Change search
Refine search result
1 - 50 of 50
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Ahlford, Katrin
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Ryberg, Per
    Eriksson, Lars
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Adolfsson, Hans
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Nordin, Mikael
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Mechanistic investigation of enantioswitchable catalysts for asymmetric transfer hydrogenation2010In: Abstracts of Papers, 239th ACS National Meeting, San Francisco , CA, United States, March 21-25, 2010, Washington: American Chemical Society , 2010Conference paper (Other academic)
  • 2.
    Alam, Rauful
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Das, Arindam
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Huang, Genping
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Eriksson, Lars
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK), Inorganic and Structural Chemistry.
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Szabó, Kálmán J.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Stereoselective allylboration of imines and indoles under mild conditions. An in situ E/Z isomerization of imines by allylboroxines2014In: Chemical Science, ISSN 2041-6520, E-ISSN 2041-6539, Vol. 5, no 7, p. 2732-2738Article in journal (Refereed)
    Abstract [en]

    Direct allylboration of various acyclic and cyclic aldimine, ketimine and indole substrates was performed using allylboronic acids. The reaction proceeds with very high anti-stereoselectivity for both E and Z imines. The allylboroxines formed by dehydration of allylboronic acids have a dual effect: promoting E/Z isomerization of aldimines and triggering the allylation by efficient electron withdrawal from the imine substrate.

  • 3. Barbion, Julien
    et al.
    Sorin, Geoffroy
    Selkti, Mohamed
    Kellenberger, Esther
    Baati, Rachid
    Santoro, Stefano
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Pancrazi, Ange
    Lannou, Marie-Isabelle
    Ardisson, Janick
    Stereoselective functionalization of pyrrolidinone moiety towards the synthesis of salinosporamide A2012In: Tetrahedron, ISSN 0040-4020, E-ISSN 1464-5416, Vol. 68, no 32, p. 6504-6512Article in journal (Refereed)
    Abstract [en]

    An important feature of the synthesis of salinosporamide A. a potent proteasome inhibitor, is the establishment of the quaternary stereocenter at C3. A new route has been developed based on the methylation of a functionalized pyrrolidinone. Direct methylation reaction led to the unwanted diastereomer: however, by means of a Corey-Chaykovsky reaction followed by LiAlH4 epoxide opening, the desired alcohol was obtained. The pyrrolidinone was elaborated through a key allylation reaction between a tertiary allyltitanium reagent and an aldehyde bearing a spiroketal moiety in alpha-position.

  • 4.
    Blomberg, Margareta R. A.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Borowski, Tomasz
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Liao, Rong-Zhen
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Siegbahn, Per E. M.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Quantum Chemical Studies of Mechanisms for Metalloenzymes2014In: Chemical Reviews, ISSN 0009-2665, E-ISSN 1520-6890, Vol. 114, no 7, p. 3601-3658Article, review/survey (Refereed)
  • 5. Bunrit, Anon
    et al.
    Dahlstrand, Christian
    Olsson, Sandra K.
    Srifa, Pemikar
    Huang, Genping
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Orthaber, Andreas
    Sjöberg, Per J. R.
    Biswas, Srijit
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Samec, Joseph S. M.
    Brønsted Acid-Catalyzed Intramolecular Nucleophilic Substitution of the Hydroxyl Group in Stereogenic Alcohols with Chirality Transfer2015In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 137, no 14, p. 4646-4649Article in journal (Refereed)
    Abstract [en]

    The hydroxyl group of enantioenriched benzyl, propargyl, allyl, and alkyl alcohols has been intramolecularly displaced by uncharged O-, N-, and S-centered nucleophiles to yield enantioenriched tetrahydrofuran, pyrrolidine, and tetrahydrothiophene derivatives with phosphinic acid catalysis. The five-membered heterocyclic products are generated in good to excellent yields, with high degree of chirality transfer, and water as the only side-product. Racemization experiments show that phosphinic acid does not promote S(N)1 reactivity. Density functional theory calculations corroborate a reaction pathway where the phosphinic acid operates as a bifunctional catalyst in the intramolecular substitution reaction. In this mechanism, the acidic proton of the phosphinic acid protonates the hydroxyl group, enhancing the leaving group ability. Simultaneously, the oxo group of phosphinic acid operates as a base abstracting the nucleophilic proton and thus enhancing the nucleophilicity. This reaction will open up new atom efficient techniques that enable alcohols to be used as nucleofuges in substitution reactions in the future.

  • 6.
    Bunrit, Anon
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Srifa, Pemikar
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Dahlstrand, Christian
    Huang, Genping
    Biswas, Srijit
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Watile, Rahul
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Samec, Joseph
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    H3PO2-Catalyzed Intramolecular Stereospecific Substitution of the Hydroxyl Group in Stereogenic Secondary Alcohols by N-, O-, and S-centered Nucleophiles to Generate HeterocyclesManuscript (preprint) (Other academic)
    Abstract [en]

    The direct intramolecular stereospecific substitution of the hydroxyl group in stereogenic secondary alcohols was successfully accomplished by phosphinic acid catalysis. The hydroxyl group was displaced by O-, S-, and N-centered nucleophiles to provide enantioenriched five- and six-membered heterocycles in good to excellent yields and high enantiospecificity with water as the only by product. Mechanistic studies using both experiments and calculations have been performed. Rate order determination shows first-order dependences in catalyst, internal nucleophile, and electrophile concentrations, however, independence on external nucleophile and electrophile. Furthermore, phosphinic acid does not promote SN1 reactivity. Computational studies support a bifunctional role of the phosphinic acid in which activations of both nucleofuge and nucleophile occur in a bridging SN2-type transition state. 

  • 7. Chojnacka, Kinga
    et al.
    Santoro, Stefano
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Awartani, Radi
    Richards, Nigel G. J.
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Aponick, Aaron
    Synthetic studies on the solanacol ABC ring system by cation-initiated cascade cyclization: implications for strigolactone biosynthesis2011In: Organic and biomolecular chemistry, ISSN 1477-0520, E-ISSN 1477-0539, Vol. 9, no 15, p. 5350-5353Article in journal (Refereed)
    Abstract [en]

    We report a new method for constructing the ABC ringsystem of strigolactones, in a single step from a simple linearprecursor by acid-catalyzed double cyclization. The reactionproceeds with a high degree of stereochemical control, whichcan be qualitatively rationalized usingDFT calculations. Ourconcise synthetic approach offers a new model for thinkingabout the (as yet) unknown chemistry that is employed in thebiosynthetic pathways leading to this class of plant hormones.

  • 8. Chowdhury, Sugata
    et al.
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Russo, Nino
    Sicilia, Emilia
    Mechanistic investigation of the hydrogenation of O2 by a transfer hydrogenation catalyst2010In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 132, no 12, p. 4178-4190Article in journal (Refereed)
  • 9. Das, Biswanath
    et al.
    Daver, Henrik
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Pyrkosz-Bulska, Monika
    Persch, Elke
    Barman, Suman K.
    Mukherjee, Rabindranath
    Gumienna-Kontecka, Elzbieta
    Jarenmark, Martin
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Nordlander, Ebbe
    A dinuclear zinc(II) complex of a new unsymmetric ligand with an N(5)0(2) donor set; A structural and functional model for the active site of zinc phosphoesterases2014In: Journal of Inorganic Biochemistry, ISSN 0162-0134, E-ISSN 1873-3344, Vol. 132, p. 6-17Article in journal (Refereed)
    Abstract [en]

    The dinuclear complex [Zn-2(DPCPMP)(pivalate)](C10(4)), where DPCPMP is the new unsymmetrical ligand [2-(N-(3-((bis((pyridin-2-yl)methyl)amino)methyl)-2-hydroxy-5-methylbenzyl)-N-((pyridin2-y1)methyl)amino)acetic acid], has been synthesized and characterized. The complex is a functional model for zinc phosphoesterases with dinuclear active sites. The hydrolytic efficacy of the complex has been investigated using bis-(2,4-dinitrophenyl)phosphate(BDNPP), a DNA analog, as substrate. Speciation studies using potentiometric titrations have been performed for both the ligand and the corresponding dizinc complex to elucidate the formation of the active hydrolysis catalyst; they reveals that the dinuclear zinc(II) complexes, [Zn-2(DPCPMP)](2) and [Zn-2(DPCPMP)(OH)1 predominate the solution above pH 4. The relatively high pKa of 8.38 for water deprotonation suggests that a terminal hydroxide complex is formed. Kinetic investigations of BDNPP hydrolysis over the pH range 5.5-11.0 and with varying metal to ligand ratio (metal salt:ligand = 0.5:1 to 3:1) have been performed. Variable temperature studies gave the activation parameters triangle H double dagger = 95.6 kJ mol(-1), triangle S double dagger = 44.8 J mo1(-1) K-1, and 6,triangle G double dagger = 108.0 kJ mo1-1. The cumulative results indicate the hydroxido-bridged dinuclear Zn(II) complex [Zn-2(DPCPMP)(mu-OH)] (+) as the effective catalyst. The mechanism of hydrolysis has been probed by computational modeling using density functional theory (DFF). Calculations show that the reaction goes through one concerted step (S(N)2 type) in which the bridging hydroxide in the transition state becomes terminal and performs a nucleophilic attack on the BDNPP phosphorus; the leaving group dissociates simultaneously in an overall inner sphere type activation. The calculated free energy barrier is in good agreement with the experimentally determined activation parameters.

  • 10. Das, Biswanath
    et al.
    Daver, Henrik
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Singh, Amrendra
    Singh, Reena
    Haukka, Matti
    Demeshko, Serhiy
    Meyer, Franc
    Lisensky, George
    Jarenmark, Martin
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Nordlander, Ebbe
    A Heterobimetallic FeIIIMnII Complex of an Unsymmetrical Dinucleating Ligand: A Structural and Functional Model Complex for the Active Site of Purple Acid Phosphatase of Sweet Potato2014In: European Journal of Inorganic Chemistry, ISSN 1434-1948, E-ISSN 1099-1948, Vol. 2014, no 13, p. 2204-2212Article in journal (Refereed)
    Abstract [en]

    The heterodinuclear mixed-valence complex [FeMn(ICIMP)(OAc)(2)Cl] (1) {H2ICIMP = 2-(N-carboxylmethyl)-[N-(N-methylimidazolyl-2-methyl)aminomethyl]-[6-(N-isopropylmethyl)-[N-(N-methylimidazolyl-2-methyl)]aminomethyl-4-methylphenol], an unsymmetrical N4O2 donor ligand} has been synthesized and fully characterized by several spectroscopic techniques as well as by X-ray crystallography. The crystal structure of the complex reveals that both metal centers in 1 are six-coordinate with the chloride ion occupying the sixth coordination site of the Mn-II ion. The phenoxide moiety of the ICIMP ligand and both acetate ligands bridge the two metal ions of the complex. Mossbauer spectroscopy shows that the iron ion in 1 is high-spin Fe-III. Two quasi-reversible redox reactions for the complex, attributed to the (FeMnII)-Mn-III/(FeMnII)-Mn-II (at -0.67 V versus Fc/Fc(+)) and (FeMnII)-Mn-III/(FeMnIII)-Mn-III (at 0.84 V), were observed by means of cyclic voltammetry. Complex 1, with an Fe-III-Mn-II distance of 3.58 angstrom, may serve as a model for the mixed-valence oxidation state of purple acid phosphatase from sweet potato. The capability of the complex to effect organophosphate hydrolysis (phosphatase activity) has been investigated at different pH levels (5.5-11) by using bis(2,4-dinitrophenyl)phosphate (BDNPP) as the substrate. Density functional theory calculations indicate that the substrate coordinates to the Mn-II ion. In the transition state, a hydroxide ion that bridges the two metal ions becomes terminally coordinated to the Fe-III ion and acts as a nucleophile, attacking the phosphorus center of BDNPP with the concomitant dissociation of the leaving group.

  • 11.
    Daver, Henrik
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Algarra, Andrés G.
    Rebek, Jr., Julius
    Harvey, Jeremy N.
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Toward Accurate Quantum Chemical Modeling of Water-Soluble Self-Assembled CapsulesManuscript (preprint) (Other academic)
  • 12.
    Daver, Henrik
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Das, Biswanath
    Nordlander, Ebbe
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Theoretical Study of Phosphodiester Hydrolysis and Transesterification Catalyzed by an Unsymmetric Biomimetic Dizinc Complex2016In: Inorganic Chemistry, ISSN 0020-1669, E-ISSN 1520-510X, Vol. 55, no 4, p. 1872-1882Article in journal (Refereed)
    Abstract [en]

    Density functional theory calculations have been used to investigate the reaction mechanisms of phosphodiester hydrolysis and transesterification catalyzed by a dinuclear zinc complex of the 2-(N-isopropyl-N-((2-pyridyl)methyl)-aminomethyl)-6-(N-(carboxylmethyl)-N-((2-pyridyl)methyl)amino-methyl)-4-methylphenol (IPCPMP) ligand, mimicking the active site of zinc phosphotriesterase. The substrates bis(2,4)-dinitrophenyl phosphate (BDNPP) and 2-hydroxypropyl-p-nitrophenyl phosphate (HPNP) were employed as analogues of DNA and RNA, respectively. A number of different mechanistic proposals were considered, with the active catalyst harboring either one or two hydroxide ions. It is concluded that for both reactions the catalyst has only one hydroxide bound, as this option yields lower overall energy barriers. For BDNPP hydrolysis, it is suggested that the hydroxide acts as the nucleophile in the reaction, attacking the phosphorus center of the substrate. For HPNP transesterification, on the other hand, the hydroxide is proposed to act as a Bronsted base, deprotonating the alcohol moiety of the substrate, which in turn performs the nucleophilic attack. The calculated overall barriers are in good agreement with measured rates. Both reactions are found to proceed by essentially concerted associative mechanisms, and it is demonstrated that two consecutive catalytic cycles need to be considered in order to determine the rate-determining free energy barrier.

  • 13.
    Daver, Henrik
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Harvey, Jeremy N.
    Rebek, Jr., Julius
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Quantum Chemical Modeling of Cycloaddition Reaction in a Self-Assembled Capsule2017In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 139, no 43, p. 15494-15503Article in journal (Refereed)
    Abstract [en]

    Dispersion-corrected density functional theory is used to study the cycloaddition reaction between phenyl acetylene and phenyl azide inside a synthetic, self-assembled capsule. The capsule is first characterized computationally and a previously unrecognized structure is identified as being the most stable. Next, an examination of the free energies of host-guest complexes is conducted, considering all possible reagent, solvent and solvent impurity combinations as guests. The experimentally observed relative stabilities of host-guest complexes are quite well reproduced, when the experimental concentrations are taken into account. Experimentally, the presence of the host capsule has been shown to accelerate the cycloaddition reaction and to yield exclusively the 1,4-regioisomer product. Both these observations are reproduced by the calculations. A detailed energy decomposition analysis shows that reduction of the entropic cost of bringing together the reactants along with a geometric destabilization of the reactant supercomplex are the major contributors to the rate acceleration compared to the background reaction. Finally, a sensitivity analysis is conducted to assess the stability of the results with respect to the choice of methodology.

  • 14.
    Engelmark Cassimjee, Karim
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Manta, Bianca
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    A quantum chemical study of the ω-transaminase reaction mechanism2015In: Organic and biomolecular chemistry, ISSN 1477-0520, E-ISSN 1477-0539, Vol. 13, no 31, p. 8453-8464Article in journal (Refereed)
    Abstract [en]

    ω-Transaminases are valuable tools in biocatalysis due to their stereospecificity and their broad substrate range. In the present study, the reaction mechanism of Chromobacterium violaceum ω-transaminase is investigated by means of density functional theory calculations. A large active site model is designed based on the recent X-ray crystal structure. The detailed energy profile for the half-transamination of (S)-1-phenylethylamine to acetophenone is calculated and the involved transition states and intermediates are characterized. The model suggests that the amino substrate forms an external aldimine with the coenzyme pyridoxal-5′-phosphate (PLP), through geminal diamine intermediates. The external aldimine is then deprotonated in the rate-determining step, forming a planar quinonoid intermediate. A ketimine is then formed, after which a hemiaminal is produced by the addition of water. Subsequently, the ketone product is obtained together with pyridoxamine-5′-phosphate (PMP). In the studied half-transamination reaction the ketone product is kinetically favored. The mechanism presented here will be valuable to enhance rational and semi-rational design of engineered enzyme variants in the development of ω-transaminase chemistry.

  • 15.
    Georgieva, Polina
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Quantum chemical modeling of enzymatic reactions: The Case of histone lysine methyltransferase2010In: Journal of Computational Chemistry, ISSN 0192-8651, E-ISSN 1096-987X, Vol. 31, no 8, p. 1707-1714Article in journal (Refereed)
    Abstract [en]

    Quantum chemical cluster models of enzyme active sites are today an important and powerful tool in the study of various aspects of enzymatic reactivity. This methodology has been applied to a wide spectrum of reactions and many important mechanistic problems have been solved. Herein, we report a systematic study of the reaction mechanism of the histone lysine methyltransferase (HKMT) SET7/9 enzyme, which catalyzes the methylation of the N-terminal histone tail of the chromatin structure. In this study, HKMT SET7/9 serves as a representative case to examine the modeling approach for the important class of methyl transfer enzymes. Active site models of different sizes are used to evaluate the methodology. In particular, the dependence of the calculated energies on the model size, the influence of the dielectric medium, and the particular choice of the dielectric constant are discussed. In addition, we examine the validity of some technical aspects, such as geometry optimization in solvent or with a large basis set, and the use of different density functional methods.

  • 16. Georgieva, Polina
    et al.
    Wu, Qian
    McLeish, Michael J.
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    The reaction mechanism of phenylethanolamine N-methyltransferase: A density functional theory study2009In: Biochimica et Biophysica Acta, ISSN 0006-3002, E-ISSN 1878-2434, Vol. 1794, no 12, p. 1831-1837Article in journal (Refereed)
  • 17.
    Goncalves, Sylvie
    et al.
    Universite de Strasbourg, Faculte de Pharmacie UMR/CNRS 7199, Laboratoire des Systemes Chimiques Fonctionnels, Illkirch, France.
    Santoro, Stefano
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Nicolas, Marc
    Les Laboratoires Pierre Fabre, Centre de Developpement Chimique et Industriel, Gaillac, France.
    Wagner, Alain
    Universite de Strasbourg, Faculte de Pharmacie UMR/CNRS 7199, Laboratoire des Systemes Chimiques Fonctionnels, Illkirch, France.
    Maillos, Philippe
    Les Laboratoires Pierre Fabre, Centre de Developpement Chimique et Industriel, Gaillac, France.
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Baati, Rachid
    Universite de Strasbourg, Faculte de Pharmacie UMR/CNRS 7199, Laboratoire des Systemes Chimiques Fonctionnels, Illkirch, France.
    Cationic cyclization of 2-alkenyl-1,3-dithiolanes: DiastereoselectiveSynthesis of trans-decalins2011In: Journal of Organic Chemistry, ISSN 0022-3263, E-ISSN 1520-6904, Vol. 76, no 9, p. 3274-3285Article in journal (Refereed)
    Abstract [en]

    An unprecedented and highly diastereoselective 6-endo-trig cyclization of 2-alkenyl-1,3-dithiolanes has beendeveloped yielding trans-decalins, an important scaffold present in numerous di- and triterpenes. The novelty of this 6-endo-trigc yclization stands in the stepwise mechanism involving 2-alkenyl-1,3-dithiolane, acting as a novel latent initiator. It is suggested that the thioketal opens temporarily under the influence of TMSOTf, triggering the cationic 6-endo-trig cyclization, andcloses after C−C bond formation and diastereoselective protonation to terminate the process. DFT calculations confirm this mechanistic proposal and provide a rationale for the observed diastereoselectivity. The reaction tolerates a wide range of functionalities and nucleophilic partners within the substrate. We have also shown that the one-pot 6-endo-trig cyclization followedby in situ 1,3-dithiolane deprotection afford directly the corresponding ketone. This improvement allowed the achievement of the shortest total synthesis of triptophenolide and the shortest formal synthesis of triptolide.

  • 18.
    Gudmundsson, Arnar
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Gustafson, Karl P. J.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Yang, Bin
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Efficient Formation of 2,3-Dihydrofurans via Iron-Catalyzed Cycloisomerization of alpha-Allenols2018In: ACS Catalysis, ISSN 2155-5435, E-ISSN 2155-5435, Vol. 8, no 1, p. 12-16Article in journal (Refereed)
    Abstract [en]

    Herein, we report a highly efficient iron-catalyzed intramolecular nucleophilic cyclization of alpha-allenols to furnish substituted 2,3-dihydrofurans under mild reaction conditions. A highly diastereoselective variant of the reaction was developed as well, giving diastereomeric ratios of up to 98:2. The combination of the iron-catalyzed cycloisomerization with enzymatic resolution afforded the 2,3-dihydrofuran in high ee. A detailed DFT study provides insight into the reaction mechanism and gives a rationalization for the high chemo-and diastereoselectivity.

  • 19.
    Guðmundsson, Arnar
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Gustafson, Karl P. J.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Khanh Mai, Binh
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Hobiger, Viola
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Yang, Bin
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Iron Catalyzed Cyclization of N-protected a-Allenic Amines to 2,3-dihydropyrrolesManuscript (preprint) (Other academic)
  • 20. Hayashi, Yukiko
    et al.
    Santoro, Stefano
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Azuma, Yuki
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Ohshima, Takashi
    Mashima, Kazushi
    Enzyme-Like Catalysis via Ternary Complex Mechanism: Alkoxy-Bridged Dinuclear Cobalt Complex Mediates Chemoselective O-Esterification over N-Amidation2013In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 135, no 16, p. 6192-6199Article in journal (Refereed)
    Abstract [en]

    Hydroxy group-selective acylation in the presence of more nucleophilic amines was achieved using acetates of first-row late transition metals, such as Mn, Fe, Co, Cu, and Zn. Among them, cobalt(II) acetate was the best catalyst in terms of reactivity and selectivity. The combination of an octanuclear cobalt carboxylate cluster [Co-4(OCOR)(6)O](2) (2a: R = CF3, 2b: R = CH3, 2c: R = Bu-t) with nitrogen-containing ligands, such as 2,2'-bipyridine, provided an efficient catalytic system for transesterification, in which an alkoxide-bridged dinuclear complex, Co-2((OCOBu)-Bu-t)(2)-(bpy)(2)(mu(2)-OCH2-C6H4-4-CH3)(2) (10), was successfully isolated as a key intermediate. Kinetic studies and density functional theory calculations revealed Michaelis-Menten behavior of the complex 10 through an ordered ternary complex mechanism similar to dinuclear metallo-enzymes, suggesting the formation of alkoxides followed by coordination of the ester.

  • 21. Huang, Genping
    et al.
    Diner, Colin
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Szabó, Kálmán J.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Mechanism and Stereoselectivity of the BINOL-Catalyzed Allylboration of Skatoles2017In: Organic Letters, ISSN 1523-7060, E-ISSN 1523-7052, Vol. 19, no 21, p. 5904-5907Article in journal (Refereed)
    Abstract [en]

    Density functional theory calculations have been performed to investigate the binaphthol-catalyzed allylboration of skatoles. The high stereoselectivity observed for the reaction is reproduced well by the calculations and was found to be mainly a result of steric repulsions in the corresponding Zimmerman-Traxler transition states. The role of the additive MeOH in enhancing the stereoselectivity was also investigated and is suggested to promote the formation of less reactive allylboronic ester intermediates, thereby suppressing the formation of allylboroxine species, which undergo the facile racemic background reaction.

  • 22.
    Huang, Genping
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kalek, Marcin
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Liao, Rong-Zhen
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Mechanism, reactivity, and selectivity of the iridium-catalyzed C(sp(3))-H borylation of chlorosilanes2015In: Chemical Science, ISSN 2041-6520, E-ISSN 2041-6539, Vol. 6, no 3, p. 1735-1746Article in journal (Refereed)
    Abstract [en]

    The iridium-catalyzed C(sp(3))-H borylation of methylchlorosilanes is investigated by means of density functional theory, using the B3LYP and M06 functionals. The calculations establish that the resting state of the catalyst is a seven-coordinate Ir(V) species that has to be converted into an Ir(III)tris(boryl) complex in order to effect the oxidative addition of the C-H bond. This is then followed by a C-B reductive elimination to yield the borylated product, and the catalytic cycle is finally completed by the regeneration of the active catalyst over two facile steps. The two employed functionals give somewhat different conclusions concerning the nature of the rate-determining step, and whether reductive elimination occurs directly or after a prior isomerization of the Ir(V) hydride intermediate complex. The calculations reproduce quite well the experimentally-observed trends in the reactivities of substrates with different substituents. It is demonstrated that the reactivity can be correlated to the Ir-C bond dissociation energies of the corresponding Ir(V) hydride intermediates. The effect of the chlorosilyl group is identified to originate from the alpha-carbanion-stabilizing effect of the silicon, which is further reinforced by the presence of an electron-withdrawing chlorine substituent. Furthermore, the source of selectivity for the borylation of primary over secondary C(sp(3))-H can be explained on a steric basis, by repulsion between the alkyl group and the Ir/ligand moiety. Finally, the difference in the reactivity between C(sp(3))-H and C(sp(2))-H borylation is investigated and rationalized in terms of distortion/interaction analysis.

  • 23.
    Ibrahem, Ismail
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Rios, Ramon
    Vesely, Jan
    Hammar, Peter
    Eriksson, Lars
    Himo, Fahmi
    Cordova, Armando
    Enantioselective Organocatalytic Hydrophosphination of α,β- Unsaturated Aldehydes2007In: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 46, p. 4507-Article in journal (Refereed)
  • 24.
    Ibrahem, Ismail
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Rios, Ramón
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Vesely, Jan
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Hammar, Peter
    Eriksson, Lars
    Stockholm University, Faculty of Science, Department of Physical, Inorganic and Structural Chemistry.
    Himo, Fahmi
    Córdova, Armando
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Enantioselective organocatalytic hydrophosphination of alpha,beta-unsaturated aldehydes2007In: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 46, p. 4507-4510Article in journal (Refereed)
  • 25. Ibrahem, Ismail
    et al.
    Santoro, Stefano
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Córdova, Armando
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Enantioselective conjugate silyl additions to α,β-unsaturated aldehydes catalyzed by combination of transition metal and chiral amine catalysts2011In: Advanced Synthesis and Catalysis, ISSN 1615-4150, E-ISSN 1615-4169, Vol. 353, no 2+3, p. 245-252Article in journal (Refereed)
    Abstract [en]

    We report that transition metal-catalyzed nucleophilic activation can be combined with chiral amine-catalyzed iminium activation as exemplified by the unprecedented enantioselective conjugate addition of a dimethylsilanyl group to α,β-unsaturated aldehydes. These reactions proceed with excellent 1,4-selectivity to afford the corresponding β-silyl aldehyde products 3 in high yields and up to 97:3 er using inexpensive bench stable copper salts and simple chiral amine catalysts. The reaction canalso generate a quaternary stereocenter with goodenantioselectivity. Density functional calculations are performed to elucidate the reaction mechanism and the origin of enantioselectivity.

  • 26.
    Kalek, Marcin
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Combining Meyer-Schuster Rearrangement with Aldol and Mannich Reactions: Theoretical Study of the Intermediate Interception Strategy2012In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 134, no 46, p. 19159-19169Article in journal (Refereed)
    Abstract [en]

    Interception of the transient allenyl enolate intermediate of the vanadium-catalyzed Meyer-Schuster rearrangement with aldehydes and imines has been studied computationally using density functional theory. Mechanistic details of the catalytic cycles for each of the reaction variants are established. In particular, it is shown that the active form of I the catalyst contains two triphenylsiloxy ligands, the transesterification of vanadate occurs via sigma-bond metathesis, and vanadium enolate is directly involved in the key C-C bond formation. The calculations also provide support for the dissociative course of the key 1,3-shift step. The stereochemistry of the reaction is thoroughly investigated, and the obtained energy barriers reproduce and rationalize the experimentally observed (Z)-, (E)-selectivity. The calculated free energy profiles are analyzed in terms of efficiency of the intermediate enolate interception. It is shown that the investigated reactions represent borderline cases, in which the intermediate trapping is only slightly favored over the undesired isomerization pathway.

  • 27. Kalek, Marcin
    et al.
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Mechanism and Selectivity of Cooperatively Catalyzed Meyer-Schuster Rearrangement/Tsuji-Trost Allylic Substitution. Evaluation of Synergistic Catalysis by Means of Combined DFT and Kinetics Simulations2017In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 139, no 30, p. 10250-10266Article in journal (Refereed)
    Abstract [en]

    The reaction between propargylic alcohols and allylic carbonates, engaging vanadium and palladium catalysts, is an exemplary case of a cooperatively catalyzed process. This combined Meyer-Schuster rearrangement/Tsuji-Trost allylic substitution clearly illustrates the enormous advantages offered by the simultaneous use of two catalysts, but also the inherent challenges regarding selectivity associated with such a reaction design. These challenges originate from the fact that the desired product of the combined process is formed by a bimolecular coupling of the two substrates activated by the respective catalysts. However, these two processes may also occur in a detached way via the reactions of the catalytic intermediates with the starting propargylic alcohol present in the reaction mixture, leading to the formation of two side-products. Herein, we investigate the overall mechanism of this reaction using density functional theory (DFT) methodology. The mechanistic details of the catalytic cycles for all the individual processes are established. In particular, it is shown that the diphosphine ligand, dppm, used in the reaction promotes the formation of dinuclear palladium complexes, wherein only a single metal center is directly involved in the catalysis. Due to the complexity of the combined reaction network, kinetics simulation techniques are employed in order to analyze the overall selectivity. The simulations directly link the results of the DFT calculations with the experimental data and confirm that the computed free energy profiles indeed reproduce the observed selectivities. In addition, a sensitivity analysis is carried out to assess the importance of the individual steps on the product distribution. The observed behavior of the kinetic network is rationalized, and trends in the reaction outcome upon changing the initial conditions, such as the catalysts amounts and ratio, are discussed. The results provide a general framework for understanding the factors governing the selectivity of the cooperatively catalyzed reactions.

  • 28. Kazemi, Masoud
    et al.
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åqvist, Johan
    Enzyme catalysis by entropy without Circe effect2016In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 113, no 9, p. 2406-2411Article in journal (Refereed)
    Abstract [en]

    Entropic effects have often been invoked to explain the extraordinary catalytic power of enzymes. In particular, the hypothesis that enzymes can use part of the substrate-binding free energy to reduce the entropic penalty associated with the subsequent chemical transformation has been very influential. The enzymatic reaction of cytidine deaminase appears to be a distinct example. Here, substrate binding is associated with a significant entropy loss that closely matches the activation entropy penalty for the uncatalyzed reaction inwater, whereas the activation entropy for the rate-limiting catalytic step in the enzyme is close to zero. Herein, we report extensive computer simulations of the cytidine deaminase reaction and its temperature dependence. The energetics of the catalytic reaction is first evaluated by density functional theory calculations. These results are then used to parametrize an empirical valence bond description of the reaction, which allows efficient sampling by molecular dynamics simulations and computation of Arrhenius plots. The thermodynamic activation parameters calculated by this approach are in excellent agreement with experimental data and indeed show an activation entropy close to zero for the rate-limiting transition state. However, the origin of this effect is a change of reaction mechanism compared the uncatalyzed reaction. The enzyme operates by hydroxide ion attack, which is intrinsically associated with a favorable activation entropy. Hence, this has little to do with utilization of binding free energy to pay the entropic penalty but rather reflects how a preorganized active site can stabilize a reaction path that is not operational in solution.

  • 29.
    Liao, Rong-Zhen
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Theoretical study of the chemoselectivity of tungsten-dependent acetylene hydratase2011In: ACS Catalysis, ISSN 2155-5435, Vol. 1, no 8, p. 937-944Article in journal (Refereed)
    Abstract [en]

    The tungsten-dependent enzyme acetylene hydratase catalyzes the hydration of acetylene to acetaldehyde. Very recently, we proposed a reaction mechanism for this enzyme based on density functional calculations (Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 22523). The mechanism involves direct coordination of the substrate to the tungsten ion, followed by a nucleophilic attack by a water molecule concerted with a proton transfer to a second-shell aspartate, which then reprotonates the substrate. Here, we use the same methodology to investigate the factors involved in the control of the chemoselectivity of this enzyme. The hydration reactions of three representative compounds (propyne, ethylene, and acetonitrile) are investigated using a large model of the active site. The energy of substrate binding to the metal ion and the barrier for the following nucleophilic attack are used to rationalize the experimental observations. It is shown that all three compounds have higher barriers for hydration compared with acetylene. In addition, propyne is shown to have a larger binding energy, explaining its behavior as a competitive inhibitor. Taken together, the results provide further corroboration of our suggested mechanism for acetylene hydratase

  • 30.
    Liao, Rong-Zhen
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Yu, Jian-Guo
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Tungsten-dependent formaldehyde ferredoxin oxidoreductase: Reaction mechanism from quantum chemical calculations2011In: Journal of Inorganic Biochemistry, ISSN 0162-0134, E-ISSN 1873-3344, Vol. 105, no 7, p. 927-936Article in journal (Refereed)
    Abstract [en]

    Formaldehyde ferredoxin oxidoreductase from Pyrococcus furiosus is a tungsten-dependent enzyme thatcatalyzes the oxidation of formaldehyde to formic acid. In the present study, quantum chemical calculationsare used to elucidate the reaction mechanism of this enzyme. Several possible mechanistic scenarios areinvestigated with a large model of the active site designed on the basis of the X-ray crystal structure of thenative enzyme. Based on the calculations, we propose a new mechanism in which the formaldehyde substratebinds directly to the tungsten ion.WVI=O then performs a nucleophilic attack on the formaldehyde carbon toform a tetrahedral intermediate. In the second step, which is calculated to be rate limiting, a proton istransferred to the second-shell Glu308 residue, coupled with a two-electron reduction of the tungsten ion.The calculated barriers for the mechanism are energetically very feasible and in relatively good agreementwith experimental rate constants. Three other second-shell mechanisms, including one previously proposedbased on experimental findings, are considered but ruled out because of their high barriers.

  • 31.
    Lind, Maria E. S.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Quantum Chemical Modeling of Enantioconvergency in Soluble Epoxide HydrolaseManuscript (preprint) (Other academic)
  • 32.
    Lind, Maria E. S.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Quantum Chemistry as a Tool in Asymmetric Biocatalysis: Limonene Epoxide Hydrolase Test Case2013In: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 52, no 17, p. 4563-4567Article in journal (Refereed)
  • 33.
    Lind, Maria E. S.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Theoretical Study of Reaction Mechanism and Stereoselectivity of Arylmalonate Decarboxylase2014In: ACS Catalysis, ISSN 2155-5435, E-ISSN 2155-5435, Vol. 4, no 11, p. 4153-4160Article in journal (Refereed)
    Abstract [en]

    The reaction mechanism of arylmalonate decarboxylase is investigated using density functional theory calculations. This enzyme catalyzes the asymmetric decarboxylation of prochiral disubstituted malonic acids to yield the corresponding enantiopure carboxylic acids. The quantum chemical cluster approach is employed, and two different models of the active site are designed: a small one to study the mechanism and characterize the stationary points and a large one to study the enantioselectivity. The reactions of both α-methyl-α-phenylmalonate and α-methyl-α-vinylmalonate are considered, and different substrate binding modes are assessed. The calculations overall give strong support to the suggested mechanism in which decarboxylation of the substrate first takes place, followed by a stereoselective protonation by a cysteine residue. The enediolate intermediate and the transition states are stabilized by a number of hydrogen bonds that make up the dioxyanion hole, resulting in feasible energy barriers. It is further demonstrated that the enantioselectivity in the case of α-methyl-α-phenylmalonate substrate is dictated already in the substrate binding, because only one binding mode is energetically accessible, whereas in the case of the smaller α-methyl-α-vinylmalonate substrate, both the binding and the following transition states contribute to the enantioselectivity.

  • 34.
    Malmgren, Joel
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Santoro, Stefano
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Jalalian, Nazli
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Olofsson, Berit
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Arylation with Unsymmetrical Diaryliodonium Salts: A Chemoselectivity Study2013In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 19, no 31, p. 10334-10342Article in journal (Refereed)
    Abstract [en]

    Phenols, anilines, and malonates have been arylated under metal-free conditions with twelve aryl(phenyl)iodonium salts in a systematic chemoselectivity study. A new “anti-ortho effect” has been identified in the arylation of malonates. Several “dummy groups” have been found that give complete chemoselectivity in the transfer of the phenyl moiety, irrespective of the nucleophile. An aryl exchange in the diaryliodonium salts has been observed under certain arylation conditions. DFT calculations have been performed to investigate the reaction mechanism and to elucidate the origins of the observed selectivities. These results are expected to facilitate the design of chiral diaryliodonium salts and the development of catalytic arylation reactions that are based on these sustainable and metal-free reagents.

  • 35.
    Manta, Bianca
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Engelmark Cassimjee, Karim
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Quantum Chemical Study of Dual-Substrate Recognition in ω-Transaminase2017In: ACS Omega, E-ISSN 2470-1343, Vol. 2, no 3, p. 890-898Article in journal (Refereed)
    Abstract [en]

    ω-Transaminases are attractive biocatalysts for the production of chiral amines. These enzymes usually have a broad substrate range. Their substrates include hydrophobic amines as well as amino acids, a feature referred to as dual-substrate recognition. In the present study, the reaction mechanism for the half-transamination of L-alanine to pyruvate in (S)-selective Chromobacterium violaceum ω-transaminase is investigated using density functional theory calculations. The role of a flexible arginine residue, Arg416, in the dual-substrate recognition is investigated by employing two active-site models, one including this residue and one lacking it. The results of this study are compared to those of the mechanism of the conversion of (S)-1-phenylethylamine to acetophenone. The calculations suggest that the deaminations of amino acids and hydrophobic amines follow essentially the same mechanism, but the energetics of the reactions differ significantly. It is shown that the amine is kinetically favored in the half-transamination of L-alanine/pyruvate, whereas the ketone is kinetically favored in the half-transamination of (S)-1-phenylethylamine/acetophenone. The calculations further support the proposal that the arginine residue facilitates the dual-substrate recognition by functioning as an arginine switch, where the side chain is positioned inside or outside of the active site depending on the substrate. Arg416 participates in the binding of L-alanine by forming a salt bridge to the carboxylate moiety, whereas the conversion of (S)-1-phenylethylamine is feasible in the absence of Arg416, which here represents the case in which the side chain of Arg416 is positioned outside of the active site.

  • 36.
    Manta, Bianca
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Insights from Quantum Chemical Calculations into Active Site Structure and Reaction Mechanism of Manganese-Dependent Dinitrogenase Reductase-Activating GlycohydrolaseManuscript (preprint) (Other academic)
  • 37.
    Manta, Bianca
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Raushel, Frank M.
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Reaction Mechanism of Zinc-Dependent Cytosine Deaminase from Escherichia coli: A Quantum-Chemical Study2014In: Journal of Physical Chemistry B, ISSN 1520-6106, E-ISSN 1520-5207, Vol. 118, no 21, p. 5644-5652Article in journal (Refereed)
    Abstract [en]

    The reaction mechanism of cytosine deaminase from Escherichia coli is studied using density functional theory. This zinc-dependent enzyme catalyzes the deamination of cytosine to form uracil and ammonia. The calculations give a detailed description of the catalytic mechanism and establish the role of important active-site residues. It is shown that Glu217 is essential for the initial deprotonation of the metal-bound water nucleophile and the subsequent protonation of the substrate. It is also demonstrated that His246 is unlikely to function as a proton shuttle in the nucleophile activation step, as previously proposed. The steps that follow are nucleophilic attack by the metal-bound hydroxide, protonation of the leaving group assisted by Asp313, and C-N bond cleavage. The calculated overall barrier is in good agreement with the experimental findings. Finally, the calculations reproduce the experimentally determined inverse solvent deuterium isotope effect, which further corroborates the suggested reaction mechanism.

  • 38.
    Moa, Sara
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Quantum chemical study of mechanism and stereoselectivity of secondary alcohol dehydrogenase2017In: Journal of Inorganic Biochemistry, ISSN 0162-0134, E-ISSN 1873-3344, Vol. 175, p. 259-266Article in journal (Refereed)
    Abstract [en]

    Secondary alcohol dehydrogenase from Thermoanaerobacter brockii (TbSADH) is a Zn- and NADP-dependent enzyme that catalyses the reversible transformation of secondary alcohols into ketones. It is of potential biocatalytic interest as it can be used in the synthesis of chiral alcohols by asymmetric reduction of ketones. In this paper, density functional theory calculations are employed to elucidate the origins of the enantioselectivity of TbSADH using a large model of the active site and considering two different substrates, 2-butanol and 3-hexanol. For these two substrates the enzyme has experimentally been shown to have the opposite enantioselectivity. The energy profiles for the reactions are calculated and the stationary points along the reaction path are characterised. The calculations first confirm that the general mechanism proposed for other alcohol dehydrogenases is energetically viable. In this mechanism, a proton is first transferred from the substrate to a histidine residue at the surface, followed by a hydride transfer to the NADP cofactor. The calculated overall energy barrier is consistent with the measured rate constant. Very importantly, the calculations are able to reproduce and rationalise the enantioselectivity of the enzyme for both substrates. The detailed characterisation of the energies and geometries of the involved transition states will be valuable in the rational engineering of TbSADH to expand its utility in biocatalysis.

  • 39.
    Nordin, Mikael
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Liao, Rong-Zhen
    Ahlford, Katrin
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Adolfsson, Hans
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Theoretical study of asymmetric transfer hydrogenation of ketones catalyzed by amino acid derived rhodium complexes2012In: ChemCatChem, ISSN 1867-3880, E-ISSN 1867-3899, Vol. 4, no 8, p. 1095-1104Article in journal (Refereed)
    Abstract [en]

    Density functional theory calculations are employed to study the asymmetric transfer hydrogenation of ketones catalyzed by rhodiumarene complexes containing hydroxamic acid-functionalized amino acid ligands. Firstly, the ligandmetal binding is investigated and it is shown that both the N,N and O,O binding modes Are viable. For each of these, the full free energy profile for the transfer hydrogenation is calculated according to the outer-sphere reaction mechanism. Three factors are demonstrated to influence the stereoselectivity of the process, namely the energy difference between the metalligand binding modes, the energy difference between the intermediate hydrogenated catalyst, and the existence of a stabilizing CHp interaction between the Cp* ligand of the catalyst and the phenyl moiety of the substrate. Theoretical reproduction of the selectivity of a slightly modified ligand that is shown experimentally to yield the opposite enantioselectivity corroborates these results. Finally, a technical observation made is that inclusion of dispersion interactions (using the B3LYP-D2 correction or the M06 functional) proved to be very important for reproducing the enantioselectivity.

  • 40. Payer, Stefan E.
    et al.
    Sheng, Xiang
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Pollak, Hannah
    Wuensch, Christiane
    Steinkellner, Georg
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Glueck, Silvia M.
    Faber, Kurt
    Exploring the Catalytic Promiscuity of Phenolic Acid Decarboxylases: Asymmetric, 1,6-Conjugate Addition of Nucleophiles Across 4-Hydroxystyrene2017In: Advanced Synthesis and Catalysis, ISSN 1615-4150, E-ISSN 1615-4169, Vol. 359, no 12, p. 2066-2075Article in journal (Refereed)
    Abstract [en]

    The catalytic promiscuity of a ferulic acid decarboxylase from Enterobacter sp. (FDC_Es) and phenolic acid decarboxylases (PADs) for the asymmetric conjugate addition of water across the C=C bond of hydroxystyrenes was extended to the N-, C-and S-nucleophiles methoxyamine, cyanide and propanethiol to furnish the corresponding addition products in up to 91% ee. The products obtained from the biotransformation employing the most suitable enzyme/nucleophile pairs were isolated and characterized after optimizing the reaction conditions. Finally, a mechanistic rationale supported by quantum mechanical calculations for the highly (S)selective addition of cyanide is proposed.

  • 41.
    Planas, Ferran
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Sheng, Xiang
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    McLeish, Michael J.
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    A Theoretical Study of the Benzoylformate Decarboxylase Reaction Mechanism2018In: Frontiers in Chemistry, E-ISSN 2296-2646, Vol. 6, article id 205Article in journal (Refereed)
    Abstract [en]

    Density functional theory calculations are used to investigate the detailed reaction mechanism of benzoylformate decarboxylase, a thiamin diphosphate (ThDP)-dependent enzyme that catalyzes the nonoxidative decarboxylation of benzoylformate yielding benzaldehyde and carbon dioxide. A large model of the active site is constructed on the basis of the X-ray structure, and it is used to characterize the involved intermediates and transition states and evaluate their energies. There is generally good agreement between the calculations and available experimental data. The roles of the various active site residues are discussed and the results are compared to mutagenesis experiments. Importantly, the calculations identify off-cycle intermediate species of the ThDP cofactor that can have implications on the kinetics of the reaction.

  • 42.
    Popović-Bijelić, Ana
    et al.
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Kowol, Christian R.
    Lind, Maria E. S.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Luo, Jinghui
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Enyedy, Éva A.
    Arion, Vladimir B.
    Gräslund, Astrid
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Ribonucleotide reductase inhibition by metal complexes of Triapine (3-aminopyridine-2-carboxaldehyde thiosemicarbazone): A combined experimental and theoretical study2011In: European Journal of Inorganic Chemistry, ISSN 1434-1948, E-ISSN 1099-1948, Vol. 105, no 11, p. 1422-1431Article in journal (Refereed)
    Abstract [en]

    Triapine (3-aminopyridine-2-carboxaldehyde thiosemicarbazone, 3-AP) is currently the most promising chemotherapeutic compound among the class of α-N-heterocyclic thiosemicarbazones. Here we report further insights into the mechanism(s) of anticancer drug activity and inhibition of mouse ribonucleotide reductase (RNR) by Triapine. In addition to the metal-free ligand, its iron(III), gallium(III), zinc(II) and copper(II) complexes were studied, aiming to correlate their cytotoxic activities with their effects on the diferric/tyrosyl radical center of the RNR enzyme in vitro. In this study we propose for the first time a potential specific binding pocket for Triapine on the surface of the mouse R2 RNR protein. In our mechanistic model, interaction with Triapine results in the labilization of the diferric center in the R2 protein. Subsequently the Triapine molecules act as iron chelators. In the absence of external reductants, and in presence of the mouse R2 RNR protein, catalytic amounts of the iron(III)–Triapine are reduced to the iron(II)–Triapine complex. In the presence of an external reductant (dithiothreitol), stoichiometric amounts of the potently reactive iron(II)–Triapine complex are formed. Formation of the iron(II)–Triapine complex, as the essential part of the reaction outcome, promotes further reactions with molecular oxygen, which give rise to reactive oxygen species (ROS) and thereby damage the RNR enzyme. Triapine affects the diferric center of the mouse R2 protein and, unlike hydroxyurea, is not a potent reductant, not likely to act directly on the tyrosyl radical.

  • 43. Santoro, Stefano
    et al.
    Kalek, Marcin
    Huang, Genping
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Elucidation of Mechanisms and Selectivities of Metal-Catalyzed Reactions using Quantum Chemical Methodology2016In: Accounts of Chemical Research, ISSN 0001-4842, E-ISSN 1520-4898, Vol. 49, no 5, p. 1006-1018Article, review/survey (Refereed)
    Abstract [en]

    Quantum chemical techniques today are indispensable for the detailed mechanistic understanding of catalytic reactions. The development of modem density functional theory approaches combined with the enormous growth in computer power have made it possible to treat quite large systems at a reasonable level of accuracy. Accordingly, quantum chemistry has been applied extensively to a wide variety of catalytic systems. A huge number of problems have been solved successfully, and vast amounts of chemical insights have been gained. In this Account, we summarize some of our recent work in this field. A number of examples concerned with transition metal-catalyzed reactions are selected, with emphasis on reactions with various kinds of selectivities. The discussed cases are (1) copper-catalyzed C-H bond amidation of indoles, (2) iridium-catalyzed C(sp(3))-H borylation of chlorosilanes, (3) vanadium-catalyzed Meyer-Schuster rearrangement and its combination with aldol- and Mannich-type additions, (4) palladium-catalyzed propargylic substitution with phosphorus nucleophiles, (5) rhodium-catalyzed 1:2 coupling of aldehydes and allenes, and finally (6) copper-catalyzed coupling of nitrones and alkynes to produce beta-lactams (Kinugasa reaction). First, the methodology adopted in these studies is presented briefly. The electronic structure method in the great majority of these kinds of mechanistic investigations has for the last two decades been based on density functional theory. In the cases discussed here, mainly the B3LYP functional has been employed in conjunction with Grimme's empirical dispersion correction, which has been shown to improve the calculated energies significantly. The effect of the surrounding solvent is described by implicit solvation techniques, and the thermochemical corrections are included using the rigid-rotor harmonic oscillator approximation. The reviewed examples are chosen to illustrate the usefulness and versatility of the adopted methodology in solving complex problems and proposing new detailed reaction mechanisms that rationalize the experimental findings. For each of the considered reactions, a consistent mechanism is presented, the experimentally observed selectivities are reproduced, and their sources are identified. Reproducing selectivities requires high accuracy in computing relative transition state energies. As demonstrated by the results summarized in this Account, this accuracy is possible with the use of the presented methodology, benefiting of course from a large extent of cancellation of systematic errors. It is argued that as the employed models become larger, the number of rotamers and isomers that have to be considered for every stationary point increases and a careful assessment of their energies is therefore necessary in order to ensure that the lowest energy conformation is located. This issue constitutes a bottleneck of the investigation in some cases and is particularly important when analyzing selectivities, since small energy differences need to be reproduced.

  • 44.
    Santoro, Stefano
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Liao, Rong-Zhen
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Theoretical study of mechanism and selectivity of copper-catalyzedC−H bond amidation of indoles2011In: Journal of Organic Chemistry, ISSN 0022-3263, E-ISSN 1520-6904, Vol. 76, no 22, p. 9246-9252Article in journal (Refereed)
    Abstract [en]

    Density functional theory calculations are used to study the reaction mechanism and origins of C2 selectivity in a copper(I)-catalyzed amidation of indoles. It is shown that concerted metalation−deprotonation is not able to reproduce the observed regioselectivity. Instead, an unprecedented mechanism based on a four-center reductive elimination is proposed to be responsible for the reaction outcome. This mechanism has a lower reaction barrier and is able to reproduce the experimentally observed selectivity. A possible alternative mechanism involving a Cu(II) species instead of Cu(III) is presented, but it is shown that higher energy barriers are associated with this mechanism. An important technical detail is that addition of dispersion effects to the B3LYP results is necessary to reproduce the observed selectivity, although not important for the overall mechanistic proposal.

  • 45.
    Santoro, Stefano
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Liao, Rong-Zhen
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Marcelli, Tommaso
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Hammar, Peter
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Theoretical Study of Mechanism and Stereoselectivity of Catalytic Kinugasa Reaction2015In: Journal of Organic Chemistry, ISSN 0022-3263, E-ISSN 1520-6904, Vol. 80, no 5, p. 2649-2660Article in journal (Refereed)
    Abstract [en]

    The mechanism of the catalytic Kinugasa reaction is investigated by means of density functional theory calculations. Different possible mechanistic scenarios are presented using phenanthroline as a ligand, and it is shown that the most reasonable one in terms of energy barriers involves two copper ions. The reaction starts with the formation of a dicopper-acetylide that undergoes a stepwise cycloaddition with the nitrone, generating a five-membered ring intermediate. Protonation of the nitrogen of the metalated isoxazoline intermediate results in ring opening and the formation of a ketene intermediate. This then undergoes a copper-catalyzed cyclization by an intramolecular nucleophilic attack of the nitrogen on the ketene, affording a cyclic copper enolate. Catalyst release and tautomerization gives the final beta-lactamic product. A comprehensive study of the enantioselective reaction was also performed with a chiral bis(azaferrocene) ligand. In this case, two different reaction mechanisms, involving either the scenario with the two copper ions or a direct cycloaddition of the parent alkyne using one copper ion, were found to have quite similar barriers. Both mechanisms reproduced the experimental enantioselectivity, and the current calculations can therefore not distinguish between the two possibilities.

  • 46.
    Sheng, Xiang
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Lind, Maria E. S.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Theoretical study of the reaction mechanism of phenolic acid decarboxylase2015In: The FEBS Journal, ISSN 1742-464X, E-ISSN 1742-4658, Vol. 282, no 24, p. 4703-4713Article in journal (Refereed)
    Abstract [en]

    The cofactor-free phenolic acid decarboxylases (PADs) catalyze the non-oxidative decarboxylation of phenolic acids to their corresponding p-vinyl derivatives. Phenolic acids are toxic to some organisms, and a number of them have evolved the ability to transform these compounds, including PAD-catalyzed reactions. Since the vinyl derivative products can be used as polymer precursors and are also of interest in the food-processing industry, PADs might have potential applications as biocatalysts. We have investigated the detailed reaction mechanism of PAD from Bacillus subtilis using quantum chemical methodology. A number of different mechanistic scenarios have been considered and evaluated on the basis of their energy profiles. The calculations support a mechanism in which a quinone methide intermediate is formed by protonation of the substrate double bond, followed by C-C bond cleavage. A different substrate orientation in the active site is suggested compared to the literature proposal. This suggestion is analogous to other enzymes with p-hydroxylated aromatic compounds as substrates, such as hydroxycinnamoyl-CoA hydratase-lyase and vanillyl alcohol oxidase. Furthermore, on the basis of the calculations, a different active site residue compared to previous proposals is suggested to act as the general acid in the reaction. The mechanism put forward here is consistent with the available mutagenesis experiments and the calculated energy barrier is in agreement with measured rate constants. The detailed mechanistic understanding developed here might be extended to other members of the family of PAD-type enzymes. It could also be useful to rationalize the recently developed alternative promiscuous reactivities of these enzymes.

  • 47.
    Sheng, Xiang
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Lind, Maria E. S.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Theoretical Study of the Reaction Mechanism of Phenolic Acid DecarboxylaseManuscript (preprint) (Other academic)
  • 48.
    Sheng, Xiang
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Patskovsky, Yury
    Vladimirova, Anna
    Bonanno, Jeffrey B.
    Almo, Steven C.
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Raushel, Frank M.
    Mechanism and Structure of gamma-Resorcylate Decarboxylase2018In: Biochemistry, ISSN 0006-2960, E-ISSN 1520-4995, Vol. 57, no 22, p. 3167-3175Article in journal (Refereed)
    Abstract [en]

    gamma-Resorcylate decarboxylase (gamma-RSD) has evolved to catalyze the reversible decarboxylation of 2,6-dihydroxybenzoate to resorcinol in a nonoxidative fashion. This enzyme is of significant interest because of its potential for the production of gamma-resorcylate and other benzoic acid derivatives under environmentally sustainable conditions. Kinetic constants for the decarboxylation of 2,6-dihydroxybenzoate catalyzed by gamma-RSD from Polaromonas sp. JS666 are reported, and the enzyme is shown to be active with 2,3-dihydroxybenzoate, 2,4,6-trihydroxybenzoate, and 2,6-dihydroxy-4-methylbenzoate. The three-dimensional structure of gamma-RSD with the inhibitor 2-nitroresorcinol (2-NR) bound in the active site is reported. 2-NR is directly ligated to a Mn2+ bound in the active site, and the nitro substituent of the inhibitor is tilted significantly from the plane of the phenyl ring. The inhibitor exhibits a binding mode different from that of the substrate bound in the previously determined structure of gamma-RSD from Rhizobtum sp. MTP-10005. On the basis of the crystal structure of the enzyme from Polaromonas sp. JS666, complementary density functional calculations were performed to investigate the reaction mechanism. In the proposed reaction mechanism, gamma-RSD binds 2,6-dihydroxybenzoate by direct coordination of the active site manganese ion to the carboxylate anion of the substrate and one of the adjacent phenolic oxygens. The enzyme subsequently catalyzes the transfer of a proton to Cl of y-resorcylate prior to the actual decarboxylation step. The reaction mechanism proposed previously, based on the structure of gamma-RSD from Rhizobtum sp. MTP-10005, is shown to be associated with high energies and thus less likely to be correct.

  • 49.
    Sheng, Xiang
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Zhu, Wen
    Huddleston, Jamison
    Xiang, Dao Fen
    Raushel, Frank M.
    Richards, Nigel G. J.
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    A Combined Experimental-Theoretical Study of the LigW-Catalyzed Decarboxylation of 5-Carboxyvanillate in the Metabolic Pathway for Lignin Degradation2017In: ACS Catalysis, ISSN 2155-5435, E-ISSN 2155-5435, Vol. 7, no 8, p. 4968-4974Article in journal (Refereed)
    Abstract [en]

    Although it is a member of the amidohydrolase superfamily, LigW catalyzes the nonoxidative decarboxylation of 5-carboxyvanillate to form vanillate in the metabolic pathway for bacterial lignin degradation. We now show that membrane inlet mass spectrometry (MIMS) can be used to measure transient CO2 concentrations in real time, thereby permitting us to establish that C-C bond cleavage proceeds to give CO2 rather than HCO3- as the initial product in the LigW-catalyzed reaction. Thus, incubation of LigW at pH 7.0 with the substrate 5-carboxyvanillate results in an initial burst of CO2 formation that gradually decreases to an equilibrium value as CO2 is nonenzymatically hydrated to HCO3-. The burst of CO2 is completely eliminated with the simultaneous addition of substrate and excess carbonic anhydrase to the enzyme, demonstrating that CO2 is the initial reaction product. This finding is fully consistent with the results of density functional theory calculations, which also provide support for a mechanism in which protonation of the C5 carbon takes place prior to C-C bond cleavage. The calculated barrier of 16.8 kcal/mol for the rate-limiting step, the formation of the C5-protonated intermediate, compares well with the observed kcat value of 27 for Sphingomonas paucimobilis LigW, which corresponds to an energy barrier of 16 kcal/mol. The MIMS-based strategy is superior to alternate methods of establishing whether CO2 or HCO3- is the initial reaction product, such as the use of pH-dependent dyes to monitor very small changes in solution pH. Moreover, the MIMS-based assay is generally applicable to studies of all enzymes that produce and/or consume small-molecule, neutral gases.

  • 50.
    Siegbahn, Per E. M.
    et al.
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics. Stockholm University, Faculty of Science, Department of Physics.
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    The quantum chemical clusterapproach for modeling enzymereactions2011In: Wiley Interdisciplinary Reviews. Computational Molecular Science, ISSN 1759-0876, E-ISSN 1759-0884, Vol. 1, no 3, p. 323-356Article in journal (Refereed)
    Abstract [en]

    This Overview describes the general concepts behind the quantum chemical clusterapproach formodeling enzyme active sites and reaction mechanisms. First, theunderlying density functional electronic structure method is briefly recapitulated.The cluster methodology is then discussed, including the important observationon the convergence of the solvation effects. The concepts are illustrated usingexamples from recent applications, such as the discrimination between differentreaction mechanisms in phosphotriesterase, the elucidation of origins of regioselectivityin the epoxide-opening reaction of haloalcohol dehalogenase, and finallythe use of the cluster methodology to establish the detailed structure of theoxygen-evolving complex in photosystem II.

1 - 50 of 50
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf