Change search
Refine search result
12 1 - 50 of 73
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Alamsetti, Santosh Kumar
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Persson, Andreas K. A.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Palladium-Catalyzed Intramolecular Hydroamination of Propargylic Carbamates and Carbamothioates2014In: Organic Letters, ISSN 1523-7060, E-ISSN 1523-7052, Vol. 16, no 5, p. 1434-1437Article in journal (Refereed)
    Abstract [en]

    An efficient and simple methodology was developed for the synthesis of oxazolidinones, oxazolidinthiones, imidazolidinthiones, and imidazolidinones from the corresponding propargylic starting materials using Pd(OAc)(2) and n-Bu4NOAc as catalysts in DCE at room temperature.

  • 2.
    Bartholomeyzik, Teresa
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Mazuela, Javier
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Pendrill, Robert
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Deng, Youqian
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Palladium-Catalyzed Oxidative Arylating Carbocyclization of Allenynes: Control of Selectivity and Role of H2O2014In: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 53, no 33, p. 8696-8699Article in journal (Refereed)
    Abstract [en]

    Highly selective protocols for the carbocyclization/arylation of allenynes using arylboronic acids are reported. Arylated vinylallenes are obtained with the use of BF3 center dot Et2O as an additive, whereas addition of water leads to arylated trienes. These conditions provide the respective products with excellent selectivities (generally > 97:3) for a range of boronic acids and different allenynes. It has been revealed that water plays a crucial role for the product distribution.

  • 3.
    Bermejo Gómez, Antonio
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Holmberg, Pär
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Martin-Matute, Belén
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Transition metal-catalyzed redox isomerization of codeine and morphine in water2014In: RSC Advances, ISSN 2046-2069, E-ISSN 2046-2069, Vol. 4, no 74, p. 39519-39522Article in journal (Refereed)
    Abstract [en]

    A water-soluble rhodium complex formed from commercially available [Rh(COD)(CH3CN)(2)]BF4 and 1,3,5-triaza-7-phosphaadamantane (PTA) catalyzes the isomerization of both codeine and morphine into hydrocodone and hydromorphone with very high efficiency. The reaction is performed in water, allowing isolation of the final products by simple filtration, which results in very high isolated yields. The reactions can be easily scaled up to 100 g.

  • 4. Bogár, Krisztián
    et al.
    Krumlinde, Patrik
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Hydrogenized Wilkinson´s Catalyst for Transfer Hydrogenation of Carbonyl CompoundsManuscript (preprint) (Other academic)
    Abstract [en]

    Combining the advantages of homogeneous and heterogeneous catalysis is possible by heterogenization of homogeneous transition metal complexes based on a grafting/anchoring technique. Wilkinson’s catalyst ((RhCl(PPh3)3) immobilized on common silica showed high activity and selectivity in transfer hydrogenation reactions of different carbonyl compounds in isopropanol. Reactions conducted at reflux in isopropanol afforded the corresponding carbinols in high yields in short reaction times. The heterogeneous feature of the catalyst allows easy recovery and efficient reuse in the same reaction up to 5 times without loss of catalytic activity.

  • 5. Bogár, Krisztián
    et al.
    Martín-Matute, Belén
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Large-scale ruthenium- and enzyme-catalyzed dynamic kinetic resolution of (rac)-1-phenylethanol2007In: Beilstein Journal of Organic Chemistry, ISSN 1860-5397, Vol. 3, p. artikel nr 50-Article in journal (Refereed)
  • 6.
    Borén, Linnéa
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Leijondahl, Karin
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Dynamic Kinetic Asymmetric Transformation of 1,4-diols and Preparation of Trans-2,5-Disubstituted pyrrolidines2009In: Tetrahedron Letters, ISSN 0040-4039, E-ISSN 1359-8562, Vol. 50, no 26, p. 3237-3240Article in journal (Refereed)
    Abstract [en]

    Dynamic kinetic asymmetric transformation (DYKAT) of a series of 1,4-diols is carried out with Candida antarctica lipase B (CALB), Pseudomonas cepacia lipase II (PS-C II), and a ruthenium catalyst. A β-chloro-substituted 1,4-diol is successfully transformed into an optically pure 1,4-diacetate, which is a highly useful synthetic intermediate. The usefulness of the optically pure 1,4-diacetates is demonstrated by the synthesis of enantiopure 2,5-disubstituted pyrrolidines.

  • 7. Bratt, Emma
    et al.
    Verho, Oscar
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Johansson, Magnus J.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    A General Suzuki Cross-Coupling Reaction of Heteroaromatics Catalyzed by Nanopalladium on Amino-Functionalized Siliceous Mesocellular Foam2014In: Journal of Organic Chemistry, ISSN 0022-3263, E-ISSN 1520-6904, Vol. 79, no 9, p. 3946-3954Article in journal (Refereed)
    Abstract [en]

    Suzuki-Miyaura cross-coupling reactions of heteroaromatics catalyzed by palladium supported in the cavities of amino-functionalized siliceous mesocellular foam are presented. The nanopalladium catalyst effectively couples not only heteroaryl halides with boronic acids but also heteroaryl halides with boronate esters, potassium trifluoroborates, MIDA boronates, and triolborates, producing a wide range of heterobiaryls in good to excellent yields. Furthermore, the heterogeneous palladium nanocatalyst can easily be removed from the reaction mixture by filtration and recycled several times with minimal loss in activity. This catalyst provides an alternative, environmentally friendly, low-leaching process for the preparation of heterobiaryls.

  • 8.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Catalytic asymmetric synthesis via combined metal and enzyme catalysis2009In: 3rd Hellenic Symposium on Organic Synthesis, October 15-17, 2009, Athens, Greece: Abstracts of papers, Athens, 2009Conference paper (Other academic)
  • 9.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Modern Oxidation Methods2010Collection (editor) (Other academic)
  • 10.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Palladium- and ruthenium-catalyzed redox reactions in selective organic synthesis2009In: Abstract of LOST II Symposium in honour of Prof. Alain Krief, March 18-20, 2009, Namur, Belgium, 2009Conference paper (Other academic)
  • 11.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Pd- and Ru-catalyzed redox reactions in catalysis. Application to the combination with enzyme catalysis2009In: Abstract of 42nd Jahrestreffen Deutscher Katalytiker, March 11-13, 2009, Weimar, Germany, 2009Conference paper (Other academic)
  • 12.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Preface2010In: Topics in catalysis, ISSN 1022-5528, E-ISSN 1572-9028, Vol. 53, no 13-14, p. 831-831Article in journal (Refereed)
  • 13.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Recent advances in the combination of metal and enzyme catalysis2009In: Abstract of the 10th Netherlands Catalysis and Chemistry Conference (NCCC-X), March 2-4, 2009, Noordwijkerhout, the Netherlands, 2009Conference paper (Other academic)
  • 14.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Selective oxidation of amines and sulfides2010In: Modern Oxidation Methods / [ed] Jan-Erling Bäckvall, Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA , 2010, 2, p. 277-313Chapter in book (Other academic)
  • 15. Carballeira, José Daniel
    et al.
    Krumlinde, Patrik
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bocola, Marco
    Vogel, Andreas
    Reetz, Manfred T.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Directed evolution and axial chirality: optimization of the enantioselectivity of Pseudomonas aeruginosa lipase towards the kinetic resolution of a racemic allene2007In: Chemical Communications, ISSN 1359-7345, Vol. 20, p. 1913-1915Article in journal (Refereed)
  • 16.
    Deska, Jan
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Enzymatic kinetic resolution of primary allenic alcohols. Application to the total synthesis and stereochemical assignment of striatisporolide A2009In: Organic and biomolecular chemistry, ISSN 1477-0520, E-ISSN 1477-0539, Vol. 7, no 17, p. 3379-3381Article in journal (Refereed)
  • 17.
    Deska, Jan
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    del Pozo Ochoa, Carolina
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Chemoenzymatic dynamic kinetic resolution of axially chiral allenes2010In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 16, no 15, p. 4447-4451Article in journal (Refereed)
    Abstract [en]

    Dimeric palladium bromide complexes bearing monodentate N-heterocyclic carbene ligands have been identified as efficient catalysts for the chemoselective racemization of axially chiral allenyl alcohols. In combination with porcine pancreatic lipase as biocatalyst, a dynamic kinetic resolution has been developed, giving access to optically active allenes in good yield and high enantiomeric purity (

  • 18.
    Engelmark Cassimjee, Karim
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kadow, Maria
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Wikmark, Ylva
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Svedendahl Humble, Maria
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Rothstein, M. L.
    Rothstein, D. M.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    A general protein purification and immobilization method on controlled porosity glass: biocatalytic applications2014In: Chemical Communications, ISSN 1359-7345, E-ISSN 1364-548X, Vol. 50, no 65, p. 9134-9137Article in journal (Refereed)
    Abstract [en]

    A general combined purification and immobilization method to facilitate biocatalytic process development is presented. The support material, EziG (TM), is based on controlled porosity glass (CPG) or polymer-coated versions thereof (HybCPG) and binds protein affinity tags. Biocatalytic reactions in aqueous and organic media with seven enzymes of biocatalytic interest are shown.

  • 19.
    Engström, Karin
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Nyhlén, Jonas
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Sandström, Anders G.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Directed evolution of an enantioselective lipase with broad substrate scope for hydrolysis of α-substituted esters2010In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 132, no 20, p. 7038-7042Article in journal (Refereed)
    Abstract [en]

    A variant of Candida antarctica lipase A (CalA) was developed for the hydrolysis of α-substituted p-nitrophenyl esters by directed evolution. The E values of this variant for 7 different esters was 45−276, which is a large improvement compared to 2−20 for the wild type. The broad substrate scope of this enzyme variant is of synthetic use, and hydrolysis of the tested substrates proceeded with an enantiomeric excess between 95−99%. A 30-fold increase in activity was also observed for most substrates. The developed enzyme variant shows (R)-selectivity, which is reversed compared to the wild type that is (S)-selective for most substrates.

  • 20.
    Engström, Karin
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Nyhlén, Jonas
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Sandström, Anders G.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Enantioselective Kinetic Resolution of p-Nitrophenyl 2-Phenylpropanoate by a Variant of Candida antarctica Lipase A Developed by Directed Evolution2010In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 132, no 20, p. 7038-7042Article in journal (Refereed)
    Abstract [en]

    A variant of Candida antarctica lipase A (CalA) was developed for the hydrolysis of α-substituted p-nitrophenyl esters by directed evolution. The E values of this variant for 7 different esters was 45−276, which is a large improvement compared to 2−20 for the wild type. The broad substrate scope of this enzyme variant is of synthetic use, and hydrolysis of the tested substrates proceeded with an enantiomeric excess between 95−99%. A 30-fold increase in activity was also observed for most substrates. The developed enzyme variant shows (R)-selectivity, which is reversed compared to the wild type that is (S)-selective for most substrates.

  • 21.
    Ericsson, Daniel J.
    et al.
    1Department of Cell and Molecular Biology, Uppsala University, Biomedical Center.
    Kasrayan, Alex
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Johansson, Patrik
    1Department of Cell and Molecular Biology, Uppsala University, Biomedical Center.
    Bergfors, Terese
    1Department of Cell and Molecular Biology, Uppsala University, Biomedical Center.
    Sandström, Anders G.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Mowbray, Sherry L.
    Department of Molecular Biology, Swedish University of Agricultural Sciences, Biomedical Center.
    X-Ray structure of Candida antarctica lipase A shows a novel lid structure and a likely mode of interfacial activation2008In: Journal of Molecular Biology, ISSN 0022-2836, Vol. 376, no 1, p. 109-119Article in journal (Refereed)
    Abstract [en]

    In nature, lipases (EC 3.1.1.3) catalyze the hydrolysis of triglycerides to form glycerol and fatty acids. Under the appropriate conditions, the reaction is reversible, and so biotechnological applications commonly make use of their capacity for esterification as well as for hydrolysis of a wide variety of compounds. In the present paper, we report the X-ray structure of lipase A from Candida antarctica, solved by single isomorphous replacement with anomalous scattering, and refined to 2.2-Å resolution. The structure is the first from a novel family of lipases. Contrary to previous predictions, the fold includes a well-defined lid as well as a classic α/β hydrolase domain. The catalytic triad is identified as Ser184, Asp334 and His366, which follow the sequential order considered to be characteristic of lipases; the serine lies within a typical nucleophilic elbow. Computer docking studies, as well as comparisons to related structures, place the carboxylate group of a fatty acid product near the serine nucleophile, with the long lipid tail closely following the path through the lid that is marked by a fortuitously bound molecule of polyethylene glycol. For an ester substrate to bind in an equivalent fashion, loop movements near Phe431 will be required, suggesting the primary focus of the conformational changes required for interfacial activation. Such movements will provide virtually unlimited access to solvent for the alcohol moiety of an ester substrate. The structure thus provides a basis for understanding the enzyme's preference for acyl moieties with long, straight tails, and for its highly promiscuous acceptance of widely different alcohol and amine moieties. An unconventional oxyanion hole is observed in the present structure, although the situation may change during interfacial activation

  • 22. Eriksson, Kristofer L. E.
    et al.
    Chow, Winnie W. Y.
    Puglia, Carla
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Göthelid, Emmanuelle
    Oscarsson, Sven
    Performance of a biomimetic oxidation catalyst immobilized on silicon wafers: comparison with its gold congener2010In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 26, no 21, p. 16349-16354Article in journal (Refereed)
    Abstract [en]

    With the aim of extending the usefulness of an existing biomimetic catalytic system, cobalt porphyrin catalytic units with thiol linkers were heterogenized via chemical grafting to silicon wafers and utilized for the catalytic oxidation of hydroquinone to p-benzoquinone. Atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) were used to analyze the morphology and composition of the heterogeneous catalyst. The results of the catalytic oxidation of hydroquinone obtained with porphyrins grafted on silicon were compared with those obtained earlier with the same catalyst in homogeneous phase and immobilized on gold. It was found that the catalysis could run over 400 h, without showing any sign of deactivation. The measured catalytic activity is at least 10 times higher than that measured under homogeneous conditions, but also 10 times lower than that observed with the catalytic unit immobilized on gold. The reasons of this discrepancy are discussed in term of substrate influence and overlayer organization. The silicon-immobilized catalyst has potential as an advanced functional material with applications in oxidative heterogeneous catalysis of organic reactions, as it combines long-term relatively high activity with low cost.

  • 23.
    Fransson, Ann-Britt L.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Borén, Linnéa
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Pàmies, Oscar
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kinetic Resolution and Chemoenzymatic Dynamic Kinetic Resolution of Functionalized γ-Hydroxy Amides2005In: Journal of Organic Chemistry, ISSN 0022-3263, E-ISSN 1520-6904, Vol. 70, no 7, p. 2582-2587Article in journal (Refereed)
    Abstract [en]

    An efficient kinetic resolution of racemic gamma-hydroxy amides 1 was performed via Pseudomas cepacia lipase (PS-C)-catalyzed transesterification. The enzyme PS-C tolerates both variation in the chain length and different functionalities giving good to high enantioselectivity (E values of up to > 250). The combination of enzymatic kinetic resolution with a ruthenium-catalyzed racemization led to a dynamic kinetic resolution. The use of 2,4-dimethyl-3-pentanol as a hydrogen source to suppress ketone formation in the dynamic kinetic resolution yields the corresponding acetates in good yield and good to high enantioselectivity (ee's up to 98%). The synthetic utility of this procedure was illustrated by the practical synthesis of the versatile intermediate gamma-lactone (R)-5-methyltetrahydrofuran-2-one.

  • 24.
    Fransson, Ann-Britt L.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Xu, Yongmei
    Leijondahl, Karin
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Enzymatic Resolution, Desymmetrization and Dynamic Kinetic Asym-metric Transformation of 1,3-Cycloalkanediols2006In: Journal of Organic Chemistry, ISSN 0022-3263, E-ISSN 1520-6904, Vol. 71, no 17, p. 6309-6316Article in journal (Refereed)
    Abstract [en]

    An efficient desymmetrization of cis-1,3-cyclohexanediol to (1S,3R)-3-(acetoxy)-1-cyclohexanol ((R,S)-2a) was performed via Candida antarctica lipase B (CALB)-catalyzed transesterification, in high yield (up to 93%) and excellent enantioselectivity (ee's up to >99.5%). (R,R)-Diacetate ((R,R)-3a) was obtained in a DYKAT process at room temperature from (1S,3R)-3-acetoxy-1-cyclohexanol ((R,S)-2a), in a high trans/cis ratio (91:9) and in excellent enantioselectivity of >99%. Metal- and enzyme-catalyzed dynamic transformation of cis/trans-1,3-cyclohexanediol using PS-C gave a high diastereoselectivity for cis-diacetate (cis/trans = 97:3). The (1R,3S)-3-acetoxy-1-cyclohexanol (ent-(R,S)-2a) was obtained from cis-diacetate by CALB-catalyzed hydrolysis in an excellent yield (97%) and selectivity (>99% ee). By deuterium labeling it was shown that intramolecular acyl migration does not occur in the transformation of cis-monoacetate to the cis-diacetate.

  • 25.
    Gigant, Nicolas
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Access to Cinnamyl Derivatives from Arenes and Allyl Esters by a Biomimetic Aerobic Oxidative Dehydrogenative Coupling2014In: Organic Letters, ISSN 1523-7060, E-ISSN 1523-7052, Vol. 16, no 6, p. 1664-1667Article in journal (Refereed)
    Abstract [en]

    An efficient biomimetic aerobic oxidative dehydrogenative alkenylation of arenes with allyl esters is presented. The reaction proceeds under an ambient pressure of oxygen with relatively low catalyst loading of palladium acetate, employing catalytic amounts of electron-transfer mediators (ETMs). This study represents a new environmentally friendly method for the synthesis of cinnamyl derivatives.

  • 26.
    Gigant, Nicolas
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Aerobic Direct C-H Arylation of Nonbiased Olefins2014In: Organic Letters, ISSN 1523-7060, E-ISSN 1523-7052, Vol. 16, no 17, p. 4432-4435Article in journal (Refereed)
    Abstract [en]

    An efficient ligand-promoted biomimetic aerobic oxidative dehydrogenative cross-coupling between arenes and nonbiased olefins is presented. Acridine as a ligand was found to significantly enhance the rate, the yield, and the scope of the reaction under ambient oxygen pressure, providing a variety of alkenylarenes via an environmentally friendly procedure.

  • 27.
    Gigant, Nicolas
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Aerobic Double Dehydrogenative Cross Coupling between Cyclic Saturated Ketones and Simple Arenes2014In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 20, no 20, p. 5890-5894Article in journal (Refereed)
    Abstract [en]

    The synthesis of 3-aryl-2-cyclohexenones is a topic of current interest as they are not only privileged structures in bioactive molecules, but they are also relevant feedstocks for the synthesis of substituted phenols or anilines, which are ubiquitous structural elements both in drug design and medicinal chemistry. A simple and sustainable one-pot aerobic double dehydrogenative reaction under mild conditions for the introduction of arenes in the -position of cyclic ketones has been developed. Starting from the corresponding saturated ketone, this reaction sequence proceeds under relatively low Pd catalyst loading and involves catalytic amounts of electron-transfer mediators (ETMs) under ambient oxygen pressure.

  • 28.
    Gustafson, Karl P. J.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Guðmundsson, Arnar
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bajnóczi, Éva
    Ning, Yuan
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Persson, Ingmar
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    In-Situ Structure Determination of a Ruthenium Racemization Catalyst and its Activated Intermediates using X-ray Absorption SpectroscopyManuscript (preprint) (Other academic)
  • 29.
    Gustafson, Karl P. J.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Görbe, Tamás
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    de Gonzalo Calvo, Gonzalo
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Yuan, Ning
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Schreiber, Cynthia
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Shchukarev, Andrey
    Tai, Cheuk-Wai
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Persson, Ingmar
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Application and further structure elucidation of Pd(0)-CalB CLEA biohybrid catalyst- Chemoenzymatic dynamic kinetic resolution of primary benzylic aminesManuscript (preprint) (Other academic)
  • 30.
    Gustafson, Karl P. J.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Lihammar, Richard
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Verho, Oscar
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Engström, Karin
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Chemoenzymatic Dynamic Kinetic Resolution of Primary Amines Using a Recyclable Palladium Nanoparticle Catalyst Together with Lipases2014In: Journal of Organic Chemistry, ISSN 0022-3263, E-ISSN 1520-6904, Vol. 79, no 9, p. 3747-3751Article in journal (Refereed)
    Abstract [en]

    A catalyst consisting of palladium nanoparticles supported on amino-functionalized siliceous mesocellular foam (Pd-AmP-MCF) was used in chemoenzymatic dynamic kinetic resolution (DKR) to convert primary amines to amides in high yields and excellent ee's. The efficiency of the nanocatalyst at temperatures below 70 degrees C enables reaction conditions that are more suitable for enzymes. In the present study, this is exemplified by subjecting 1-phenylethylamine (1a) and analogous benzylic amines to DKR reactions using two commercially available lipases, Novozyme-435 (Candida antartica Lipase B) and Amano Lipase PS-C1 (lipase from Burkholderia cepacia) as biocatalysts. The latter enzyme has not previously been used in the DKR of amines because of its low stability at temperatures over 60 degrees C. The viability of the heterogeneous Pd-AmP-MCF was further demonstrated in a recycling study, which shows that the catalyst can be reused up to five times.

  • 31.
    Gustafson, Karl P. J.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Shatskiy, Andrey
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Verho, Oscar
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kärkäs, Markus D.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Schluschass, Bastian
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Tai, Cheuk-Wai
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Johnston, Eric V.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Water oxidation mediated by ruthenium oxide nanoparticles supported on siliceous mesocellular foam2017In: Catalysis Science & Technology, ISSN 2044-4753, E-ISSN 2044-4761, Vol. 7, no 1, p. 293-299Article in journal (Refereed)
    Abstract [en]

    Artificial photosynthesis is an attractive strategy for converting solar energy into fuel. In this context, development of catalysts for oxidation of water to molecular oxygen remains a critical bottleneck. Herein, we describe the preparation of a well-defined nanostructured RuO2 catalyst, which is able to carry out the oxidation of water both chemically and photochemically. The developed heterogeneous RuO2 nanocatalyst was found to be highly active, exceeding the performance of most known heterogeneous water oxidation catalysts when driven by chemical or photogenerated oxidants.

  • 32.
    Guðmundsson, Arnar
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Gustafson, Karl P. J.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Khanh Mai, Binh
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Hobiger, Viola
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Yang, Bin
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Iron Catalyzed Cyclization of N-protected a-Allenic Amines to 2,3-dihydropyrrolesManuscript (preprint) (Other academic)
  • 33.
    Görbe, Tamás
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Löfgren, Johanna
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Oschmann, Michael
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    S. Humble, Maria
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Transesterification of tert-Alcohols by Engineered Candida antarctica Lipase AManuscript (preprint) (Other academic)
  • 34.
    Horváth, Attila
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Mild and Efficient Palladium(II)-Catalyzed Racemization of Allenes2004In: Chemical Communications, ISSN 1359-7345, E-ISSN 1364-548X, no 8, p. 964-965Article in journal (Refereed)
    Abstract [en]

    Allenes undergo racemization in the presence of catalytic amounts of Pd(OAc)2/LiBr under mild conditions; the reaction proceeds via a bromopalladation–debromopalladation sequence and tolerates various functional groups.

     

  • 35.
    Horváth, Attila
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Benner, Jessica
    Simple, Enantiocontrolled Synthesis of 3-Pyrrolines from α-Amino Allenes2004In: European Journal of Organic Chemistry, ISSN 1434-193X, E-ISSN 1099-0690, Vol. 2004, no 15, p. 3240-3243Article in journal (Refereed)
    Abstract [en]

    Cyclization of -amino allenes in the presence of N-bromosuccinimide afforded pyrrolines in good yields. The products were obtained with high enantiomeric excesses when optically active allenes were used as substrates. The synthesis of a 2,5-dehydroprolinol derivative is also presented.

  • 36.
    Johnston, Eric V
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bogár, Krisztián
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Enantioselective synthesis of (R)-bufuralol via dynamic kinetic resolution in the key step2010In: Journal of Organic Chemistry, ISSN 0022-3263, E-ISSN 1520-6904, Vol. 75, no 13, p. 4596-4599Article in journal (Refereed)
    Abstract [en]

    An enantioselective synthesis of (R)-bufuralol via a ruthenium- and enzyme-catalyzed dynamic kinetic resolution (DKR) has been achieved. The synthesis starts from readily available 2-ethylphenol and provides (R)-bufuralol in high ee and a good overall yield of 31%.

  • 37.
    Johnston, Eric V.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Oxidation of carbonyl compounds2010In: Modern Oxidation Methods / [ed] Jan-Erling Bäckvall, Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA , 2010, 2, p. 353-369Chapter in book (Other academic)
  • 38.
    Kadow, Maria
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry. Ernst Moritz Arndt Universitat Greifswald, Germany.
    Balke, Kathleen
    Willetts, Andrew
    Bornscheuer, Uwe T.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Functional assembly of camphor converting two-component Baeyer-Villiger monooxygenases with a flavin reductase from E-coli2014In: Applied Microbiology and Biotechnology, ISSN 0175-7598, E-ISSN 1432-0614, Vol. 98, no 9, p. 3975-3986Article in journal (Refereed)
    Abstract [en]

    The major limitation in the synthetic application of two-component Baeyer-Villiger monooxygenases was addressed by identifying the 28-kDa flavin-reductase Fre from Escherichia coli as a suitable supplier of reduced FMN for these enzymes. Coexpression of Fre with either 2,5- or 3,6-diketocamphane monooxygenase from Pseudomonas putida NCIMB 10007 significantly enhanced the conversion of camphor and norcamphor serving as representative ketones. With purified enzymes, full conversion was achieved, while only slight amounts of product were formed in the absence of this flavin reductase. Fusion of the genes of Fre and DKCMOs into single open reading frame constructs resulted in unstable proteins exhibiting flavin reducing, but poor oxygenating activity, which led to overall decreased conversion of camphor.

  • 39.
    Krumlinde, Patrik
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bogár, Krisztián
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Asymmetric synthesis of bicyclic diol derivatives through metal and enzyme catalysis: Application to the formal synthesis of sertraline2010In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 16, no 13, p. 4031-4036Article in journal (Refereed)
    Abstract [en]

    Enzyme- and ruthenium-catalyzed dynamic kinetic asymmetric transformation (DYKAT) of bicyclic diols to their diacetates was highly enantio- and diastereoselective to give the corresponding diacetates in high yield with high enantioselectivity (99.9 % ee). The enantiomerically pure diols are accessible by simple hydrolysis (NaOH, MeOH), but an alternative enzyme-catalyzed ester cleavage was also used to give the trans-diol (R,R)-1 b in extremely high diastereomeric purity (trans/cis=99.9:0.1, >99.9 % ee). It was demonstrated that the diols can be selectively oxidized to the ketoalcohols in a ruthenium-catalyzed Oppenauer-type reaction. A formal enantioselective synthesis of sertraline from a simple racemic cis/trans diol 1 b was demonstrated.

  • 40.
    Krumlinde, Patrik
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bogár, Krisztián
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Synthesis of a neonicotinoide pesticide derivative via chemoenzymatic dynamic kinetic resolution2009In: Journal of Organic Chemistry, ISSN 0022-3263, E-ISSN 1520-6904, Vol. 74, no 19, p. 7407-7410Article in journal (Refereed)
  • 41.
    Leijondahl, Karin
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Borén, Linnéa
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Braun, Roland
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Enantiopure 1,5-diols from dynamic kinetic asymmetric transformation: Useful synthetic intermediates for the preparation of chiral heterocycles2008Conference paper (Other academic)
  • 42.
    Leijondahl, Karin
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Borén, Linnéa
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Braun, Roland
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Enantiopure 1,5-diols from dynamic kinetic asymmetric transformation: Useful synthetic intermediates for the preparation of heterocycles2008In: Organic Letters, ISSN 1523-7060, E-ISSN 1523-7052, Vol. 10, no 10, p. 2027-2030Article in journal (Refereed)
    Abstract [en]

    Dynamic kinetic asymmetric transformation (DYKAT) of a series of 1,5-diols has been performed in the presence of Candida antarctica lipase B (CALB), Pseudomonas cepacia lipase H (PS-C II), and ruthenium catalyst 4. The resulting optically pure 1,5-diacetates are useful synthetic intermediates, which was demonstrated by the syntheses of both an enantiopure 2,6-disubstituted piperidine and an enantiopure 3,5-disubstituted morpholine.

  • 43.
    Lihammar, Richard
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Rönnols, Jerk
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Epimerization of Glycal Derivatives by a Cyclopentadienylruthenium Catalyst: Application to Metalloenzymatic DYKAT2014In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 20, no 45, p. 14756-14762Article in journal (Refereed)
    Abstract [en]

    Epimerization of a non-anomeric stereogenic center in carbohydrates is an important transformation in the synthesis of natural products. In this study an epimerization procedure of the allylic alcohols of glycals by cyclopentadienylruthenium catalyst 1 is presented. The epimerization of 4,6-O-benzylidene-D-glucal 4 in toluene is rapid, and an equlibrium with its D-allal epimer 5 is established within 5min at room temperature. Exchange rates for allal and glucal formation were determined by 1D H-1 EXSY NMR experiments to be 0.055s(-1) and 0.075s(-1), respectively. For 4-O-benzyl-L-rhamnal 8 the epimerization was less rapid and four days of epimerization was required to achieve equilibration of the epimers at room temperature. The epimerization methodology was subsequently combined with acylating enzymes in a dynamic kinetic asymmetric transformation (DYKAT), giving stereoselective acylation to the desired stereoisomers 12, 13, and 15. The net effect of this process is an inversion of a stereogenic center on the glycal, and yields ranging from 71% to 83% of the epimer were obtained.

  • 44.
    Malmgren, Joel
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Nagendiran, Anuja
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Tai, Cheuk-Wai
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Olofsson, Berit
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    C-2 Selective Arylation of Indoles with Heterogeneous Nanopalladium and Diaryliodonium Salts2014In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 20, no 42, p. 13531-13535Article in journal (Refereed)
    Abstract [en]

    A simple and efficient method to prepare synthetically useful 2-arylindoles is presented, using a heterogeneous Pd catalyst and diaryliodonium salts in water under mild conditions. A remarkably low leaching of metal catalyst was observed under the applied conditions. The developed protocol is highly C-2 selective and tolerates structural variations both in the indole and in the diaryliodonium salt. Arylations of both NH indoles and N-protected indoles with ortho-substituted, electron-rich, electron-deficient, or halogenated diaryliodonium salts were achieved to give the desired products in high to excellent isolated yields within 6 to 15 h at room temperature or 40 °C.

  • 45.
    Nagendiran, Anuja
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Verho, Oscar
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Haller, Clemence
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Johnston, Eric V.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Cycloisomerization of Acetylenic Acids to gamma-Alkylidene Lactones using a Palladium(II) Catalyst Supported on Amino-Functionalized Siliceous Mesocellular Foam2014In: Journal of Organic Chemistry, ISSN 0022-3263, E-ISSN 1520-6904, Vol. 79, no 3, p. 1399-1405Article in journal (Refereed)
    Abstract [en]

    Cycloisomerization of various gamma-acetylenic acids to their corresponding gamma-alkylidene lactones by the use of a heterogeneous Pd(II) catalyst supported on amino-functionalized siliceous mesocellular foam is described. Substrates containing terminal as well as internal alkynes were cyclized in high to excellent yields within 2-24 h under mild reaction conditions. The protocol exhibited high regio- and stereoselectivity, favoring the exo-dig product with high Z selectivity. Moreover, the catalyst displayed excellent stability under the employed reaction conditions, as demonstrated by its good recyclability and low leaching.

  • 46.
    Norinder, Jakob
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bogár, Krisztián
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kanupp, Lisa
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    An enantioselective route to alpha-methyl carboxylic acids via metal and enzyme catalysis2007In: Organic Letters, ISSN 1523-7060, E-ISSN 1523-7052, Vol. 9, no 24, p. 5095-5098Article in journal (Refereed)
    Abstract [en]

    Dynamic kinetic resolution of allylic alcohols to allylic acetates followed by copper-catalyzed allylic substitution gave alkenes in high yields and high optical purity. Subsequent oxidative C-C double bond cleavage afforded pharmaceutically important alpha-methyl substituted carboxylic acids in high ee.

  • 47.
    Nyhlén, Jonas
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Privalov, Timofei
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Racemization of alcohols catalyzed by [RuCl(CO)25-pentaphenylcyclopentadienyl)] – Mechanistic insights from theoretical modeling2009In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 15, no 21, p. 5220-5229Article in journal (Refereed)
    Abstract [en]

    Two possible pathways of inner-sphere racemization of sec-alcohols by using the [RuCl(CO)(2)(eta(5)-pentaphenylcyclopentadienyl)] catalyst (1) have been thoroughly investigated by means of density function calculations. To be able to racemize alcohols, catalyst 1 needs to have a free coordination site on the metal. This can be achieved either by a eta(5)-->eta(3) ring slippage or by dissociation of a carbon monoxide (CO) ligand. The eta(5)-->eta(3) ring-slip pathway was found to have a high potential energy barrier, 42 kcal mol(-1), which can be explained by steric congestion in the transition state. On the other hand, CO dissociation to give a 16-electron complex has a barrier of only 22.6 kcal mol(-1). We have computationally discovered a mechanism involving CO participation that does not require eta(5)-->eta(3) ring slippage. The key features of this mechanism are 1) CO-assisted exchange of chloride for alkoxide, 2) alcohol-alkoxide exchange, and 3) generation of an active 16-electron complex through CO dissociation with subsequent beta-hydride elimination as the racemization step. We have found a low-energy pathway for reaction of 1 with potassium tert-butoxide and a pathway for fast alkoxide exchange with interaction between the incoming/leaving alcohol and one of the two CO ligands. We predict that dissociation of a Ru-bound CO ligand does not occur in these exchange reactions. Dissociation of one of the two Ru-bound CO ligands has been found necessary only at a later stage of the reaction. Though this barrier is still quite high, our results indicate that it is not necessary to cross the CO dissociation barrier for the racemization of each new alcohol. Thus, the dissociation of a CO ligand is interpreted as a rate-limiting reaction step in order to create a catalytically active 16-electron complex.

  • 48.
    Olofsson, Berit
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bogár, Krisztián
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Fransson, Ann-Britt L
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Divergent asymmetric synthesis of 3,5-disubstituted piperidines.2006In: Journal of Organic Chemistry, ISSN 0022-3263, E-ISSN 1520-6904, Vol. 71, no 21, p. 8256-60Article in journal (Refereed)
    Abstract [en]

    A divergent synthesis of various 3,5-dioxygenated piperidines with interesting pharmacological properties is described. A mixture of the achiral cis- and racemic trans-3,5-piperidine diol could be efficiently obtained from N-benzylglycinate in five steps by the use of chemoenzymatic methods. In the subsequent enzyme- and Ru-catalyzed reaction, the rac/meso diol mixture was efficiently transformed to the cis-(3R,5S)-diacetate with excellent diastereoselectivity and in high yield. Further transformations of the cis-diacetate selectively delivered the cis-piperidine diol and the cis-(3R,5S)-hydroxy acetate. Alternatively, the DYKAT could be stopped at the monoacetate stage to give the trans-(3R,5R)-hydroxy acetate.

  • 49. Samec, Joseph S. M.
    et al.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    1-Hydroxytetraphenylcyclopentadienyl-(tetraphenyl-2,4-cyclopentadien-1-one)-μ-hydrotetracarbonyldiruthenium(II)2009In: Encyclopedia of Reagents for Organic Synthesis, John Wiley & Sons, Ltd. , 2009, 2, p. 5557-5564Chapter in book (Other academic)
  • 50.
    Samec, Joseph S. M.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Éll, Alida H.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åberg, Jenny B.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Privalov, Timofei
    Kungliga Tekniska Högskolan.
    Eriksson, Lars
    Stockholm University, Faculty of Science, Department of Physical, Inorganic and Structural Chemistry, Department of Structural Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Mechanistic Study of Hydrogen Transfer to Imines from a Hydroxycyclopentadienyl Ruthenium Hydride. Experimental Support for a Mechanism Involving Coordination of Imine to Ruthenium Prior to Hydrogen Transfer2006In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 128, no 44, p. 14293-14305Article in journal (Refereed)
    Abstract [en]

    Reaction of [2,3,4,5-Ph4(η5-C4COH)Ru(CO)2H] (2) with different imines afforded ruthenium amine complexes at low temperatures. At higher temperatures in the presence of 2, the complexes decomposed to give [Ru2(CO)4(μ-H)(C4Ph4COHOCC4Ph4)] (1) and free amine. Electron-rich imines gave ruthenium amine complexes with 2 at a lower temperature than did electron-deficient imines. The negligible deuterium isotope effect (kRuHOH/kRuDOD = 1.05) observed in the reaction of 2 with N-phenyl[1-(4-methoxyphenyl)ethylidene]amine (12) shows that neither hydride (RuH) nor proton (OH) is transferred to the imine in the rate-determining step. In the dehydrogenation of N-phenyl-1-phenylethylamine (4) to the corresponding imine 8 by [2,3,4,5-Ph4(η4-C4CO)Ru(CO)2] (A), the kinetic isotope effects observed support a stepwise hydrogen transfer where the isotope effect for C−H cleavage (kCHNH/kCDNH = 3.24) is equal to the combined (C−H, N−H) isotope effect (kCHNH/kCDND = 3.26). Hydrogenation of N-methyl(1-phenylethylidene)amine (14) by 2 in the presence of the external amine trap N-methyl-1-(4-methoxyphenyl)ethylamine (16) afforded 90−100% of complex [2,3,4,5-Ph4(η4-C4CO)]Ru(CO)2NH(CH3)(CHPhCH3) (15), which is the complex between ruthenium and the amine newly generated from the imine. At −80 °C the reaction of hydride 2 with 4-BnNH-C6H9=NPh (18), with an internal amine trap, only afforded [2,3,4,5-Ph44-C4CO)](CO)2RuNH(Ph)(C6H10-4-NHBn) (19), where the ruthenium binds to the amine originating from the imine, showing that neither complex A nor the diamine is formed. Above −8 °C complex 19 rearranged to the thermodynamically more stable [Ph4(η4-C4CO)](CO)2RuNH(Bn)(C6H10-4-NHPh) (20). These results are consistent with an inner sphere mechanism in which the substrate coordinates to ruthenium prior to hydrogen transfer and are difficult to explain with the outer sphere pathway previously proposed.

12 1 - 50 of 73
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf