Change search
Refine search result
123 1 - 50 of 110
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Ali, Tara
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Weintraub, Andrej
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Structural determination of the O-antigenic polysaccharide from Escherichia coli O1662007In: Carbohydrate Research, ISSN 0008-6215, E-ISSN 1873-426X, Vol. 342, no 2, p. 274-278Article in journal (Refereed)
  • 2.
    Angles d'Ortoli, Thibault
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Hamark, Christoffer
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Structure-Reactivity Relationships of Conformationally Armed Disaccharide Donors and Their Use in the Synthesis of a Hexasaccharide Related to the Capsular Polysaccharide from Streptococcus pneumoniae Type 372017In: Journal of Organic Chemistry, ISSN 0022-3263, E-ISSN 1520-6904, Vol. 82, no 15, p. 8123-8140Article in journal (Refereed)
    Abstract [en]

    To advance the field of glycobiology, efficient synthesis methods of oligosaccharides and glycoconjugates are a requisite. In glycosylation reactions using superarmed donors, both selectivity and reactivity issues must be considered, and we herein investigate these aspects for differently protected beta-linked 2-O-glycosylated glucosyl donors carrying bulky tert-butyldimethylsilyl groups to different extents. The acceptors in reactions being secondary alcohols presents a challenging situation with respect to steric crowding. Conformational pyranose ring equilibria of the superarmed disaccharide donors with axial-rich substituents contained skew and boat conformations, and three-state models were generally assumed. With NIS/TfOH as the promotor, 2,6-di-tert-butyl-4-methylpyridine as the base, and a dichloromethane/toluene solvent mixture, ethyl 1-thio-beta-d-glucosyl disaccharide donors having 6-O-benzyl group(s) besides tert-butyldimethylsilyl groups were efficiently coupled at -40 degrees C to the hydroxyl group at position 3 of glucopyranosyl acceptors to form beta-(1 -> 2),beta-(1 -> 3)-linked trisaccharides, isolated in excellent 95% yield. The more axial-rich donors in skew and boat conformations are thus preorganized closer to the assumed transition state in these glycosylation reactions. The developed methodology was subsequently applied in the synthesis of a multibranched hexasaccharide related to the capsular polysaccharide from Streptococcus pneumoniae type 37, which consists of a beta-(1 -> 3)-linked backbone and a beta-(1 -> 2)-linked side chain of D-glucosyl residues in disaccharide repeating units.

  • 3.
    Angles d'Ortoli, Thibault
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Mobarak, Hani
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Ståhle, Jonas
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Hamark, Christoffer
    Fontana, Carolina
    Engström, Olof
    Apostolica, Patricia
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Complete 1H and 13C NMR chemical shift assignments of mono- to tetrasaccharides as basis for NMR chemical shift predictions of oligo- and polysaccharides using the computer program CASPERManuscript (preprint) (Other academic)
  • 4.
    Angles d'Ortoli, Thibault
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Sjöberg, Nils A.
    Vasiljeva, Polina
    Lindman, Jonas
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bergenstråhle-Wohlert, Malin
    Wohlert, Jakob
    Temperature Dependence of Hydroxymethyl Group Rotamer Populations in Cellooligomers2015In: Journal of Physical Chemistry B, ISSN 1520-6106, E-ISSN 1520-5207, Vol. 119, no 30, p. 9559-9570Article in journal (Refereed)
    Abstract [en]

    Empirical force fields for computer simulations of carbohydrates are often implicitly assumed to be valid also at temperatures different from room temperature for which they were optimited: Herein, the temperature dependence of the hydroxymethyl group rotamer populations in short oligogaccharides is invegtigated using Molecular dynamics simulations and NMR spectroscopy. Two oligosaccharides, methyl beta-cellobioside and beta-cellotetraose were simulated using three different carbohydrate force fields (CHARMM C35, GLYCAM06, and GROMOS 56A(carbo)) in combination with different water models (SPC, SPC/E, and TIP3P) using replica exchange molecular dynamics simulations. For comparison, hydroxymethyl group rotamer populations were investigated for methyl beta-cellobioside and cellopentaose based- on measured NMR (3)J(H5,H6) coupling constants, in the latter case by using a chemical shift selective NMR-filter. Molecular dynamics simulations in combination with NMR spectroscopy show that the temperature dependence of the hydroxymethyl rotamer population in these short cellooligomers, in the range 263-344 K, generally becomes exaggerated in simulations when compared to experimental data, but also that it is dependent on simulation conditions, and most notably properties of the water model.

  • 5.
    Angles d'Ortoli, Thibault
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Synthesis of the tetrasaccharide glycoside moiety of Solaradixine and rapid NMR-based structure verification using the program CASPER2016In: Tetrahedron, ISSN 0040-4020, E-ISSN 1464-5416, Vol. 72, no 7, p. 912-927Article in journal (Refereed)
    Abstract [en]

    The major glycoalkaloid in the roots of Solanum laciniatum is Solaradixine having the branched tetrasaccharide beta-D-Glcp-(1 -> 2)-beta-D-Glcp-(1 -> 3)[alpha-L-Rhap-(1 -> 2)]-beta-D-Galp linked to O3 of the steroidal alkaloid Solasodine. We herein describe the synthesis of the methyl glycoside of the tetrasaccharide using a super-armed disaccharide as a donor molecule. A 2-(naphthyl)methyl protecting group was used in the synthesis of the donor since it was tolerant to a wide range of reaction conditions. The 6-O-benzylated-hexa-O-tert-butyldimethylsilyi-protected beta-D-Glcp-(1 -> 2)-beta-D-Glcp-SEt donor, which avoided 1,6-anydro formation, was successfully glycosylated at O3 of a galactoside acceptor molecule. However, subsequent glycosylation at O2 by a rhamnosyl donor was unsuccessful and instead a suitably protected alpha-L-Rhap(1 -> 2)-beta-D-Galp-OMe disaccharide was used as the acceptor molecule together with a super-armed beta-D-Glcp-(1 -> 2)-beta-D-Glcp-SEt donor in the glycosylation reaction, to give a tetrasaccharide in a yield of 55%, which after deprotection resulted in the target molecule, the structure of which was verified by the NMR chemical shift prediction program CASPER.

  • 6.
    Bartholomeyzik, Teresa
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Pendrill, Robert
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Jiang, Tuo
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Complex Kinetics in a Palladium(II)-Catalyzed Oxidative Carbocyclization: Untangling of Competing Pathways, Pre-Catalyst Activation, and Product MixturesManuscript (preprint) (Other academic)
  • 7. Battistel, Marcos D.
    et al.
    Pendrill, Robert
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Freedberg, Daron I.
    Direct Evidence for Hydrogen Bonding in Glycans: A Combined NMR and Molecular Dynamics Study2013In: Journal of Physical Chemistry B, ISSN 1520-6106, E-ISSN 1520-5207, Vol. 117, no 17, p. 4860-4869Article in journal (Refereed)
    Abstract [en]

    We introduce the abundant hydroxyl groups of glycans as NMR handle's and structural probes to expand the repertoire of tools for structure function studies on glycans in solution. To this end, we present the facile detection and assignment of hydroxyl groups in a Wide range of sample concentrations (0.5-1700 mM) and temperatures, ranging from -5 to 25 degrees C.,We then exploit this information to directly detect hydrogen bonds, well-known for their importance in molecular structural determination through NMR. Via HSQC-TOCSY, we were able to determine the directionality; of these hydrogen bonds in sucrose Furthermore, by means Of molecular dynamics simulations in conjunction with NMR, we establish that one Out of the three detected hydrogen bonds arises from intermolecular interactions. This finding may shed light on glycan glycan interactions and glycan recognition by proteins.

  • 8. Bergenstråhle-Wohlert, Malin
    et al.
    Angles d'Ortoli, Thibault
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Sjöberg, Nils A.
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Wohlert, Jakob
    On the anomalous temperature dependence of cellulose aqueous solubility2016In: Cellulose (London), ISSN 0969-0239, E-ISSN 1572-882X, Vol. 23, no 4, p. 2375-2387Article in journal (Refereed)
    Abstract [en]

    The solubility of cellulose in water-based media is promoted by low temperature, which may appear counter-intuitive. An explanation to this phenomenon has been proposed that is based on a temperature-dependent orientation of the hydroxymethyl group. In this paper, this hypothesis is investigated using molecular dynamics computer simulations and NMR spectroscopy, and is discussed in conjunction with alternative explanations based on solvent–solute and solvent–solvent hydrogen bond formation respectively. It is shown that neither simulations nor experiments lend support to the proposed mechanism based on the hydroxymethyl orientation, whereas the two alternative explanations give rise to two distinct contributions to the hydration free energy of cellooligomers.

  • 9. Berglund, Jennie
    et al.
    Angles d'Ortoli, Thibault
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Vilaplana, Francisco
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bergenstråhle-Wohlert, Malin
    Lawoko, Martin
    Henriksson, Gunnar
    Lindström, Mikael
    Wohlert, Jakob
    A molecular dynamics study of the effect of glycosidic linkage type in the hemicellulose backbone on the molecular chain flexibility2016In: The Plant Journal, ISSN 0960-7412, E-ISSN 1365-313X, Vol. 88, no 1, p. 56-70Article in journal (Refereed)
    Abstract [en]

    The macromolecular conformation of the constituent polysaccharides in lignocellulosic biomass influences their supramolecular interactions, and therefore their function in plants and their performance in technical products. The flexibility of glycosidic linkages from the backbone of hemicelluloses was studied by evaluating the conformational freedom of the φ and ψ dihedral angles using molecular dynamic simulations, additionally selected molecules were correlated with experimental data by NMR spectroscopy. Three types of β-(1→4) glycosidic linkages involving the monosaccharides (Glcp, Xylp and Manp) present in the backbone of hemicelluloses were defined. Different di- and tetrasaccharides with combinations of such sugar monomers from hemicelluloses were simulated and free energy maps of the φ - ψ space and hydrogen bonding patterns were obtained. The glycosidic linkage between Glc-Glc or Glc-Man (C-type) was the stiffest with mainly one probable conformation; the linkage from Man-Man or Man-Glc (M-type) was similar but with an increased probability for an alternative conformation making it more flexible, and the linkage between two Xyl-units (X-type) was the most flexible with two almost equally populated conformations. Glycosidic linkages of the same type showed essentially the same conformational space in both disaccharides and in the central region of tetrasaccharides. Different probabilities of glycosidic linkage conformations in the backbone of hemicelluloses can be directly estimated from the free energy maps, which to a large degree affect the overall macromolecular conformations of these polymers. The information gained contributes to an increased understanding of hemicelluloses’ function both in the cell wall and in technical products.

  • 10. Both, P.
    et al.
    Green, A. P.
    Gray, C. J.
    Sardzik, R.
    Voglmeir, J.
    Fontana, Carolina
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Austeri, M.
    Rejzek, M.
    Richardson, D.
    Field, R. A.
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Flitsch, S. L.
    Eyers, C. E.
    Discrimination of epimeric glycans and glycopeptides using IM-MS and its potential for carbohydrate sequencing2014In: Nature Chemistry, ISSN 1755-4330, E-ISSN 1755-4349, Vol. 6, no 1, p. 65-74Article in journal (Refereed)
    Abstract [en]

    Mass spectrometry is the primary analytical technique used to characterize the complex oligosaccharides that decorate cell surfaces. Monosaccharide building blocks are often simple epimers, which when combined produce diastereomeric glycoconjugates indistinguishable by mass spectrometry. Structure elucidation frequently relies on assumptions that biosynthetic pathways are highly conserved. Here, we show that biosynthetic enzymes can display unexpected promiscuity, with human glycosyltransferase pp-a-GanT2 able to utilize both uridine diphosphate N-acetylglucosamine and uridine diphosphate N-acetylgalactosamine, leading to the synthesis of epimeric glycopeptides in vitro. Ion-mobility mass spectrometry ( IM-MS) was used to separate these structures and, significantly, enabled characterization of the attached glycan based on the drift times of the monosaccharide product ions generated following collision-induced dissociation. Finally, ion-mobility mass spectrometry following fragmentation was used to determine the nature of both the reducing and non-reducing glycans of a series of epimeric disaccharides and the branched pentasaccharide Man3 glycan, demonstrating that this technique may prove useful for the sequencing of complex oligosaccharides.

  • 11.
    Burkhardt, Anja
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Eriksson, Lars
    Stockholm University, Faculty of Science, Department of Physical, Inorganic and Structural Chemistry, Department of Structural Chemistry.
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Cumpstey, Ian
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    (Z)-1,2:5,6-di-O-isopropylidene-α-D-ribo-hexofuranos-3-ulose O-benzyloxime2009In: Acta Crystallographica Section E: Structure Reports Online, ISSN 1600-5368, E-ISSN 1600-5368, Vol. E65, no Part 3, p. o633-o633Article in journal (Refereed)
  • 12. Chassagne, Pierre
    et al.
    Fontana, Carolina
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Guerreiro, Catherine
    Gauthier, Charles
    Phalipon, Armelle
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Mulard, Laurence A.
    Structural Studies of the O-Acetyl-Containing O-Antigen from a Shigella flexneri Serotype 6 Strain and Synthesis of Oligosaccharide Fragments Thereof2013In: European Journal of Organic Chemistry, ISSN 1434-193X, E-ISSN 1099-0690, no 19, p. 4085-4106Article in journal (Refereed)
    Abstract [en]

    Extensive analysis by NMR spectroscopy of the delipidated lipopolysaccharide of Shigella flexneri serotype 6 strain MDC 2924-71 confirmed the most recently reported structure of the O-antigen repeating unit as {4)--D-GalpA-(13)--D-GalpNAc-(12)--L-Rhap3Ac/4Ac-(12)--L-Rhap-(1}, and revealed the non-stoichiometric acetylation at O-3C/4C. Input from the CASPER program helped to ascertain the fine distribution of the three possible patterns of O-acetylation. The non-O-acetylated repeating unit (ABCD) corresponded to about 2/3 of the population, while 1/4 was acetylated at O-3C (3AcCDAB), and 1/10 at O-4C (4AcCDAB). Di- to tetrasaccharides with a GalpA residue (A) at their reducing end were synthesized as their propyl glycosides following a multistep linear strategy relying on late-stage acetylation at O-3C. Thus, the 3C-O-acetylated and non-O-acetylated targets were synthesized from common protected intermediates. Rhamnosylation was most efficiently achieved by using imidate donors, including at O-4 of a benzyl galacturonate acceptor. In contrast, a thiophenyl 2-deoxy-2-trichloroacetamido-D-galactopyranoside precursor was preferred for chain elongation involving residue B. Final Pd/C-mediated deprotection ensured O-acetyl stability. All of the target molecules represent parts of the O-antigen of S. flexneri 6, a prevalent serotype. Non-O-acetylated oligosaccharides are also fragments of the Escherichia coli O147 O-antigen.

  • 13. Chen, Mo
    et al.
    Pendrill, Robert
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Brady, John W.
    Wohlert, Jakob
    Molecular Dynamics Simulations of the Ionic Liquid 1-n-Butyl-3-Methylimidazolium Chloride and Its Binary Mixtures with Ethanol2014In: Journal of Chemical Theory and Computation, ISSN 1549-9618, E-ISSN 1549-9626, Vol. 10, no 10, p. 4465-4479Article in journal (Refereed)
    Abstract [en]

    Room temperature ionic liquids (ILs) of the imidazolium family have attracted much attention during the past decade for their capability to dissolve biomass. Besides experimental work, numerous compuational studies have been concerned with the physical properties of both neat ILs and their interactions with different solutes, in particular, carbohydrates. Many classical force fields designed specifically for ILs have been found to yield viscosities that are too high for the liquid state, which has been attributed to the fact that the effective charge densities are too high due to the lack of electronic polarizability. One solution to this problem has been uniform scaling of the partial charges by a scale factor in the range 0.6-0.9, depending on model. This procedure has been shown to improve the viscosity of the models, and also to positively affect other properties, such as diffusion constants and ionic conductivity. However, less attention has been paid to how this affects the overall thermodynamics of the system, and the problems it might create when the IL models are combined with other force fields (e.g., for solutes). In the present work, we employ three widely used IL force fields to simulate 1-n-buty1-3-methyl-imidazolium chloride in both the crystal and the liquid state, as well as its binary mixture with ethanol. Two approaches are used: one in which the ionic charge is retained at its full integer value and one in which the partial charges are uniformly reduced to 85%. We investigate and calculate crystal and liquid structures, molar heat capacities, heats of fusion, self-diffusion constants, ionic conductivity, and viscosity for the neat IL, and ethanol activity as a function of ethanol concentration for the binary mixture. We show that properties of the crystal are less affected by charge scaling compared to the liquid. In the liquid state, transport properties of the neat IL are generally improved by scaling, whereas values for the heat of fusion are unaffected, and results for the heat capacity are ambiguous. Neither full nor reduced charges could reproduce experimental ethanol activities for the whole range of compositions.

  • 14. Daikoku, S.
    et al.
    Pendrill, Robert
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kanie, Y.
    Ito, Y.
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kanie, O.
    Synthesis and structural investigation of a series of mannose-containing oligosaccharides using mass spectrometry2018In: Organic and biomolecular chemistry, ISSN 1477-0520, E-ISSN 1477-0539, Vol. 16, no 2, p. 228-238Article in journal (Refereed)
    Abstract [en]

    A series of compounds associated with naturally occurring and biologically relevant glycans consisting of alpha-mannosides were prepared and analyzed using collision-induced dissociation (CID), energy-resolved mass spectrometry (ERMS), and H-1 nuclear magnetic resonance spectroscopy. The CID experiments of sodiated species of disaccharides and ERMS experiments revealed that the order of stability of mannosyl linkages was as follows: 6-linked > 4-linked >= 2-linked > 3-linked mannosyl residues. Analysis of linear trisaccharides revealed that the order observed in disaccharides could be applied to higher glycans. A branched trisaccharide showed a distinct dissociation pattern with two constituting disaccharide ions. The estimation of the content of this ion mixture was possible using the disaccharide spectra. The hydrolysis of mannose linkages at 3- and 6-positions in the branched trisaccharide revealed that the 3-linkage was cleaved twice as fast as the 6-linkage. It was observed that the solution-phase hydrolysis and gas-phase dissociation have similar energetics.

  • 15. Daikoku, Shusaku
    et al.
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kanie, Osamu
    Analysis of a series of isomeric oligosaccharides by energy-resolved mass spectrometry: a challenge on homobranched trisaccharides2009In: Rapid Communications in Mass Spectrometry, ISSN 0951-4198, E-ISSN 1097-0231, Vol. 23, no 23, p. 3713-3719Article in journal (Refereed)
  • 16.
    Engström, Olof
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Mobarak, Hani
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Ståhle, Jonas
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Conformational Dynamics and Exchange Kinetics of N-Formyl and N-Acetyl Groups Substituting 3-Amino-3,6-dideoxy-alpha-D-galactopyranose, a Sugar Found in Bacterial O-Antigen Polysaccharides2017In: Journal of Physical Chemistry B, ISSN 1520-6106, E-ISSN 1520-5207, Vol. 121, no 41, p. 9487-9497Article in journal (Refereed)
    Abstract [en]

    Three dimensional shape and conformation of. carbohydrates are important factors in molecular recognition events and the N-acetyl group of a monosaccharide residue can function as a conformational gatekeeper whereby it influences the overall shape of the oligosaccharide. NMR spectroscopy and quantum mechanics (QM) calculations are used herein to investigate both the conformational preferences and the dynamic behavior of N-acetyl and N-formyl substituents of 3-amino-3,6-dideoxy-alpha-D-galactopyranose, a sugar and substitution pattern found in bacterial O-antigen polysaccharides. QM calculations suggest that the amide oxygen can be involved in hydrogen bonding with the axial OH4 group primarily but also with the equatorial OH2 group. However, an NMR J coupling analysis indicates that the 01 torsion angle, adjacent to the sugar ring, prefers an ap conformation where conformations <180 degrees also are accessible, but does not allow for intramolecular hydrogen bonding. In the formyl-substituted compound (4)J(HH) coupling constants to the exo-cyclic group were detected and analyzed. A van't Hoff analysis revealed that the trans conformation at the amide bond is favored by Delta G degrees approximate to - 0.8 kcal.mol(-1) in the formyl-containing compound and with Delta G degrees approximate to -2.5 kcal.mol(-1) when the N-acetyl group is the substituent. In both cases the enthalpic term dominates to the free energy, irrespective of water or DMSO as solvent, with only a small contribution from the entropic term. The cis-trans isomerization of the theta(2) torsion angle, centered at the amide bond, was also investigated by employing H-1 NMR line shape analysis and C-13 NMR saturation transfer experiments. The extracted transition rate constants were utilized to calculate transition energy barriers that were found to be about 20 kcal.mol(-1) in both DMSO-d(6) and D2O. Enthalpy had a higher contribution to the energy barriers in DMSO-d(6) compared to in D2O, where entropy compensated for the loss of enthalpy.

  • 17.
    Engström, Olof
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Muñoz, Antonio
    Illescas, Beatriz M.
    Martin, Nazario
    Ribeiro-Viana, Renato
    Rojo, Javier
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Investigation of glycofullerene dynamics by NMR spectroscopy2015In: Organic and biomolecular chemistry, ISSN 1477-0520, E-ISSN 1477-0539, Vol. 13, no 32, p. 8750-8755Article in journal (Refereed)
    Abstract [en]

    Glycofullerenes, in which carbohydrate molecules are attached via a linker to a [60]fullerene core, facilitate spherical presentation of glyco-based epitopes. We herein investigate the dynamics of two glycofullerenes, having 12 and 36 mannose residues at their periphery, by NMR translational diffusion and quantitative C-13 relaxation studies employing a model-free approach for their interpretation. The sugar residues are shown to be highly flexible entities with S-2 < 0.2 in both compounds. Notably, the larger glycofullerene with longer linkers shows faster internal dynamics and higher flexibility than its smaller counterpart. The dynamics and flexibility as well as the slower translational diffusion of the larger glycofullerene, thereby favoring rebinding to a receptor, may together with its spatial extension explain why it is better than the smaller one at blocking the DC-SIGN receptor and inhibiting the infection by pseudotyped Ebola virus particles.

  • 18.
    Eriksson, Lars
    et al.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Methyl 3-O-α-l-fucopyranosyl β-d-glucopyranoside tetrahydrate2012In: Acta Crystallographica Section E: Structure Reports Online, ISSN 1600-5368, E-ISSN 1600-5368, Vol. 68, p. o3180-o3181Article in journal (Refereed)
    Abstract [en]

    The title compound, C13H24O10·4H2O, is the methyl glycoside of a disaccharide structural element present in the backbone of the capsular polysaccharide from Klebsiella K1, which contains only three sugars and a substituent in the polysaccharide repeating unit. The conformation of the title disaccharide is described by the glycosidic torsion angles ϕH = 51.1 (1)° and ψH = 25.8 (1)°. In the crystal, a number of O—HO hydrogen bonds link the methyl glycoside and water mol­ecules, forming a three-dimensional network. One water mol­ecule is disordered over two positions with occupancies of 0.748 (4) and 0.252 (4).

  • 19. Eriksson, Lars
    et al.
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Methyl α-l-rhamnosyl-(1→2)[α-l-rhamnosyl-(1→3)]-α-l-rhamnoside penta­hydrate: synchrotron study2012In: Acta Crystallographica Section E: Structure Reports Online, ISSN 1600-5368, E-ISSN 1600-5368, Vol. 68, no 7, p. o2221-o2222Article in journal (Refereed)
    Abstract [en]

    The title hydrate, C19H34O13·5H2O, contains a vicinally disubstituted tris­accharide in which the two terminal rhamnosyl sugar groups are positioned adjacent to each other. The conformation of the tris­accharide is described by the glycosidic torsion angles ϕ2 = 48 (1)°, ψ2 = −29 (1)°, ϕ3 = 44 (1)° and ψ3 = 4 (1)°, whereas the ψ2 torsion angle represents a conformation from the major state in solution, the ψ3 torsion angle conformation may have been caught near a potential energy saddle-point when compared to its solution structure, in which at least two but probably three conformational states are populated. Extensive inter­molecular O—HO hydrogen bonding is present in the crystal and a water-containing channel is formed along the b-axis direction.

  • 20.
    Fontana, Carolina
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Conde-Alvarez, Raquel
    Ståhle, Jonas
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Holst, Otto
    Iriarte, Maite
    Zhao, Yun
    Arce-Gorvel, Vilma
    Hanniffy, Sean
    Gorvel, Jean-Pierre
    Moriyon, Ignacio
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Structural Studies of Lipopolysaccharide-defective Mutants from Brucella melitensis Identify a Core Oligosaccharide Critical in Virulence2016In: Journal of Biological Chemistry, ISSN 0021-9258, E-ISSN 1083-351X, Vol. 291, no 14, p. 7727-7741Article in journal (Refereed)
    Abstract [en]

    The structures of the lipooligosaccharides from Brucella melitensis mutants affected in the WbkD and ManB(core) proteins have been fully characterized using NMR spectroscopy. The results revealed that disruption of wbkD gives rise to a rough lipopolysaccharide (R-LPS) with a complete core structure (beta-D-Glcp-(1 -> 4)-alpha-Kdop-(2 -> 4)[beta-D-GlcpN-(1 -> 6)-beta-D-GlcpN-(1 -> 4)[beta-D-GlcpN-(1 -> 6)]-beta-D-GlcpN-(1 -> 3)-alpha-D-Manp-(1 -> 5)]-alpha-Kdop-(2 -> 6)-beta-D-GlcpN3N4P-(1 -> 6)-alpha-D-GlcpN3N1P), in addition to components lacking one of the terminal beta-D-GlcpN and/or the beta-D-Glcp residues (48 and 17%, respectively). These structures were identical to those of the R-LPS from B. melitensis EP, a strain simultaneously expressing both smooth and R-LPS, also studied herein. In contrast, disruption of man-B-core gives rise to a deep-rough pentasaccharide core (beta-D-Glcp-(1 -> 4)-alpha-Kdop-(2 -> 4)-alpha-Kdop-(2 -> 6)-beta-D-GlcpN3N4P-(1 -> 6)-alpha-D-GlcpN3N1P) as the major component (63%), as well as a minor tetrasaccharide component lacking the terminal beta-D-Glcp residue (37%). These results are in agreement with the predicted functions of the WbkD (glycosyltransferase involved in the biosynthesis of the O-antigen) and ManB(core) proteins (phosphomannomutase involved in the biosynthesis of a mannosyl precursor needed for the biosynthesis of the core and O-antigen). We also report that deletion of B. melitensis wadC removes the core oligosaccharide branch not linked to the O-antigen causing an increase in overall negative charge of the remaining LPS inner section. This is in agreement with the mannosyltransferase role predicted for WadC and the lack of GlcpN residues in the defective core oligosaccharide. Despite carrying the O-antigen essential in B. melitensis virulence, the core deficiency in the wadC mutant structure resulted in a more efficient detection by innate immunity and attenuation, proving the role of the beta-D-GlcpN-(1 -> 6)-beta-D-GlcpN-(1 -> 4)[beta-D-GlcpN-(1 -> 6)]-beta-D-GlcpN-(1 -> 3)-alpha-D-Manp-(1 -> 5) structure in virulence.

  • 21.
    Fontana, Carolina
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Holst, Otto
    Moriyón, Ignacio
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Structural studies of the rough lipopolysaccharides of Brucella melitensis mutants affected in the biosynthesis of the core and O-antigen polysaccharideManuscript (preprint) (Other academic)
  • 22.
    Fontana, Carolina
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kovacs, Helena
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    NMR structure analysis of uniformly 13C-labeled carbohydrates2014In: Journal of Biomolecular NMR, ISSN 0925-2738, E-ISSN 1573-5001, Vol. 59, no 2, p. 95-110Article in journal (Refereed)
    Abstract [en]

    In this study, a set of nuclear magnetic resonance experiments, some of them commonly used in the study of C-13-labeled proteins and/or nucleic acids, is applied for the structure determination of uniformly C-13-enriched carbohydrates. Two model substances were employed: one compound of low molecular weight [(UL-C-13)-sucrose, 342 Da] and one compound of medium molecular weight (C-13-enriched O-antigenic polysaccharide isolated from Escherichia coli O142, similar to 10 kDa). The first step in this approach involves the assignment of the carbon resonances in each monosaccharide spin system using the anomeric carbon signal as the starting point. The C-13 resonances are traced using C-13-C-13 correlations from homonuclear experiments, such as (H)CC-CT-COSY, (H)CC-NOESY, CC-CT-TOCSY and/or virtually decoupled (H)CC-TOCSY. Based on the assignment of the C-13 resonances, the H-1 chemical shifts are derived in a straightforward manner using one-bond H-1-C-13 correlations from heteronuclear experiments (HC-CT-HSQC). In order to avoid the (1) J (CC) splitting of the C-13 resonances and to improve the resolution, either constant-time (CT) in the indirect dimension or virtual decoupling in the direct dimension were used. The monosaccharide sequence and linkage positions in oligosaccharides were determined using either C-13 or H-1 detected experiments, namely CC-CT-COSY, band-selective (H)CC-TOCSY, HC-CT-HSQC-NOESY or long-range HC-CT-HSQC. However, due to the short T-2 relaxation time associated with larger polysaccharides, the sequential information in the O-antigen polysaccharide from E. coli O142 could only be elucidated using the H-1-detected experiments. Exchanging protons of hydroxyl groups and N-acetyl amides in the C-13-enriched polysaccharide were assigned by using HC-H2BC spectra. The assignment of the N-acetyl groups with N-15 at natural abundance was completed by using HN-SOFAST-HMQC, HNCA, HNCO and C-13-detected (H)CACO spectra.

  • 23.
    Fontana, Carolina
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Li, Shengyu
    Yang, Zhennai
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Structural studies of the exopolysaccharide from Lactobacillus plantarum C88 using NMR spectroscopy and the program CASPER2015In: Carbohydrate Research, ISSN 0008-6215, E-ISSN 1873-426X, Vol. 402, p. 87-94Article in journal (Refereed)
    Abstract [en]

    Some lactic acid bacteria, such as those of the Lactobacillus genus, have the ability to produce exopolysaccharides (EPSs) that confer favorable physicochemical properties to food and/or beneficial physiological effects on human health. In particular, the EPS of Lactobacillus plantarum C88 has recently demonstrated in vitro antioxidant activity and, herein, its structure has been investigated using NMR spectroscopy and the computer program CASPER (Computer Assisted Spectrum Evaluation of Regular polysaccharides). The pentasaccharide repeating unit of the O-deacetylated EPS consists of a trisaccharide backbone, -> 4)-alpha-DGalp-(1 -> 2)-alpha-D-Glcp-(1 -> 3)-beta-D-Glcp-(1 ->, with terminal D-Glc and D-Gal residues (1.0 and 0.8 equiv per repeating unit, respectively) extending from O3 and O6, respectively, of the -> 4)-alpha-D-Galp-(1 -> residue. In the native EPS an O-acetyl group is present, 0.85 equiv per repeating unit, at O2 of the alpha-linked galactose residue; thus the repeating unit of the EPS has the following structure: -> 4)[beta-D-Glcp-(1 -> 3)][beta-D-Galp-(1 -> 6)]alpha-D-Galp2Ac-(1 -> 2)-alpha-D-Glcp-(1 -> 3)-beta-D-Glcp-(1 ->. These structural features, and the chain length (similar to 10(3) repeating units on average, determined in a previous study), are expected to play an important role in defining the physicochemical properties of the polymer.

  • 24.
    Fontana, Carolina
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Lundborg, Magnus
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Weintraub, Andrej
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Rapid structural elucidation of polysaccharides employing predicted functions of glycosyltransferases and NMR data: Application to the O-antigen of Escherichia coli O592014In: Glycobiology, ISSN 0959-6658, E-ISSN 1460-2423, Vol. 24, no 5, p. 450-457Article in journal (Refereed)
    Abstract [en]

    A computerized method that uses predicted functions of glycosyltransferases (GTs) in conjunction with unassigned NMR data has been developed for the structural elucidation of bacterial polysaccharides (PSs). In this approach, information about the action of GTs (consisting of possible sugar residues used as donors and/or acceptors, as well as the anomeric configuration and/or substitution position in the respective glycosidic linkages) is extracted from the Escherichia coli O-antigen database and is submitted, together with the unassigned NMR data, to the CASPER program. This time saving methodology, which alleviates the need for chemical analysis, was successfully implemented in the structural elucidation of the O-antigen PS of E. coli O59. The repeating unit of the O-specific chain was determined using the O-deacylated PS and has a branched structure, namely, -> 6)[alpha-d-GalpA3Ac/4Ac-(1 -> 3)]-alpha-d-Manp-(1 -> 3)-alpha-d-Manp-(1 -> 3)-beta-d-Manp-(1 -> 3)-alpha-d-GlcpNAc-(1 ->. The identification of the O-acetylation positions was efficiently performed by comparison of the H-1,C-13 HSQC NMR spectra of the O-deacylated lipopolysaccharide and the lipid-free PS in conjunction with chemical shift predictions made by the CASPER program. The side-chain d-GalpA residue carries one equivalent of O-acetyl groups at the O-3 and O-4 positions distributed in the LPS in a 3:7 ratio, respectively. The presence of O-acetyl groups in the repeating unit of the E. coli O59 PS is consistent with the previously proposed acetyltransferase WclD in the O-antigen gene cluster.

  • 25.
    Fontana, Carolina
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Lundborg, Magnus
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Weintraub, Andrej
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Structural studies and biosynthetic aspects of the o antigen polysaccharide from Escherichia coli o1742012In: Carbohydrate Research, ISSN 0008-6215, E-ISSN 1873-426X, Vol. 354, p. 102-105Article in journal (Refereed)
    Abstract [en]

    The structure of the repeating unit of the O-antigenic polysaccharide (PS) from Escherichia coli O174 has been determined. Component analysis together with H-1 and C-13 NMR spectroscopy experiments were employed to elucidate the structure. Inter-residue correlations were determined by H-1, C-13-heteronuclear multiple-bond correlation and H-1, H-1-NOESY experiments. The PS is composed of tetrasaccharide repeating units with the following structure: -> 4)-beta-D-GlcpA-(1 -> 3)-beta-D-Galp-(1 -> 3)-beta-D-GalpNAc-(1 -> vertical bar beta-D-GlcpNAc-(1 -> 2) Cross-peaks of low intensity were present in the NMR spectra consistent with a beta-D-GlcpNAc-(1 -> 2)-beta-D-GlcpA(1 -> structural element at the terminal part of the polysaccharide, which on average is composed of similar to 15 repeating units. Consequently the biological repeating unit has a 3-substituted N-acetyl-D-galactosamine residue at its reducing end.

  • 26.
    Fontana, Carolina
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Ramström, Kristoffer
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Weintraub, Andrej
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Structural studies of the O-antigen polysaccharide from Escherichia coli O115 and biosynthetic aspects thereof2013In: Glycobiology, ISSN 0959-6658, E-ISSN 1460-2423, Vol. 23, no 3, p. 354-362Article in journal (Refereed)
    Abstract [en]

    The structure of the O-antigen polysaccharide (PS) of Escherichia coliO115 has been investigated using a combination of component analysis and 1D and 2D nuclear magnetic resonance (NMR) spectroscopy experiments. The repeating unit of the O-antigen was elucidated using the O-deacetylated PS and has the following branched pentasaccharide structure: →3)[β-L-Rhap-(1 → 4)]-β-D-GlcpNAc-(1 → 4)-α-D-GalpA-(1 → 3)-α-D-Manp-(1 → 3)-β-D-GlcpNAc-(1→. Cross-peaks of low intensity, corresponding to a β-L-Rhap-(1 → 4)-β-D-GlcpNAc-(1→ structural element, were present in the NMR spectra and attributed to the terminal part of the PS; this information defines the biological repeating unit of the O-antigen by having a 3-substituted N-acetyl-D-glucosamine (GlcNAc) residue at its reducing end. Analysis of the NMR spectra of the native PS revealed O-acetyl groups distributed over different positions of theL-Rhap residue (∼0.70 per repeating unit) as well as at O-2 and O-3 of the D-GalpA residue (∼0.03 and ∼0.25 per repeating unit, respectively), which is in agreement with the presence of two acetyltransferases previously identified in the O-antigen gene cluster (Wang Q, Ruan X, Wei D, Hu Z, Wu L, Yu T, Feng L, Wang L. 2010. Mol Cell Probes. 24:286–290.). In addition, the four glycosyltransferases initially identified in the O-antigen gene cluster of E. coli O115 were analyzed using BLAST, and the function of two of them predicted on the basis of similarities with glycosyltransferases from Shigella dysenteriae type 5 and 12, as well as E. coli O58 and O152.

  • 27.
    Fontana, Carolina
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Weintraub, Andrej
    Karolinska Institute.
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Facile Structural Elucidation of Glycans Using NMR Spectroscopy Data and the Program CASPER: Application to the O-Antigen Polysaccharide of Escherichia coli O1552013In: ChemPlusChem, ISSN 2192-6506, Vol. 78, no 11, p. 1327-1329Article in journal (Refereed)
    Abstract [en]

    The program CASPER was successfully employed to rapidly elucidate a new O-antigen polysaccharide structure (obtained from a strain of Escherichia coli serogroup O155), using solelyunassigned NMR spectroscopy data as input information. Thus, what is considered the most tedious and time-consuming part of the structural elucidation process has been reduced from several hours (or even days) of manual interpretation to about four minutes of automated analysis.

  • 28.
    Fontana, Carolina
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Weintraub, Andrej
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Structural studies and biosynthetic aspects of the O-antigen polysaccharide from Escherichia coli O422015In: Carbohydrate Research, ISSN 0008-6215, E-ISSN 1873-426X, Vol. 403, p. 174-181Article in journal (Refereed)
    Abstract [en]

    The structure of the O-antigen polysaccharide (PS) from Escherichia coli O42 has been investigated by NMR spectroscopy as the main method, which was complemented with sugar analysis, mass spectrometry, and analysis of biosynthetic information. The O-specific chain of the O-deacylated lipopolysaccharide (LPS-OH) consists of branched tetrasaccharide-glycerol repeating units joined by phosphodiester linkages. The lipid-free polysaccharide contains 0.8 equiv of O-acetyl groups per repeating unit and has the following teichoic acid-like structure: Based on biosynthetic aspects, this should also be the biological repeating unit. This O-antigen structure is remarkably similar to that of E. coli O28ac, differing only in the presence or absence, respectively, of a glucose residue at the branching point. The structural similarity explains the serological cross-reactivity observed between strains of these two serogroups, and also their almost identical O-antigen gene cluster sequences. -> 2)-(R)-Gro-(1-P-4)-beta-D-GlcpNAc-(1 -> 3)-beta-D-Galf2Ac-(1 -> 3)-alpha-D-GlcpNAc-(1 -> vertical bar a-D-Glcp-(1 -> 3)

  • 29.
    Fontana, Carolina
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Zaccheus, Mona V.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Weintraub, Andrej
    Ansaruzzaman, Mohammad
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Structural studies of a polysaccharide from Vibrio parahaemolyticus strain AN-160002016In: Carbohydrate Research, ISSN 0008-6215, E-ISSN 1873-426X, Vol. 432, p. 41-49Article in journal (Refereed)
    Abstract [en]

    The structure of a polysaccharide from Vibrio parahaemolyticus strain AN-16000 has been investigated. The sugar and absolute configuration analysis revealed D-Glc, D-GalN, D-QuiN and L-FucN as major components. The PS was subjected to dephosphorylation with aqueous 40% HF to obtain an oligosaccharide that was analyzed by H-1 and C-13 NMR spectroscopy. The HR-MS spectrum of the oligosaccharide revealed a pentasaccharide composed of two Glc residues, one QuiNAc and one GalNAc, one FucNAc, as well as a glycerol moiety. The structure of the PS was determined using H-1, C-13, N-15 and P-31 NMR spectroscopy; inter-residue correlations were identified by H-1, C-13-heteronuclear multiple-bond correlation, H-1, H-1-NOESY and H-1, P-31-hetero-TOCSY experiments. The PS backbone has the following teichoic acid-like structure: -> 3)-D-Gro-(1-P-6)-beta-D-Glcp-(1 -> 4)-alpha-L-FucpNAc-(1 -> 3)-beta-D-QuipNAc-(1 -> with a side-chain consisting of alpha-D-Glcp-(1 -> 6)-alpha-D-GalpNAc-(1 -> linked to the O3 position of the FucNAc residue.

  • 30. Foster, R. A.
    et al.
    Carlin, N. I. A.
    Majcher, M.
    Tabor, H.
    Ng, L.-K.
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Structural elucidation of the O-antigen of the Shigella flexneri provisionalserotype 88-893: structural and serological similarities with S. flexneri provisional serotype Y394 (1c)2011In: Carbohydrate Research, ISSN 0008-6215, E-ISSN 1873-426X, Vol. 346, no 6, p. 872-876Article in journal (Refereed)
    Abstract [en]

    The structure of the repeating unit of the O-antigen polysaccharide from Shigella flexneri provisional serotype 88-893 has been determined. 1H and 13C NMR spectroscopy as well as 2D NMR experiments were employed to elucidate the structure. The carbohydrate part of the hexasaccharide repeating unit is identical to the previously elucidated structure of the O-polysaccharide from S. flexneri prov. serotype Y394. The O-antigen of S. flexneri prov. serotype 88-893 carries 0.7 mol O-acetyl group per repeating unit located at O-2 of the 3-substituted rhamnosyl residue, as identified by H2BC and BS-CT-HMBC NMR experiments. The O-antigen polysaccharide is composed of hexasaccharide repeating units with the following structure: →2)-α-l-Rhap-(1→2)-α-l-Rhap-(1→3)-α-l-Rhap2Ac-(1→3)[α-d-Glcp-(1→2)-α-d-Glcp-(1→4)]-β-d-GlcpNAc-(1→. Serological studies showed that type antigens for the two provisional serotypes are identical; in addition 88-893 expresses S. flexneri group factor 6 antigen. We propose that provisional serotypes Y394 and 88-893 be designated as two new serotypes 7a and 7b, respectively, in the S. flexneri typing scheme.

  • 31. Godefroid, Marie
    et al.
    Svensson, Mona V
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Cambier, Pierre
    Uzureau, Sophie
    Mirabella, Aurélie
    De Bolle, Xavier
    Van Cutsem, Pierre
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Letesson, Jean-Jacques
    Brucella melitensis 16M produces a mannan and other extracellular matrix components typical of a biofilm2010In: FEMS Immunology and Medical Microbiology, ISSN 0928-8244, E-ISSN 1574-695X, Vol. 59, no 3, p. 364-377Article in journal (Refereed)
  • 32. Goulart, Paula N.
    et al.
    da Silva, Clarissa O.
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    The importance of orientation of exocyclic groups in a naphthoxyloside: A specific rotation calculation study2017In: Journal of Physical Organic Chemistry, ISSN 0894-3230, E-ISSN 1099-1395, Vol. 30, no 12, article id e3708Article in journal (Refereed)
    Abstract [en]

    2-Naphthyl -d-xylopyranoside (XylNap) inhibits -1,4-galactosyltransferase 7 (4GalT7) and thereby growth of tumor cells both in vitro and in vivo. The binding pocket of 4GalT7 has a defined orientation of hydrogen bond acceptors and hydrophobic moiety. Knowing the orientation of the hydroxyl and naphthyl groups of this molecule would help in the development of more efficient inhibitors. In this work, we have tried, for the first time, to determine the exocyclic hydroxyl and aglycon groups orientation of XylNap, using ab initio descriptions, and calculation of the specific rotation values, in methanol solutions, using 2 different solvent descriptions: a dielectric continuum approach (polarizable continuum model [PCM]) and a microsolvated+continuum approach (MS+PCM). In the PCM approach, [](D)=-59 deg/(dm(g/cm(3))) whereas for the MS+PCM approach [](D)=-29 deg/(dm(g/cm(3))). The latter is in excellent agreement with the experimentally determined value in methanol solution, viz, [](D)=-30 deg/(dm(g/cm(3))). This agreement allows us to say that the hydroxyl groups have similar orientations in xylose and XylNap, and the naphthyl group has a very well-defined dihedral angle value in the most abundant conformations.

  • 33.
    Hamark, Christoffer
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Landström, Jens
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Eriksson, Lars
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Ethyl 3,6-di-O-benzyl-2-deoxy-N-phthalimido-1-thio-β-D-glucopyranoside2010In: Acta Crystallographica Section E: Structure Reports Online, ISSN 1600-5368, E-ISSN 1600-5368, Vol. E66, p. o3250-o3251Article in journal (Refereed)
    Abstract [en]

    In the title compound, C30H31NO6S, the plane of the N-phthalimido group is nearly orthogonal to the least-squares plane of the sugar ring (defined by atoms C2, C3, C5 and O5 using standard glucose nomenclature), making a dihedral angle of 72.8 (1)°. The thioethyl group has the exo-anomeric conformation. The hydroxy group forms an intermolecular hydrogen bond to the O atom in the sugar ring, generating [100] chains. There are four close - contacts with centroid-centroid distances less than 4.0 Å, all with dihedral angles between the interacting systems of only 8°, supporting energetically favourable stacking interactions

  • 34.
    Hamark, Christoffer
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Landström, Jens
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Eriksson, Lars
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Ethyl 4,6-O-benzylidene-2-deoxy-N-phthalimido-1-thio-β-D-glucopyranoside2010In: Acta Crystallographica Section E: Structure Reports Online, ISSN 1600-5368, E-ISSN 1600-5368, Vol. E66, p. o3249-Article in journal (Refereed)
  • 35.
    Hamark, Christoffer
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Landström, Jens
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    SEAL by NMR: Glyco-Based Selenium-Labeled Affinity Ligands Detected by NMR Spectroscopy2014In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 20, no 43, p. 13905-13908Article in journal (Refereed)
    Abstract [en]

    We report a method for the screening of interactions between proteins and selenium-labeled carbohydrate ligands. SEAL by NMR is demonstrated with selenoglycosides binding to lectins where the selenium nucleus serves as an NMR-active handle and reports on binding through Se-77 NMR spectroscopy. In terms of overall sensitivity, this nucleus is comparable to C-13 NMR, while the NMR spectral width is ten times larger, yielding little overlap in Se-77 NMR spectroscopy, even for similar compounds. The studied ligands are singly selenated bioisosteres of methyl glycosides for which straightforward preparation methods are at hand and libraries can readily be generated. The strength of the approach lies in its simplicity, sensitivity to binding events, the tolerance to additives and the possibility of having several ligands in the assay. This study extends the increasing potential of selenium in structure biology and medicinal chemistry. We anticipate that SEAL by NMR will be a beneficial tool for the development of selenium-based bioactive compounds, such as glycomimetic drug candidates.

  • 36. Harper, James K.
    et al.
    Tishler, Derek
    Richardson, David
    Lokvam, John
    Pendrill, Robert
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Solid-State NMR Characterization of the Molecular Conformation in Disordered Methyl alpha-L-Rhamnofuranoside2013In: Journal of Physical Chemistry A, ISSN 1089-5639, E-ISSN 1520-5215, Vol. 117, no 26, p. 5534-5541Article in journal (Refereed)
    Abstract [en]

    A combination of solid-state C-13 NMR tensor data and DFT computational methods is utilized to predict the conformation in disordered methyl alpha-L-rhamnofuranoside. This previously uncharacterized solid is found to be crystalline and consists of at least six distinct conformations that exchange on the kHz time scale. A total of 66 model structures were evaluated, and six were identified as being consistent with experimental C-13 NMR data. All feasible structures have very similar carbon and oxygen positions and differ most significantly in OH hydrogen orientations. A concerted rearrangement of OH hydrogens is proposed to account for the observed dynamic disorder. This rearrangement is accompanied by smaller changes in ring conformation and is slow enough to be observed on the NMR time scale due to severe steric crowding among ring substituents. The relatively minor differences in non-hydrogen atom positions in the final structures suggest that characterization of a complete crystal structure by X-ray powder diffraction may be feasible.

  • 37. Hatcher, Elizabeth
    et al.
    Säwén, Elin
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    MacKerell, Jr., Alexander D.
    Conformational properties of methyl β-maltoside and methyl α- and β-cellobioside disaccharides2011In: Journal of Physical Chemistry B, ISSN 1520-6106, E-ISSN 1520-5207, Vol. 115, no 3, p. 597-608Article in journal (Refereed)
    Abstract [en]

    An investigation of the conformational properties of methyl β-maltoside, methyl α-cellobioside, and methyl β-cellobioside disaccharides using NMR spectroscopy and molecular dynamics (MD) techniques, is presented. Emphasis is placed on validation of a recently presented force field for hexopyranose disaccharides followed by elucidation of the conformational properties of two different types of glycosidic linkages, α-(1 → 4) and β-(1 → 4). Both gas-phase and aqueous-phase simulations are performed to gain insight into the effect of solvent on the conformational properties. A number of transglycosidic J-coupling constants and proton−proton distances are calculated from the simulations and are used to identify the percent sampling of the three glycosidic conformations (syn, anti-, and anti-ψ) and, in turn, describe the flexibility around the glycosidic linkage. The results show the force field to be in overall good agreement with experiment, although some very small limitations are evident. Subsequently, a thorough hydrogen bonding analysis is performed to obtain insights into the conformational properties of the disaccharides. In methyl β-maltoside, competition between HO2′−O3 intramolecular hydrogen bonding and intermolecular hydrogen bonding of those groups with solvent leads to increased sampling of syn, anti-, and anti-ψ conformations and better agreement with NMR J-coupling constants. In methyl α- and β-cellobioside, O5′−HO6 and HO2′−O3 hydrogen bonding interactions are in competition with intermolecular hydrogen bonding involving the solvent molecules. This competition leads to retention of the O5′−HO3 hydrogen bond and increased sampling of the syn region of the /ψ map. Moreover, glycosidic torsions are correlated to the intramolecular hydrogen bonding occurring in the molecules. The present results verify that in the β-(1 → 4)-linkage intramolecular hydrogen bonding in the aqueous phase is due to the decreased ability of water to successfully compete for the O5′ and HO3 hydrogen bonding moieties, in contrast to that occurring between the O5′ and HO6 atoms in this α-(1 → 4)-linkage.

  • 38. Jakhetia, Richa
    et al.
    Marri, Aruna
    Ståhle, Jonas
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Verma, Naresh K.
    Serotype-conversion in Shigella flexneri: identification of a novel bacteriophage, Sf101, from a serotype 7a strain2014In: BMC Genomics, ISSN 1471-2164, E-ISSN 1471-2164, Vol. 15, p. 742-Article in journal (Refereed)
    Abstract [en]

    Background: Shigella flexneri is the major cause of bacillary dysentery in the developing countries. The lipopolysaccharide (LPS) O-antigen of S. flexneri plays an important role in its pathogenesis and also divides S. flexneri into 19 serotypes. All the serotypes with an exception for serotype 6 share a common O-antigen backbone comprising of N-acetylglucosamine and three rhamnose residues. Different serotypes result from modification of the basic backbone conferred by phage-encoded glucosyltransferase and/or acetyltransferase genes, or plasmid-encoded phosphoethanolamine transferase. Recently, a new site for O-acetylation at positions 3 and 4 of Rha(III), in serotypes 1a, 1b, 2a, 5a and Y was shown to be mediated by the oacB gene. Additionally, this gene was shown to be carried by a transposon-like structure inserted upstream of the adrA region on the chromosome. Results: In this study, a novel bacteriophage Sf101, encoding the oacB gene was isolated and characterised from a serotype 7a strain. The complete sequence of its 38,742 bp genome encoding 66 open reading frames (orfs) was determined. Comparative analysis revealed that phage Sf101 has a mosaic genome, and most of its proteins were >90% identical to the proteins from 12 previously characterised lambdoid phages. In addition, the organisation of Sf101 genes was found to be highly similar to bacteriophage Sf6. Analysis of the Sf101 OacB identified two amino acid substitutions in the protein; however, results obtained by NMR spectroscopy confirmed that Sf101-OacB was functional. Inspection of the chromosomal integration site of Sf101 phage revealed that this phage integrates in the sbcB locus, thus unveiling a new site for integration of serotype-converting phages of S. flexneri, and determining an alternative location of oacB gene in the chromosome. Furthermore, this study identified oacB gene in several serotype 7a isolates from various regions providing evidence of O-acetyl modification in serotype 7a. Conclusions: This is the first report on the isolation of bacteriophage Sf101 which contains the S. flexneri O-antigen modification gene oacB. Sf101 has a highly mosaic genome and was found to integrate in the sbcB locus. These findings contribute an advance in our current knowledge of serotype converting phages of S. flexneri.

  • 39. Jo, Sunhwan
    et al.
    Myatt, Daniel
    Qi, Yifei
    Doutch, James
    Clifton, Luke A.
    Im, Wonpil
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Multiple Conformational States Contribute to the 3D Structure of a Glucan Decasaccharide: A Combined SAXS and MD Simulation Study2018In: Journal of Physical Chemistry B, ISSN 1520-6106, E-ISSN 1520-5207, Vol. 122, no 3, p. 1169-1175Article in journal (Refereed)
    Abstract [en]

    The inherent flexibility of carbohydrates is dependent on stereochemical arrangements, and characterization of their influence and importance will give insight into the three-dimensional structure and dynamics. In this study, a beta-(1 -> 4)/beta-(1 -> 3)-linked glucosyl decasaccharide is experimentally investigated by synchrotron small-angle X-ray scattering from which its radius of gyration (R-g) is obtained. Molecular dynamics (MD) simulations of the decasaccharide show four populated states at each glycosidic linkage, namely, syn- and anti-conformations. The calculated R-g values from the MD simulation reveal that in addition to syn-conformers the presence of anti-psi conformational states is required to reproduce experimental scattering data, unveiling inherent glycosidic linkage flexibility. The CHARMM36 force field for carbohydrates thus describes the conformational flexibility of the decasaccharide very well and captures the conceptual importance that anti-conformers are to be anticipated at glycosidic linkages of carbohydrates.

  • 40. Johannessen, Christian
    et al.
    Pendrill, Robert
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Hecht, Lutz
    Barron, Laurence D.
    Glycan structure of a high-mannose glycoprotein from Raman optical activity2011In: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 50, no 23, p. 5349-5351Article in journal (Refereed)
    Abstract [en]

    A revealing signature: The glycan structure of intact yeast external invertase, a high-mannose glycoprotein used as biocatalyst, was investigated by using Raman optical activity (ROA) spectroscopy. The conformational preferences present in mannose-containing di- and trisaccharides were found to be preserved in the glycan chains, with secondary polpeptide backbone structure suppressed.

  • 41.
    Jonsson, K. Hanna M.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Pendrill, Robert
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    NMR analysis of conformationally dependent nJC,H and nJC,C in the trisaccharide α-L-Rhap-(1→2)[α-L-Rhap-(1→3)]-α-L-Rhap-OMe and a site-specifically labeled isotopologue thereof2011In: Magnetic Resonance in Chemistry, ISSN 0749-1581, E-ISSN 1097-458X, Vol. 49, no 3, p. 117-124Article in journal (Refereed)
    Abstract [en]

    An array of NMR spectroscopy experiments have been carried out to obtain conformationally dependent 1H,13C- and 13C,13C-spin–spin coupling constants in the trisaccharide α-L-Rhap-(1 → 2)[α-L-Rhap-(1 → 3)]-α-L-Rhap-OMe. The trisaccharide was synthesized with 13C site-specific labeling at C2′ and C2″, i.e. in the rhamnosyl groups in order to alleviate 1H spectral overlap. This facilitated the measurement of a key trans-glycosidic proton–proton cross-relaxation rate using 1D 1H,1H-T-ROESY experiments as well as a 3JC, H coupling employing 1D 1H,13C-long-range experiments, devoid of potential interference from additional J coupling. By means of both the natural abundance compound and the 13C-labeled sample 2D 1H,13C-J-HMBC and 1H,13C-HSQC-HECADE NMR experiments, total line-shape analysis of 1H NMR spectra and 1D 13C NMR experiments were employed to extract 3JC, H, 2JC, H, 3JC, C, and 1JC, C coupling constants. The 13C site-specific labeling facilitates straightforward determination of nJC, C as the splitting of the 13C natural abundance resonances. This study resulted in eight conformationally dependent coupling constants for the trisaccharide and illustrates the use of 13C site-specific labeling as a valuable approach that extends the 1D and 2D NMR methods in current use to attain both hetero- and homonuclear spin–spin coupling constants that subsequently can be utilized for conformational analysis.

  • 42.
    Jonsson, K. Hanna M.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Säwén, Elin
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Studies on the conformational flexibility of alpha-L-rhamnose-containing oligosaccharides using C-13-site-specific labeling, NMR spectroscopy and molecular simulations: implications for the three-dimensional structure of bacterial rhamnan polysaccharides2012In: Organic and biomolecular chemistry, ISSN 1477-0520, E-ISSN 1477-0539, Vol. 10, no 12, p. 2453-2463Article in journal (Refereed)
    Abstract [en]

    Bacterial polysaccharides are comprised of a variety of monosaccharides, L-rhamnose (6-deoxy-L-mannose) being one of them. This sugar is often part of alpha-(1 -> 2)- and/or alpha-(1 -> 3)-linkages and we have therefore studied the disaccharide alpha-L-Rhap-(1 -> 2)-alpha-L-Rhap-OMe to obtain information on conformational preferences at this glycosidic linkage. The target disaccharide was synthesized with C-13 site-specific labeling at C1' and at C2', i.e., in the terminal group. 2D H-1, C-13-HSQC-HECADE and H-1, C-13-J-HMBC NMR experiments, 1D C-13 and H-1 NMR spectra together with total line-shape analysis were used to extract conformationally dependent hetero- and homonuclear spin-spin coupling constants. This resulted in the determination of (2)JC(2',H1'), (3)J(C1',C1), (3)J(C1',C3), (3)J(C2',C2), (2)J(C1',C2), (1)JC(1',C2'), and (1)J(C1',H1'). These data together with previously determined J(CH) and H-1, H-1 NOEs result in fourteen conformationally dependent NMR parameters that are available for analysis of glycosidic linkage flexibility and conformational preferences. A 100 ns molecular dynamics (MD) simulation of the disaccharide with explicit water molecules as solvent showed a major conformational state at phi(H) approximate to 40 degrees and psi(H) approximate to -35 degrees, consistent with experimental NMR data. In addition, MD simulations were carried out also for alpha-L-Rhap-(1 -> 3)-alpha-L-Rhap-OMe and a rhamnan hexasaccharide. The gathered information on the oligosaccharides was used to address conformational preferences for a larger structure, a 2- and 3-linked nonasaccharide, with implications for the 3D structure of rhamnan polysaccharides, which should be regarded as flexible polymers.

  • 43.
    Jonsson, K. Hanna M.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Weintraub, Andrej
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Structural studies of the O-antigenic polysaccharide from Shigella dysenteriae type 3 and Escherichia coli O124, a reinvestigation2006In: Carbohydrate Research, ISSN 0008-6215, E-ISSN 1873-426X, Vol. 341, p. 2986-2989Article in journal (Refereed)
  • 44. Kang, Yu
    et al.
    Gohlke, Ulrich
    Engström, Olof
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Hamark, Christoffer
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Scheidt, Tom
    Heinemann, Udo
    Max-Delbrück-Centrum für Molekulare Medizin.
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Lipowski, Reinhard
    Santer, Mark
    Barbirz, Stefanie
    Probing the conformational space of Shigella flexneri O‑antigen bound to the tailspike protein of bacteriophage Sf6 by X-ray crystallography, NMR, and Molecular DynamicsManuscript (preprint) (Other academic)
  • 45. Kotsyubynskyy, Dmytro
    et al.
    Zerbetto, Mirco
    Šoltésová, Mária
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). Charles University Prague .
    Engström, Olof
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Pendrill, Robert
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kowalewski, Josef
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Polimeno, Antonin
    Stochastic Modeling of Flexible Biomolecules Applied to NMR Relaxation: 2. Interpretation of Complex Dynamics in Linear Oligosaccharides2012In: Journal of Physical Chemistry B, ISSN 1520-6106, E-ISSN 1520-5207, Vol. 116, no 50, p. 14541-14555Article in journal (Refereed)
    Abstract [en]

    A computational stochastic approach is applied to the description of flexible molecules. By combining (i) molecular dynamics simulations, (ii) hydrodynamics approaches, and (iii) a multidimensional diffusive description for internal and global dynamics, it is possible to build an efficient integrated approach to the interpretation of relaxation processes in flexible systems. In particular, the model is applied to the interpretation of nuclear magnetic relaxation measurements of linear oligosaccharides, namely a mannose-containing trisaccharide and the pentasaccharide LNF-1. Experimental data are reproduced with sufficient accuracy without free model parameters.

  • 46. Kuttel, Michelle M.
    et al.
    Ståhle, Jonas
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    CarbBuilder: Software for building molecular models of complex oligo- and polysaccharide structures2016In: Journal of Computational Chemistry, ISSN 0192-8651, E-ISSN 1096-987X, Vol. 37, no 22, p. 2098-2105Article in journal (Refereed)
    Abstract [en]

    CarbBuilder is a portable software tool for producing three-dimensional molecular models of carbohydrates from the simple text specification of a primary structure. CarbBuilder can generate a wide variety of carbohydrate structures, ranging from monosaccharides to large, branched polysaccharides. Version 2.0 of the software, described in this article, supports monosaccharides of both mammalian and bacterial origin and a range of substituents for derivatization of individual sugar residues. This improved version has a sophisticated building algorithm to explore the range of possible conformations for a specified carbohydrate molecule. Illustrative examples of models of complex polysaccharides produced by CarbBuilder demonstrate the capabilities of the software. CarbBuilder is freely available under the Artistic License 2.0.

  • 47. Kuttel, Michelle
    et al.
    Mao, Yue
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Lundborg, Magnus
    CarbBuilder: an adjustable tool for building 3D molecular structures of carbohydrates for molecular simulation2011In:  Proceedings - 2011 7th IEEE International Conference on eScience, eScience 2011, , art. no. 6123304, 2011, p. 395-402Conference paper (Refereed)
    Abstract [en]

    CarbBuilder is a software tool for building 3D structures of carbohydrates, which are the most structurally varied of all molecular classes. CarbBuilder was designed with the dual aims of portability and adaptability, using an iterative software development approach. CarbBuilder employs a simple algorithm, using heuristics based upon experimental data to convert a primary structure description of a carbohydrate molecule into a three-dimensional structure file. This straightforward approach means that CarbBuilder can be easily adapted: users can add additional monosaccharide building blocks or alter the conformational defaults to suit specific requirements. The output carbohydrate structure can be used for subsequent molecular simulation investigations. CarbBuilder is freely available and portable: it is a text-based stand-alone program that can run on Windows, Linux and MacOS X systems without installation.

  • 48.
    Landström, Jens
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bergström, Maria
    Hamark, Christoffer
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Ohlson, Sten
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Combining weak affinity chromatography, NMR spectroscopy and molecular simulations in carbohydrate-lysozyme interaction studies2012In: Organic and biomolecular chemistry, ISSN 1477-0520, E-ISSN 1477-0539, Vol. 10, no 15, p. 3019-3032Article in journal (Refereed)
    Abstract [en]

    By examining the interactions between the protein hen egg-white lysozyme (HEWL) and commercially available and chemically synthesized carbohydrate ligands using a combination of weak affinity chromatography (WAC), NMR spectroscopy and molecular simulations, we report on new affinity data as well as a detailed binding model for the HEWL protein. The equilibrium dissociation constants of the ligands were obtained by WAC but also by NMR spectroscopy, which agreed well. The structures of two HEWL-disaccharide complexes in solution were deduced by NMR spectroscopy using H-1 saturation transfer difference (STD) effects and transferred H-1,H-1-NOESY experiments, relaxation-matrix calculations, molecular docking and molecular dynamics simulations. In solution the two disaccharides beta-D-Galp-(1 -> 4)-beta-D-GlcpNAc-OMe and beta-D-GlcpNAc-(1 -> 4)-beta-D-GlcpNAc-OMe bind to the B and C sites of HEWL in a syn-conformation at the glycosidic linkage between the two sugar residues. Intermolecular hydrogen bonding and CH/pi-interactions form the basis of the protein-ligand complexes in a way characteristic of carbohydrate-protein interactions. Molecular dynamics simulations with explicit water molecules of both the apo-form of the protein and a ligand-protein complex showed structural change compared to a crystal structure of the protein. The flexibility of HEWL as indicated by a residue-based root-mean-square deviation analysis indicated similarities overall, with some residue specific differences, inter alia, for Arg61 that is situated prior to a flexible loop. The Arg61 flexibility was notably larger in the ligand-complexed form of HEWL. N,N'-Diacetylchitobiose has previously been observed to bind to HEWL at the B and C sites in water solution based on H-1 NMR chemical shift changes in the protein whereas the disaccharide binds at either the B and C sites or the C and D sites in different crystal complexes. The present study thus highlights that protein-ligand complexes may vary notably between the solution and solid states, underscoring the importance of targeting the pertinent binding site(s) for inhibition of protein activity and the advantages of combining different techniques in a screening process.

  • 49.
    Landström, Jens
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Persson, Karina
    Rademacher, Christoph
    Lundborg, Magnus
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Peters, Thomas
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Exploration of the molecular recognition and dynamic properties of WaaG glycosyltransferaseManuscript (preprint) (Other academic)
  • 50.
    Landström, Jens
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Glycan flexibility: insights into nanosecond dynamics from a microsecond molecular dynamics simulation explaining an unusual nuclear Overhauser effect2010In: Carbohydrate Research, ISSN 0008-6215, E-ISSN 1873-426X, Vol. 345, no 2, p. 330-333Article in journal (Refereed)
123 1 - 50 of 110
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf