Change search
Refine search result
1 - 10 of 10
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Burkhardt, Anja
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Eriksson, Lars
    Stockholm University, Faculty of Science, Department of Physical, Inorganic and Structural Chemistry, Department of Structural Chemistry.
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Cumpstey, Ian
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    (Z)-1,2:5,6-di-O-isopropylidene-α-D-ribo-hexofuranos-3-ulose O-benzyloxime2009In: Acta Crystallographica Section E: Structure Reports Online, ISSN 1600-5368, E-ISSN 1600-5368, Vol. E65, no Part 3, p. o633-o633Article in journal (Refereed)
  • 2.
    Deiana, Luca
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Dziedzic, Pawel
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Zhao, Gui-Ling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Vesely, Jan
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Ibrahem, Ismail
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Rios, Ramón
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Sun, Junliang
    Stockholm University, Faculty of Science, Department of Physical, Inorganic and Structural Chemistry, Structural Chemistry.
    Córdova, Armando
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Catalytic asymmetric aziridination of α,β-unsaturated aldehydes2011In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 17, no 28, p. 7904-7917Article in journal (Refereed)
    Abstract [en]

    The development, scope, and application of the highly enantioselective organocatalytic aziridination of α,β-unsaturated aldehydes is presented. The aminocatalytic azirdination of α,β-unsaturated aldehydes enables the asymmetric formation of β-formyl aziridines with up to >19:1 d.r. and 99% ee. The aminocatalytic aziridination of α-monosubstituted enals gives access to terminal α-substituted-α-formyl aziridines in high yields and upto 99% ee. In the case of the organocatalytic aziridination of disubstituted α,β-unsaturated aldehydes, the transformations were highly diastereo- and enantioselective and give nearly enantiomerically pure β-formyl-functionalized aziridine products (99% ee). A highly enantioselective one-pot cascade sequence based on the combination of asymmetric amine and N-heterocycliccarbene catalysis (AHCC) is also disclosed. This one-pot three-component co-catalytic transformation between α,β-unsaturated aldehydes, hydroxylamine derivatives, and alcohols gives the corresponding N-tert-butoxycarbonyl and N-carbobenzyloxy-protected β-amino acid esters with ee values ranging from 92–99%. The mechanisms and stereochemistry of all these catalytic transformations are also discussed.

  • 3.
    Deiana, Luca
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Zhao, Gui-Ling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Leijonmarck, Hans
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Lehmann, Christian
    Sun, Junliang
    Stockholm University, Faculty of Science, Department of Physical, Inorganic and Structural Chemistry, Structural Chemistry.
    Lehmann, Christian W.
    Córdova, Armando
    Stockholm University, Faculty of Science, Department of Organic Chemistry. Mid Sweden University.
    Direct Catalytic Asymmetric Synthesis of Pyrazolidine Derivatives2012In: ChemistryOpen, ISSN 2191-1363, Vol. 1, no 3, p. 134-139Article in journal (Refereed)
    Abstract [en]

    A highly enantioselective, metal-free cascade reaction between di-1,2-N-protected hydrazine and α,β-unsaturated aldehydes is disclosed. The catalytic, asymmetric cascade transformation is a direct entry to 3-hydroxypyrazolidine and 3-allylpyrazolidine derivatives in one step and two steps, respectively, with >19:1 d.r. and 98–99 % ee using simple chiral pyrrolidines as catalysts.

  • 4.
    Gao, Weiming
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Sun, Junliang
    Stockholm University, Faculty of Science, Department of Physical, Inorganic and Structural Chemistry, Structural Chemistry.
    Åkermark, Torbjörn
    Li, Mingrun
    Stockholm University, Faculty of Science, Department of Physical, Inorganic and Structural Chemistry, Structural Chemistry.
    Eriksson, Lars
    Stockholm University, Faculty of Science, Department of Physical, Inorganic and Structural Chemistry, Structural Chemistry.
    Sun, Licheng
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Attachment of a hydrogen-bonding carboxylate side chain to an [FeFe]-hydrogenase model complex: Influence on the catalytic mechanism2010In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 16, no 8, p. 2537-2546Article in journal (Refereed)
    Abstract [en]

    Azapropanedithiolate (adt)-bridged model complexes of [FeFe]-hydrogenase bearing a carboxylic acid functionality have been designed with the aim of decreasing the potential for reduction of protons to hydrogen. Protonation of the bisphosphine complexes 46 has been studied by in situ IR and NMR spectroscopy, which revealed that protonation with triflic acid most likely takes place first at the N-bridge for complex 4 but at the FeFe bond for complexes 5 and 6. Using an excess of acid, the diprotonated species could also be observed, but none of the protonated species was sufficiently stable to be isolated in a pure state. Electrochemical studies have provided an insight into the catalytic mechanisms under strongly acidic conditions, and have also shown that complexes 3 and 6 are electro-active in aqueous solution even in the absence of acid, presumably due to hydrogen bonding. Hydrogen evolution, driven by visible light, has been observed for three-component systems consisting of [Ru(bpy)3]2+, complex 1, 2, or 3, and ascorbic acid in CH3CN/D2O solution by on-line mass spectrometry.

  • 5.
    Ramstadius, Clinton
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Hekmat, Omid
    Department of Biochemistry, Lund University.
    Eriksson, Lars
    Stockholm University, Faculty of Science, Department of Physical, Inorganic and Structural Chemistry, Structural Chemistry.
    Stålbrand, Henrik
    Department of Biochemistry, Lund University.
    Cumpstey, Ian
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    β-Mannosidase and β-hexosaminidase inhibitors: synthesis of 1,2-bis-epi-valienamine and 1-epi-2-acetamido-2-deoxy-valienamine from D-mannose2009In: Tetrahedron: asymmetry, ISSN 0957-4166, E-ISSN 1362-511X, Vol. 20, no 6-8, p. 795-807Article in journal (Refereed)
    Abstract [en]

    A partially protected C-5C-5a unsaturated carbasugar with α-lyxo configuration is synthesised in five steps and 26% overall yield from a known mannose-derived hemiacetal, using ring-closing metathesis as a key step. This carbasugar is converted into valienamine derivatives with β-lyxo (i.e., corresponding to β-manno at C-1–C-4), α-lyxo (i.e., corresponding to α-manno at C-1–C-4) and β-2-acetamido-2-deoxy-xylo (i.e., corresponding to β-GlcNAc at C-1–C-4) configurations. This is the first report of the synthesis of the β-lyxo compound, 1,2-bis-epi-valienamine, which was found to inhibit Cellulomonas fimi β-mannosidase (CfMan2A) with Ki 140 μM. We report the crystal structures of three protected C-5C-5a unsaturated carbasugars with lyxo configuration.

  • 6.
    Samec, Joseph S. M.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Éll, Alida H.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åberg, Jenny B.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Privalov, Timofei
    Kungliga Tekniska Högskolan.
    Eriksson, Lars
    Stockholm University, Faculty of Science, Department of Physical, Inorganic and Structural Chemistry, Department of Structural Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Mechanistic Study of Hydrogen Transfer to Imines from a Hydroxycyclopentadienyl Ruthenium Hydride. Experimental Support for a Mechanism Involving Coordination of Imine to Ruthenium Prior to Hydrogen Transfer2006In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 128, no 44, p. 14293-14305Article in journal (Refereed)
    Abstract [en]

    Reaction of [2,3,4,5-Ph4(η5-C4COH)Ru(CO)2H] (2) with different imines afforded ruthenium amine complexes at low temperatures. At higher temperatures in the presence of 2, the complexes decomposed to give [Ru2(CO)4(μ-H)(C4Ph4COHOCC4Ph4)] (1) and free amine. Electron-rich imines gave ruthenium amine complexes with 2 at a lower temperature than did electron-deficient imines. The negligible deuterium isotope effect (kRuHOH/kRuDOD = 1.05) observed in the reaction of 2 with N-phenyl[1-(4-methoxyphenyl)ethylidene]amine (12) shows that neither hydride (RuH) nor proton (OH) is transferred to the imine in the rate-determining step. In the dehydrogenation of N-phenyl-1-phenylethylamine (4) to the corresponding imine 8 by [2,3,4,5-Ph4(η4-C4CO)Ru(CO)2] (A), the kinetic isotope effects observed support a stepwise hydrogen transfer where the isotope effect for C−H cleavage (kCHNH/kCDNH = 3.24) is equal to the combined (C−H, N−H) isotope effect (kCHNH/kCDND = 3.26). Hydrogenation of N-methyl(1-phenylethylidene)amine (14) by 2 in the presence of the external amine trap N-methyl-1-(4-methoxyphenyl)ethylamine (16) afforded 90−100% of complex [2,3,4,5-Ph4(η4-C4CO)]Ru(CO)2NH(CH3)(CHPhCH3) (15), which is the complex between ruthenium and the amine newly generated from the imine. At −80 °C the reaction of hydride 2 with 4-BnNH-C6H9=NPh (18), with an internal amine trap, only afforded [2,3,4,5-Ph44-C4CO)](CO)2RuNH(Ph)(C6H10-4-NHBn) (19), where the ruthenium binds to the amine originating from the imine, showing that neither complex A nor the diamine is formed. Above −8 °C complex 19 rearranged to the thermodynamically more stable [Ph4(η4-C4CO)](CO)2RuNH(Bn)(C6H10-4-NHPh) (20). These results are consistent with an inner sphere mechanism in which the substrate coordinates to ruthenium prior to hydrogen transfer and are difficult to explain with the outer sphere pathway previously proposed.

  • 7.
    Tran, Lien-Hoa
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Eriksson, Lars
    Stockholm University, Faculty of Science, Department of Physical, Inorganic and Structural Chemistry, department of Structural Chemistry.
    Sun, Licheng
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    A New Square Planar Mn(III) Complex for Catalytic Epoxidation of Stilbene2008In: Journal of Organometallic Chemistry, ISSN 0022-328X, E-ISSN 1872-8561, Vol. 693, p. 1150-1153Article in journal (Refereed)
  • 8.
    Ullah, Farman
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Zhao, Gui-Ling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Deiana, Luca
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Zhu, Mingzhao
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Dziedzic, Pawel
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Ibrahem, Ismail
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Hammar, Peter
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Sun, Junliang
    Stockholm University, Faculty of Science, Department of Physical, Inorganic and Structural Chemistry, Department of Structural Chemistry. Stockholm University, Faculty of Science, Department of Physical, Inorganic and Structural Chemistry.
    Córdova, Armando
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Enantioselective organocatalytic conjugate addition of fluorocarbon nucleophiles to α,β-unsaturated aldehydes2009In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 15, no 39, p. 10013-10017Article in journal (Refereed)
    Abstract [en]

    A highly chemo- and enantioselective organocatalytic addition of fluorocarbon nucleophiles, such as 1-fluoro-bis(phenylsulfonyl)methane, toα,β-unsaturated aldehydes is presented (see scheme). The reactions are catalyzed by simple chiral amines and give access to optically active fluorine derivatives in good yields and up to 95 % ee. Notably, the methodology can be applied to the formation of a chiral quaternary carbon center bearing a fluorine atom with high enantioselectivity.

  • 9.
    Zhao, Gui-Ling
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Dziedzic, Pawel
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Ullah, Farman
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Eriksson, Lars
    Stockholm University, Faculty of Science, Department of Physical, Inorganic and Structural Chemistry, Department of Structural Chemistry.
    Córdova, Armando
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Organocatalytic enantioselective domino synthesis of highly functionalized cyclohexanes with an all-carbon quaternary stereocenter2009In: Tetrahedron Letters, ISSN 0040-4039, E-ISSN 1359-8562, Vol. 50, no 26, p. 3458-3462Article in journal (Refereed)
    Abstract [en]

    A highly enantioselective organocatalytic domino Michael/aldol reaction is presented. The reaction is catalyzed by chiral amines and gives access to highly functionalized cyclohexanes with one all-carbon quaternary stereocenter and multiple chiral stereocenters in high yields and 83–98% ee.

  • 10.
    Zhao, Gui-Ling
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Ullah, Farman
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Luca, Deiana
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Lin, Shuangzheng
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Zhang, Qiong
    Sun, Junliang
    Stockholm University, Faculty of Science, Department of Physical, Inorganic and Structural Chemistry, Structural Chemistry.
    Ibrahem, Ismail
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Dziedzic, Pawel
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Córdova, Armando
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Dynamic kinetic asymmetric transformation (DYKAT) by combined amine- and transition-metal-catalyzed enantioselective cycloisomerization2010In: Chemistry: a European Journal, ISSN 0947-6539, Vol. 16, no 5, p. 1585-1591Article in journal (Refereed)
1 - 10 of 10
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf