytic units to other moieties is demonstrated by preparation of a dinuclear complex containing two [Ru(pdc)(pic)(3)]-derived units (pdc = 2,6-pyridinedicarboxylate, pic = 4-picoline). The activity of this complex towards chemical and photochemical oxidation of water was evaluated and a detailed insight is given into the interactions between the catalyst and acetonitrile, a common co-solvent employed to increase solubility of water oxidation catalysts. The solvent-induced transformations were studied by electrochemical and spectroscopic techniques and the relevant quantitative parameters were extracted.

  • 39.
    Siegbahn, Per E. M.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Model Calculations Suggest that the Central Carbon in the FeMo-Cofactor of Nitrogenase Becomes Protonated in the Process of Nitrogen Fixation2016In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 138, no 33, p. 10485-10495Article in journal (Refereed)
    Abstract [en]

    Nitrogen activation by nitrogenase is one of the most important enzymatic processes on earth. In spite of the determination of X-ray structures of increasingly higher resolution, the nitrogenase mechanism is still not understood. In the most recent X-ray structures it has been shown that a carbon resides in the center of the MoFe-cofactor. Its role is not known. Recent spectroscopic studies, mainly EPR, have come closest to obtaining a molecular mechanism for activating nitrogen. Two hydrides have been shown to play a key role in this context. In the present study, the mechanism for nitrogenase has been investigated by hybrid DFT using a cluster model. This approach has been shown to be very successful for predicting mechanisms for other redox-active enzymes, such as the one for photosystem II, but has so far not been used in its most recent form for nitrogenase. The mechanism obtained has large similarities to the one suggested by spectroscopy, with a reductive elimination of two hydrides just before nitrogen binding. However, a very surprising finding is that the central carbon becomes protonated and has to move out of the cavity as a methyl group before the hydrides can be formed. This has not been suggested before.

  • 40.
    Stridfeldt, Elin
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Seemann, Alexandra
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bouma, Marinus J.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Dey, Chandan
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Ertan, Anne
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Olofsson, Berit
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Synthesis, Characterization and Unusual Reactivity of Vinylbenziodoxolones-Novel Hypervalent Iodine Reagents2016In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 22, no 45, p. 16066-16070Article in journal (Refereed)
    Abstract [en]

    A novel type of hypervalent iodine(III) reagents, vinylbenziodoxolones (VBX), has been synthesized in a one-pot reaction from 2-iodobenzoic acid. VBX is bench stable, has been thoroughly characterized and the cyclic structure is supported by X-ray analysis. The reactivity of VBX was investigated in vinylation of nitrocyclohexane, and delivered vinylated products with opposite regioselectivity compared to acyclic vinyl(aryl) iodonium salts. The reagents could become a powerful tool in vinylation reactions under both metal-free and metal-catalyzed conditions.

  • 41.
    Tinnis, Fredrik
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Volkov, Alexey
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Slagbrand, Tove
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Adolfsson, Hans
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Chemoselective Reduction of Tertiary Amides under Thermal Control: Formation of either Aldehydes or Amines2016In: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 55, no 14, p. 4562-4566Article in journal (Refereed)
    Abstract [en]

    The chemoselective reduction of amides in the presence of other more reactive reducible functional groups is a highly challenging transformation, and successful examples thereof are most valuable in synthetic organic chemistry. Only a limited number of systems have demonstrated the chemoselective reduction of amides over ketones. Until now, the aldehyde functionality has not been shown to be compatible in any catalytic reduction protocol. Described herein is a [Mo(CO)6]-catalyzed protocol with an unprecedented chemoselectivity and allows for the reduction of amides in the presence of aldehydes and imines. Furthermore, the system proved to be tunable by variation of the temperature, which enabled for either C−O or C−N bond cleavage that ultimately led to the isolation of both amines and aldehydes, respectively, in high chemical yields.

  • 42.
    Tolnai, Gergely L.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry. Ecole Polytechnique Fédérale de Lausanne, Switzerland.
    Brand, Jonathan P.
    Waser, Jerome
    Gold-catalyzed direct alkynylation of tryptophan in peptides using TIPS-EBX2016In: Beilstein Journal of Organic Chemistry, ISSN 2195-951X, E-ISSN 1860-5397, Vol. 12, p. 745-749Article in journal (Refereed)
    Abstract [en]

    The selective functionalization of peptides containing only natural amino acids is important for the modification of biomolecules. In particular, the installation of an alkyne as a useful handle for bioconjugation is highly attractive, but the use of a carbon linker is usually required. Herein, we report the gold-catalyzed direct alkynylation of tryptophan in peptides using the hypervalent iodine reagent TIPS-EBX (1-[(triisopropylsilyl)ethynyl]-1,2-benziodoxol-3(1H)-one). The reaction proceeded in 50-78% yield under mild conditions and could be applied to peptides containing other nucleophilic and aromatic amino acids, such as serine, phenylalanine or tyrosine.

  • 43.
    Tolnai, Gergely L.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Nilsson, Ulf J.
    Olofsson, Berit
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Efficient O-Functionalization of Carbohydrates with Electrophilic Reagents2016In: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 55, no 37, p. 11226-11230Article in journal (Refereed)
    Abstract [en]

    Novel methodology for O-functionalization of carbohydrate derivatives has been established using bench-stable and easily prepared iodonium(III) reagents. Both electron-withdrawing and electron-donating aryl groups were introduced under ambient conditions and without precautions to exclude air or moisture. Furthermore, the approach was extended both to full arylation of cyclodextrin, and to trifluoroethylation of carbohydrate derivatives. This is the first general approach to introduce traditionally non-electrophilic groups into any of the OH groups around the sugar backbone. The methodology will be useful both in synthetic organic chemistry and biochemistry, as important functional groups can be incorporated under simple and robust reaction conditions in a fast and efficient manner.

  • 44.
    Volkov, Alexey
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Catalytic Amide Reductions under Hydrosilylation Conditions2016Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis covers the development of catalytic methodologies for the mild and chemoselective reductions of amides. The first part of the thesis describes the use of a Fe(II)/NHC catalyst for the deoxygenation of aromatic tertiary amides to corresponding amines. The protocol is characterized by low catalyst loading, mild reaction conditions and the use of air and moisture stable polymethylhydrosilaxane (PMHS) as the hydride source.

    The second part concerns the development of a protocol for the room temperature deoxygenation of a wide range of tertiary amides to amines using catalytic amounts of Et2Zn and LiCl together with PMHS. The system displayed high levels of chemoselectivity tolerating various reducible groups such as nitro, nitrile, and olefin functionalities, and was shown to be applicable for the reduction of aromatic, heteroaromatic and aliphatic tertiary amides.

    The attempts to expand the scope of the Fe-based protocol to accommodate benzylic tertiary amides led to the development of a transition metal-free catalytic system based on KOtBu for the formation of enamines. The final products constitute an important class of precursors for a wide range of valuable compounds in organic chemistry. Moreover, avoiding the use of transition metals in the protocol allowed the desired products to be obtained without the hazardous metal contaminants.

    The last chapter of the thesis describes the Mo(CO)6-catalyzed hydrosilylation of amides. The Mo-based catalyst was proven to mediate the deoxygenation of α,β-unsaturated tertiary and secondary amides to the corresponding allylamines without reduction of the olefinic bonds. Further development of the catalytic system revealed an unprecedented chemoselectivity in the hydrosilylation of aromatic and certain aliphatic tertiary amides in the presence of a variety of reducible groups along with aldehydes and imines that were tolerated for the first time. Moreover, it was possible to control the reaction outcome by variation of the reaction temperature to obtain either amines or aldehydes as the major products. The synthetic utility of the developed Mo(CO)6-catalyzed protocols was further demonstrated in the synthesis of the pharmaceuticals Naftifine and Donepezil.

  • 45.
    Volkov, Alexey
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Tinnis, Fredrik
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Stagbrand, Tove
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Trillo, Paz
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Adolfsson, Hans
    Chemoselective reduction of carboxamides2016In: Chemical Society Reviews, ISSN 0306-0012, E-ISSN 1460-4744, Vol. 45, no 24, p. 6685-6697Article, review/survey (Refereed)
    Abstract [en]

    The reduction of amides gives access to a wide variety of important compounds such as amines, imines, enamines, nitrites, aldehydes and alcohols. The chemoselective transformation into these functional groups is challenging due to the intrinsic stability of the amide bond; nevertheless, the ability to reduce highly stable carboxamides selectively in the presence of sensitive functional groups is of high synthetic value for academic and industrial chemists. Hydride-based reagents such as LiAlH4 or diboranes are today the most commonly used compounds for amide reductions, and apart from the substantial amount of waste generated using these methods, they lack tolerance to most other functional groups. This tutorial review provides an overview of the recent progress made in the development of chemoselective protocols for amide reduction and gives an insight to their advantages and drawbacks.

  • 46.
    Volla, Chandra M. R.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Palladium-Catalyzed Oxidative Domino Carbocyclization-Arylation of Bisallenes2016In: ACS Catalysis, ISSN 2155-5435, E-ISSN 2155-5435, Vol. 6, no 10, p. 6398-6402Article in journal (Refereed)
    Abstract [en]

    Herein we report a highly efficient and site selective palladium-catalyzed oxidative carbocyclization arylation reaction of bisallenes and arylboronic acids under operationally simple conditions for the selective synthesis of cyclohexadiene derivatives. The palladium source and the solvent proved to be crucial for the selectivity and the reactivity displayed. Interestingly, in the absence of the nucleophile, an oxidative carbocyclization-beta-elimination pathway predominates. The reaction conditions are compatible with a wide range of functional groups, and the reaction exhibits broad substrate scope. Furthermore, key information regarding the mechanism was obtained using control experiments and kinetic studies.

  • 47.
    Wikmark, Ylva
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Engelmark Cassimjee, Karim
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Lihammar, Richard
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Removing the Active-Site Flap in Lipase A from Candida antarctica Produces a Functional Enzyme without Interfacial Activation2016In: ChemBioChem (Print), ISSN 1439-4227, E-ISSN 1439-7633, Vol. 17, no 2, p. 141-145Article in journal (Refereed)
    Abstract [en]

    A mobile region is proposed to be a flap that covers the active site of Candida antarctica lipase A. Removal of the mobile region retains the functional properties of the enzyme. Interestingly interfacial activation, required for the wild-type enzyme, was not observed for the truncated variant, although stability, activity, and stereoselectivity were very similar for the wild-type and variant enzymes. The variant followed classical Michaelis-Menten kinetics, unlike the wild type. Both gave the same relative specificity in the transacylation of a primary and a secondary alcohol in organic solvent. Furthermore, both showed the same enantioselectivity in transacylation of alcohols and the hydrolysis of alcohol esters, as well as in the hydrolysis of esters chiral at the acid part.

  • 48.
    Yang, Bin
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Zhu, Can
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Qiu, Youai
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Enzyme- and Ruthenium-Catalyzed Enantioselective Transformation of alpha-Allenic Alcohols into 2,3-Dihydrofurans2016In: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 55, no 18, p. 5568-5572Article in journal (Refereed)
    Abstract [en]

    An efficient one-pot method for the enzyme- and ruthenium-catalyzed enantioselective transformation of alpha-allenic alcohols into 2,3-dihydrofurans has been developed. The method involves an enzymatic kinetic resolution and a subsequent ruthenium-catalyzed cycloisomerization, which provides 2,3-dihydrofurans with excellent enantioselectivity (up to >99%ee). A ruthenium carbene species was proposed as a key intermediate in the cycloisomerization.

  • 49. Yang, Mingjun
    et al.
    Angles d'Ortoli, Thibault
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Säwén, Elin
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Jana, Madhurima
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    MacKerell, Jr., Alexander D.
    Delineating the conformational flexibility of trisaccharides from NMR spectroscopy experiments and computer simulations2016In: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 18, no 28, p. 18776-18794Article in journal (Refereed)
    Abstract [en]

    The conformation of saccharides in solution is challenging to characterize in the context of a single well-defined three-dimensional structure. Instead, they are better represented by an ensemble of conformations associated with their structural diversity and flexibility. In this study, we delineate the conformational heterogeneity of five trisaccharides via a combination of experimental and computational techniques. Experimental NMR measurements target conformationally sensitive parameters, including J couplings and effective distances around the glycosidic linkages, while the computational simulations apply the well-calibrated additive CHARMM carbohydrate force field in combination with efficient enhanced sampling molecular dynamics simulation methods. Analysis of conformational heterogeneity is performed based on sampling of discreet states as defined by dihedral angles, on root-mean-square differences of Cartesian coordinates and on the extent of volume sampled. Conformational clustering, based on the glycosidic linkage dihedral angles, shows that accounting for the full range of sampled conformations is required to reproduce the experimental data, emphasizing the utility of the molecular simulations in obtaining an atomic detailed description of the conformational properties of the saccharides. Results show the presence of differential conformational preferences as a function of primary sequence and glycosidic linkage types. Significant differences in conformational ensembles associated with the anomeric configuration of a single glycosidic linkage reinforce the impact of such changes on the conformational properties of carbohydrates. The present structural insights of the studied trisaccharides represent a foundation for understanding the range of conformations adopted in larger oligosaccharides and how these molecules encode their conformational heterogeneity into the monosaccharide sequence.

  • 50.
    Yang, Yuzhu
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Szabó, Kálmán J.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Synthesis of Allenes by Catalytic Coupling of Propargyl Carbonates with Aryl Iodides in the Presence of Diboron Species2016In: Journal of Organic Chemistry, ISSN 0022-3263, E-ISSN 1520-6904, Vol. 81, no 1, p. 250-255Article in journal (Refereed)
    Abstract [en]

    Bimetallic copper-/palladium-catalyzed multicomponent reaction of propargyl carbonates, aryl iodides, and diboron species was studied. This procedure can be used for synthesis of di-, tri-, and tetra-substituted allenes. Using diboronic acid, the reaction is supposed to proceed via allenylboronic acid intermediate.

12 1 - 50 of 54
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf