Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.
  • 1. Daikoku, S.
    et al.
    Pendrill, Robert
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kanie, Y.
    Ito, Y.
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kanie, O.
    Synthesis and structural investigation of a series of mannose-containing oligosaccharides using mass spectrometry2018In: Organic and biomolecular chemistry, ISSN 1477-0520, E-ISSN 1477-0539, Vol. 16, no 2, p. 228-238Article in journal (Refereed)
    Abstract [en]

    A series of compounds associated with naturally occurring and biologically relevant glycans consisting of alpha-mannosides were prepared and analyzed using collision-induced dissociation (CID), energy-resolved mass spectrometry (ERMS), and H-1 nuclear magnetic resonance spectroscopy. The CID experiments of sodiated species of disaccharides and ERMS experiments revealed that the order of stability of mannosyl linkages was as follows: 6-linked > 4-linked >= 2-linked > 3-linked mannosyl residues. Analysis of linear trisaccharides revealed that the order observed in disaccharides could be applied to higher glycans. A branched trisaccharide showed a distinct dissociation pattern with two constituting disaccharide ions. The estimation of the content of this ion mixture was possible using the disaccharide spectra. The hydrolysis of mannose linkages at 3- and 6-positions in the branched trisaccharide revealed that the 3-linkage was cleaved twice as fast as the 6-linkage. It was observed that the solution-phase hydrolysis and gas-phase dissociation have similar energetics.

  • 2.
    Kerdphon, Sutthichat
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    NHC,P- and N,P-Iridium Catalysts for Hydrogenations and Hydrogen Transfer Reactions2018Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The work described in this thesis is focused on hydrogenation and hydrogen transfer reactions using iridium catalysts. The first part concerns the use of N-heterocyclic carbene-phosphine iridium complexes in alkylation reactions (Chapters 2 and 3) and the hydrogenation of ketones (Chapter 4). A number of N-heterocyclic carbene-phosphine iridium complexes have been prepared and evaluated as catalysts for C-N bond formation of amides using alcohols as the electrophile. This catalytic system can be used with a wide range of substrates at low catalyst loading (only 0.5 mol%) to furnish the desired products in up to 98% isolated yield. The achiral N-heterocyclic carbene-phosphine iridium complexes were also found to catalyze the methylation of ketones with methanol under mild conditions to afford the mono-methylated products in up to 98% isolated yield with low catalyst loading (1.0 mol%). Additionally, several chiral N-heterocyclic carbene-phosphine iridium complexes were synthesized and evaluated in asymmetric hydrogenation of ketones. The reactions were carried out at room temperature under base-free conditions to obtain the chiral alcohols in up to 96% ee in 30 minutes.

    The second part of this thesis (Chapter 5) details the preparation of new N,P-iridium complexes which were found to be highly efficient catalysts for the asymmetric hydrogenation of challenging tetrasubstituted olefins. This catalytic system results in optically active compounds of high enantiomeric excess (up to 98% ee) as the single diasteroisomer.

  • 3.
    Rabten, Wangchuk
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    The Use of N,P-Iridium and N,P-Palladium Complexes in Asymmetric Synthesis2018Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The work presented in this thesis concerns asymmetric catalysis using chiral N,P-ligands and iridium or palladium transition metals. The first part  (Chapters 2 and 3) highlights the N,P-iridium catalyzed asymmetric hydrogenation of 1,4-cyclohexadienes having functionalized or unfunctionalized substituents, including allylsilane side chains. A series of N,P-iridium catalysts were synthesized and screened on a number of cyclohexadienes. The developed N,P-iridium catalysts have provided excellent chemo-, regio- and enantioselectivity for most of the products obtained. For substrates having an allylsilane sidechain, the chiral cyclic allylsilane products were used to induce stereocontrol in a subsequent Hosomi-Sakurai reaction using TiCl4 as Lewis acid and aldehydes as electrophiles. The corresponding homoallylic alcohols were obtained in good to excellent diastereoselectivity. 

    The second part (Chapter 4) describes the N,P-iridium catalyzed asymmetric hydrogenation of various vinyl fluorides. A number of tri- and tetrasubstituted vinyl fluorides were synthesized and evaluated for the asymmetric hydrogenation. The corresponding saturated chiral fluoro compounds were obtained in very high enantioselectivity (up to 99% ee). The defluorination, usually known to occur under the catalytic hydrogenation conditions, were not observed for the majority of the substrates. 

    Finally, Chapter 5 describes the application of N,P-ligands in the asymmetric cycloisomerization of 1,6-enynes using a palladium precatalyst. The enantioselectivities for the products were found to depend both on the substrate as well as the hydrogen source. These developed catalytic reactions provide attractive methods to create multiple stereogenic centers in a molecule in relatively few steps from readily available starting materials.

1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf