Change search
Refine search result
3456789 251 - 300 of 1038
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 251.
    Fontana, Carolina
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Weintraub, Andrej
    Karolinska Institute.
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Facile Structural Elucidation of Glycans Using NMR Spectroscopy Data and the Program CASPER: Application to the O-Antigen Polysaccharide of Escherichia coli O1552013In: ChemPlusChem, ISSN 2192-6506, Vol. 78, no 11, p. 1327-1329Article in journal (Refereed)
    Abstract [en]

    The program CASPER was successfully employed to rapidly elucidate a new O-antigen polysaccharide structure (obtained from a strain of Escherichia coli serogroup O155), using solelyunassigned NMR spectroscopy data as input information. Thus, what is considered the most tedious and time-consuming part of the structural elucidation process has been reduced from several hours (or even days) of manual interpretation to about four minutes of automated analysis.

  • 252.
    Fontana, Carolina
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Weintraub, Andrej
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Structural studies and biosynthetic aspects of the O-antigen polysaccharide from Escherichia coli O422015In: Carbohydrate Research, ISSN 0008-6215, E-ISSN 1873-426X, Vol. 403, p. 174-181Article in journal (Refereed)
    Abstract [en]

    The structure of the O-antigen polysaccharide (PS) from Escherichia coli O42 has been investigated by NMR spectroscopy as the main method, which was complemented with sugar analysis, mass spectrometry, and analysis of biosynthetic information. The O-specific chain of the O-deacylated lipopolysaccharide (LPS-OH) consists of branched tetrasaccharide-glycerol repeating units joined by phosphodiester linkages. The lipid-free polysaccharide contains 0.8 equiv of O-acetyl groups per repeating unit and has the following teichoic acid-like structure: Based on biosynthetic aspects, this should also be the biological repeating unit. This O-antigen structure is remarkably similar to that of E. coli O28ac, differing only in the presence or absence, respectively, of a glucose residue at the branching point. The structural similarity explains the serological cross-reactivity observed between strains of these two serogroups, and also their almost identical O-antigen gene cluster sequences. -> 2)-(R)-Gro-(1-P-4)-beta-D-GlcpNAc-(1 -> 3)-beta-D-Galf2Ac-(1 -> 3)-alpha-D-GlcpNAc-(1 -> vertical bar a-D-Glcp-(1 -> 3)

  • 253.
    Fontana, Carolina
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Zaccheus, Mona V.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Weintraub, Andrej
    Ansaruzzaman, Mohammad
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Structural studies of a polysaccharide from Vibrio parahaemolyticus strain AN-160002016In: Carbohydrate Research, ISSN 0008-6215, E-ISSN 1873-426X, Vol. 432, p. 41-49Article in journal (Refereed)
    Abstract [en]

    The structure of a polysaccharide from Vibrio parahaemolyticus strain AN-16000 has been investigated. The sugar and absolute configuration analysis revealed D-Glc, D-GalN, D-QuiN and L-FucN as major components. The PS was subjected to dephosphorylation with aqueous 40% HF to obtain an oligosaccharide that was analyzed by H-1 and C-13 NMR spectroscopy. The HR-MS spectrum of the oligosaccharide revealed a pentasaccharide composed of two Glc residues, one QuiNAc and one GalNAc, one FucNAc, as well as a glycerol moiety. The structure of the PS was determined using H-1, C-13, N-15 and P-31 NMR spectroscopy; inter-residue correlations were identified by H-1, C-13-heteronuclear multiple-bond correlation, H-1, H-1-NOESY and H-1, P-31-hetero-TOCSY experiments. The PS backbone has the following teichoic acid-like structure: -> 3)-D-Gro-(1-P-6)-beta-D-Glcp-(1 -> 4)-alpha-L-FucpNAc-(1 -> 3)-beta-D-QuipNAc-(1 -> with a side-chain consisting of alpha-D-Glcp-(1 -> 6)-alpha-D-GalpNAc-(1 -> linked to the O3 position of the FucNAc residue.

  • 254. Foster, R. A.
    et al.
    Carlin, N. I. A.
    Majcher, M.
    Tabor, H.
    Ng, L.-K.
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Structural elucidation of the O-antigen of the Shigella flexneri provisionalserotype 88-893: structural and serological similarities with S. flexneri provisional serotype Y394 (1c)2011In: Carbohydrate Research, ISSN 0008-6215, E-ISSN 1873-426X, Vol. 346, no 6, p. 872-876Article in journal (Refereed)
    Abstract [en]

    The structure of the repeating unit of the O-antigen polysaccharide from Shigella flexneri provisional serotype 88-893 has been determined. 1H and 13C NMR spectroscopy as well as 2D NMR experiments were employed to elucidate the structure. The carbohydrate part of the hexasaccharide repeating unit is identical to the previously elucidated structure of the O-polysaccharide from S. flexneri prov. serotype Y394. The O-antigen of S. flexneri prov. serotype 88-893 carries 0.7 mol O-acetyl group per repeating unit located at O-2 of the 3-substituted rhamnosyl residue, as identified by H2BC and BS-CT-HMBC NMR experiments. The O-antigen polysaccharide is composed of hexasaccharide repeating units with the following structure: →2)-α-l-Rhap-(1→2)-α-l-Rhap-(1→3)-α-l-Rhap2Ac-(1→3)[α-d-Glcp-(1→2)-α-d-Glcp-(1→4)]-β-d-GlcpNAc-(1→. Serological studies showed that type antigens for the two provisional serotypes are identical; in addition 88-893 expresses S. flexneri group factor 6 antigen. We propose that provisional serotypes Y394 and 88-893 be designated as two new serotypes 7a and 7b, respectively, in the S. flexneri typing scheme.

  • 255. Fourniere, Viviane
    et al.
    Skantz, Linnea
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Sajtos, Ferenc
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Oscarson, Stefan
    Lahmann, Martina
    Synthesis of the Lewis b pentasaccharide and a HSA-conjugate thereof2010In: Tetrahedron, ISSN 0040-4020, E-ISSN 1464-5416, Vol. 66, no 39, p. 7850-7855Article in journal (Refereed)
    Abstract [en]

    Helicobacter pylori, a gastric pathogen, binds to various blood group antigens, including the Lewis types, present in the gastric tissue and a relation between the presentation of the ligands and the overall strength of binding has been assumed. Synthetic Lewis b tetra- and hexasaccharide conjugates are available but not the analogous pentasaccharide. An efficient synthesis of the amino spacer equipped Lewis b pentasaccharide, 3-aminopropyl alpha-L-fucopyranosyl-(1 -> 2)-beta-D-galactopyranosyl-(1 3)-[alpha-L-fucopyranosyl-(1 -> 4)]-2-acetamido-2-deoxy-beta-D-glucopyranosyl-(1 -> 3)-beta-D-galactopyranoside, is presented to enable further investigation of the carbohydrate recognition process of H. pylori.

  • 256.
    Fournière, Viviane
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Cumpstey, Ian
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Synthesis of non-glycosidically linked selenoether pseudodisaccharides2010In: Tetrahedron Letters, ISSN 0040-4039, E-ISSN 1359-8562, Vol. 51, no 16, p. 2127-2129Article in journal (Refereed)
    Abstract [en]

    Non-glycosidically linked disaccharide mimetics with a selenoether functionality linking the two monosaccharide residues have been synthesised. Protected Glc(Se3–3)Glc, Glc(Se3–6)Glc and Glc(Se3–6)Man structures were obtained. Selenium was introduced by displacement of carbohydrate sulfonates with a selenobenzoate anion. Conversion into diselenides by methanolysis of the benzoate and aerial oxidation was followed by reduction of the diselenides to selenolates, and in situ displacement of a second carbohydrate sulfonate in an SN2 reaction to give selenoethers. Glc(Se3–3)Glc and Glc(Se3–6)Glc were also obtained in deprotected form.

  • 257.
    Fransson, Ann-Britt L.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Deracemization of Functionalized Alcohols via Combined Ruthenium and Enzyme Catalysis2006Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The major part of this thesis describes the synthesis of enantiopure alcohols and diols by combining ruthenium-catalyzed racemization or epimerization and lipase-catalyzed asymmetric transformations. A minor part of this thesis is focused on ruthenium-catalyzed redox reactions for transfer hydrogenation of 1,3-cycloalkanediketones.

    Kinetic resolution of racemic γ-hydroxy acid derivatives was performed via Pseudomonas cepacia lipase (PS-C)-catalyzed transesterification. γ-Hydroxy esters and γ-hydroxy amides were studied showing in higher selec-tivity and yields for the γ-hydroxy amides. The enzyme PS-C tolerates both variation in the chain length and different functionalities giving good to high enantioselectivity. Combining enzymatic kinetic resolution with a ruthenium-catalyzed racemization led to a dynamic kinetic resolution (DKR). The use of 2,4-dimethyl-3-pentanol as a hydrogen source to suppress ketone formation in the dynamic kinetic resolution increased the yields of the acetate product. The synthetic utility of this procedure was illustrated by the practical synthesis of the γ-lactone (R)-5-methyltetrahydrofuran-2-one.

    A distereoselective transformation of cis/trans-1,3-cyclohexandiol using Candida antarctica lipase B (CALB)-catalyzed transesterification was of interest. Desymmetrization of cis-1,3-cyclohexanediol to the (R-monoacetate was successfully accomplished. Enantiopure (R,R)-diacetate was obtained from the (R)-monoacetate in a DYKAT process at room tem-perature. Metal- and enzyme-catalyzed transformation of cis/trans-1,3-cyclohexanediol using PS-C, gives a high diastereoselectivity for cis-diacetate. The (S)-mono-acetate was obtained from cis-diacetate by CALB-catalyzed hydrolysis. In addition, it was shown, by the use of deuterium-labeling that intramolecular acyl migration does not occur in the transformation of cis-monoacetate to the cis-diacetate.

    Ruthenium-catalyzed transfer hydrogenation of 1,3-cyclohexanedione under microwave heating was developed as an efficient and fast method for the preparation of 1,3-cycloalkandiols.

  • 258.
    Fransson, Ann-Britt L.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Borén, Linnéa
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Pàmies, Oscar
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kinetic Resolution and Chemoenzymatic Dynamic Kinetic Resolution of Functionalized γ-Hydroxy Amides2005In: Journal of Organic Chemistry, ISSN 0022-3263, E-ISSN 1520-6904, Vol. 70, no 7, p. 2582-2587Article in journal (Refereed)
    Abstract [en]

    An efficient kinetic resolution of racemic gamma-hydroxy amides 1 was performed via Pseudomas cepacia lipase (PS-C)-catalyzed transesterification. The enzyme PS-C tolerates both variation in the chain length and different functionalities giving good to high enantioselectivity (E values of up to > 250). The combination of enzymatic kinetic resolution with a ruthenium-catalyzed racemization led to a dynamic kinetic resolution. The use of 2,4-dimethyl-3-pentanol as a hydrogen source to suppress ketone formation in the dynamic kinetic resolution yields the corresponding acetates in good yield and good to high enantioselectivity (ee's up to 98%). The synthetic utility of this procedure was illustrated by the practical synthesis of the versatile intermediate gamma-lactone (R)-5-methyltetrahydrofuran-2-one.

  • 259.
    Fransson, Ann-Britt L.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Xu, Yongmei
    Leijondahl, Karin
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Enzymatic Resolution, Desymmetrization and Dynamic Kinetic Asym-metric Transformation of 1,3-Cycloalkanediols2006In: Journal of Organic Chemistry, ISSN 0022-3263, E-ISSN 1520-6904, Vol. 71, no 17, p. 6309-6316Article in journal (Refereed)
    Abstract [en]

    An efficient desymmetrization of cis-1,3-cyclohexanediol to (1S,3R)-3-(acetoxy)-1-cyclohexanol ((R,S)-2a) was performed via Candida antarctica lipase B (CALB)-catalyzed transesterification, in high yield (up to 93%) and excellent enantioselectivity (ee's up to >99.5%). (R,R)-Diacetate ((R,R)-3a) was obtained in a DYKAT process at room temperature from (1S,3R)-3-acetoxy-1-cyclohexanol ((R,S)-2a), in a high trans/cis ratio (91:9) and in excellent enantioselectivity of >99%. Metal- and enzyme-catalyzed dynamic transformation of cis/trans-1,3-cyclohexanediol using PS-C gave a high diastereoselectivity for cis-diacetate (cis/trans = 97:3). The (1R,3S)-3-acetoxy-1-cyclohexanol (ent-(R,S)-2a) was obtained from cis-diacetate by CALB-catalyzed hydrolysis in an excellent yield (97%) and selectivity (>99% ee). By deuterium labeling it was shown that intramolecular acyl migration does not occur in the transformation of cis-monoacetate to the cis-diacetate.

  • 260.
    Franzén, Johan
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Palladium-Catalyzed Carbocyclizations of Allenes with Unsaturated Hydrocarbons2004Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Palladium-catalyzed reactions of unsaturated hydrocarbons are important processes in organic chemistry especially for the generation of ring systems. This thesis describes the development and mechanistic studies of carbocyclization reactions of allenes with olefins, allyls or 1,3-dienes catalyzed by palladium(0)- and palladium(II)-complexes. These reactions generally exhibit high stereo- and regioselectivity and give rise to stereodefined [n,3,0] bicyclic systems (n=3,4,5,6) in good to excellent yields. The mechanisms for these reactions were investigated with special attention directed to the intramolecular reaction of (π-allyl)palladium(II)-complexes and (π-1,3-diene)palladium(II)-complexes with allenes. It was demonstrated that the carbon-carbon bond formation occurred by nucleophilic attack of the middle carbon atom of the allene on the face of the allyl or 1,3-diene opposite to that of the palladium atom. Further, two new types of oxidative palladium(II)-catalyzed reactions between allenes and olefins or 1,3-dienes have been developed. These cyclizations constitute a new type of carbon-carbon bond forming reaction and there are support for a palladium(II)-catalyzed C-H activation at the allenic moiety rendering a vinylidienepalladium-intermediate followed by carbon-carbon bond formation via insertion of the olefin or 1,3-diene.

  • 261. François, Camille
    et al.
    Pourchet, Sylvie
    Boni, Gilles
    Rautiainen, Sari
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Samec, Joseph
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Fournier, Lucie
    Robert, Carine
    Thomas, Christophe M.
    Fontaine, Stephane
    Gaillard, Yves
    Placet, Vincent
    Plasseraud, Laurent
    Design and synthesis of biobased epoxy thermosets from biorenewable resources2017In: Comptes rendus. Chimie, ISSN 1631-0748, E-ISSN 1878-1543, Vol. 20, no 11-12, p. 1006-1016Article in journal (Refereed)
    Abstract [en]

    Biobased diepoxy synthons derived from isoeugenol, eugenol or resorcinol (DGE-isoEu, DGE-Eu and DGER, respectively) have been used as epoxy monomers in replacement of the diglycidyl ether of bisphenol A (DGEBA). Their curing with six different biobased anhydride hardeners leads to fully biobased epoxy thermosets. These materials exhibit interesting thermal and mechanical properties comparable to those obtained with conventional petrosourced DGEBA-based epoxy resins cured in similar conditions. In particular, a high T-g in the range of 90-130 degrees C and instantaneous moduli higher than 4.3 GPa have been recorded. These good performances are very encouraging, making these new fully biobased epoxy thermosets compatible with the usual structural application of epoxy materials.

  • 262.
    Frigell, Jens
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Synthesis of O-linked Carbasugar Analogues of Galactofuranosides and N-linked Neodisaccharides2010Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    In this thesis, carbohydrate mimicry is investigated through the syntheses of carbohydrate analogues and evaluation of their inhibitory effects on carbohydrate-processing enzymes.

    Galactofuranosides are interesting structures because they are common motifs in pathogenic microorganisms but not found in mammals. M.tuberculosis, responsible for the disease tuberculosis, has a cell wall containing a repeating unit of alternating (1→5)- and (1→6)-linked β-D-galactofuranosyl residues. Synthetic inhibitors of the enzymes involved in the biosynthesis of the cell wall could find great therapeutic use.

    The first part of this thesis describes the first synthesis of the hydrolytically stable carbasugar analogue of galactofuranose, 4a-carba-β-D-Galf, and the synthetic work of synthesising β-linked pseudodisaccharides containing carba-Galf, which were tested for glycosyltransferease inhibitory activity. The pseudodisaccharide carba-Galf-(β1→5)-carba-Galf was found to be a moderate inhibitor of the glycosyltransferase GlfT2 of M.tuberculosis. The thesis also describes how a general method towards biologically relevant α-linked carba-Galf ethers was developed.

    The final part of this thesis is focussed on the formation of nitrogen-linked monosaccharides without the participation of the anomeric centre. Such a mode of coupling is called tail-to-tail neodisaccharide formation. The couplings of carbohydrate derivatives via the Mitsunobu reaction are successfully reported herein. The method describes the key introduction of an allylic alcohol in the electrophile and the subsequent functionalisation of the alkene to obtain the neodisaccharide. Two synthesised neodisaccharides presented in this thesis have been sent to be tested for glycosidase inhibitory activity.

  • 263.
    Frigell, Jens
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Cumpstey, Ian
    Carbasugar analogues of galactofuranose: α-O-linked derivativesManuscript (preprint) (Other academic)
    Abstract [en]

    Using an indirect method, we have synthesised α-linked carbasugar analogues of galactofuranosides for the first time. Opening of a β-talo configured carbasugar 1,2-epoxide by alcohol nucleophiles under Lewis acidic conditions proceeded with very good regioselectivity to give α-talo configured C-1-substituted ethers with OH-2 free. Inversion of configuration at OH-2 by an oxidation–reduction sequence gave the α-galacto configured carbahexofuranose C-1 ethers. A carbadisaccharide corresponding to the Galf(α1→3)Manp substructure from Apodus deciduus galactomannan was synthesised to exemplify the method.

  • 264.
    Frigell, Jens
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Cumpstey, Ian
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Carbasugar analogues of galactofuranosides: alpha-O-linked derivatives2010In: BEILSTEIN J ORG CHEM, ISSN 1860-5397, Vol. 6, p. 1127-1131Article in journal (Refereed)
    Abstract [en]

    Using an indirect method, we have synthesised alpha-linked carbasugar analogues of galactofuranosides for the first time. Ring opening of a beta-talo configured carbasugar 1,2-epoxide by alcohol nucleophiles under Lewis acidic conditions proceeded with very good regioselectivity to give alpha-talo configured C1-substituted ethers with a free OH-group at the C2 position. Inversion of configuration at C2 by an oxidation-reduction sequence gave the alpha-galacto configured carbahexofuranose C1 ethers. A carbadisaccharide corresponding to the Galf(alpha 1 -> 3)Manp substructure from Apodus deciduus galactomannan was synthesised to exemplify the method.

  • 265.
    Frigell, Jens
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Cumpstey, Ian
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    First synthesis of 4a-carba-beta-D-galactofuranose2007In: Tetrahedron Letters, ISSN 0040-4039, E-ISSN 1359-8562, Vol. 48, no 52, p. 9073-9076Article in journal (Refereed)
  • 266.
    Frigell, Jens
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Cumpstey, Ian
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Synthesis of carbadisaccharide mimics of galactofuranosides2009In: Tetrahedron Letters, ISSN 0040-4039, E-ISSN 1359-8562, Vol. 50, no 36, p. 5142-5144Article in journal (Refereed)
  • 267.
    Frigell, Jens
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Eriksson, Lars
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Cumpstey, Ian
    Carbasugar analogues of galactofuranosides: β-O-linked derivativesManuscript (preprint) (Other academic)
    Abstract [en]

    A selectively protected carbasugar analogue of β-galactofuranose was synthesised from glucose using ring-closing metathesis as the key step. The carbasugar was converted into an α-galacto configured 1,2-epoxide, which was an effective electrophile in Lewis acid catalysed coupling reactions with alcohols. The epoxide was opened with regioselective attack at C-1 to give β-galacto configured C-1 ethers. Using carbohydrates as nucleophiles, we synthesised a number of pseudodisaccharides.

  • 268.
    Frigell, Jens
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Pearcey, J.A.
    Lowary, T.
    Cumpstey, Ian
    Carbasugar Analogues of Galactofuranose: Pseudodisaccharide Mimics of Fragments of Mycobacterial ArabinogalactanManuscript (preprint) (Other academic)
    Abstract [en]

    A partially protected carbasugar analogue of β-galactofuranose was converted into an α-galacto configured 1,2-epoxide, which was was opened by alcohols under Lewis acid catalysis with regioselective attack at C-1 to give β-galacto configured C-1 ethers. Using OH-5 and OH-6 carbagalactofuranose derivatives as nucleophiles, we synthesised pseudodisaccharide analogues of substructures of the arabinogalactan from M. tuberculosis. The dicarba analogue of the disaccharide Galf(β1→5)Galf was found to moderately inhibit the action of GlfT2 galactofuranosyl transferase from M. tuberculosis.

  • 269.
    Frigell, Jens
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Pearcey, Jean A.
    Lowary, Todd L.
    Cumpstey, Ian
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Carbasugar Analogues of Galactofuranosides: Pseudodisaccharide Mimics of Fragments of Mycobacterial Arabinogalactan2011In: European Journal of Organic Chemistry, ISSN 1434-193X, E-ISSN 1099-0690, no 7, p. 1367-1375Article in journal (Refereed)
    Abstract [en]

    A partially protected carbasugar analogue of beta-galactofuranose was converted into an alpha-galacto-configured 1,2-epoxide, which was opened by alcohols under Lewis acid catalysis with regioselective attack at C-1 to give beta-galacto-configured C-1 ethers. Using OH-5 and OH-6 carbagalactofuranose derivatives as nucleophiles, we synthesised pseudodisaccharide analogues of substructures of the arabinogalactan from M. tuberculosis. The dicarba analogue of the disaccharide Galf(beta 1 -> 5) Galf was found to moderately inhibit the action of GlfT2 galactofuranosyl transferase from M. tuberculosis.

  • 270.
    Gao, Weiming
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Sun, Junliang
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK), Inorganic and Structural Chemistry.
    Li, Mingrun
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK), Inorganic and Structural Chemistry.
    Åkermark, Torbjörn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Romare, Kristina
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Sun, Licheng
    Royal Institute of Technology (KTH), Department of Organic Chemistry.
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Synthesis of a [3Fe2S] cluster with low redox potential from [2Fe2S] hydrogenase models: electrochemical and photochemical generation of hydrogen2011In: European Journal of Inorganic Chemistry, ISSN 1434-1948, E-ISSN 1099-1948, Vol. 2011, no 7, p. 1100-1105Article in journal (Refereed)
    Abstract [en]

    In the attempted replacement of carbon monoxide by the bis(phosphane) dppv in a dinuclear [2Fe2S] complex, a trinuclear [3Fe2S] complex with two bis(phosphane) ligands was unexpectedly obtained. On protonation, this gave a bridged hydride complex with an unusually low potential for the reduction of protons to molecular hydrogen. The redox potential also appears sufficiently positive for direct electron transfer from an excited [Ru(bpy)(3)](2+) sensitizer.

  • 271.
    Gao, Weiming
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Sun, Junliang
    Stockholm University, Faculty of Science, Department of Physical, Inorganic and Structural Chemistry, Structural Chemistry.
    Åkermark, Torbjörn
    Li, Mingrun
    Stockholm University, Faculty of Science, Department of Physical, Inorganic and Structural Chemistry, Structural Chemistry.
    Eriksson, Lars
    Stockholm University, Faculty of Science, Department of Physical, Inorganic and Structural Chemistry, Structural Chemistry.
    Sun, Licheng
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Attachment of a hydrogen-bonding carboxylate side chain to an [FeFe]-hydrogenase model complex: Influence on the catalytic mechanism2010In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 16, no 8, p. 2537-2546Article in journal (Refereed)
    Abstract [en]

    Azapropanedithiolate (adt)-bridged model complexes of [FeFe]-hydrogenase bearing a carboxylic acid functionality have been designed with the aim of decreasing the potential for reduction of protons to hydrogen. Protonation of the bisphosphine complexes 46 has been studied by in situ IR and NMR spectroscopy, which revealed that protonation with triflic acid most likely takes place first at the N-bridge for complex 4 but at the FeFe bond for complexes 5 and 6. Using an excess of acid, the diprotonated species could also be observed, but none of the protonated species was sufficiently stable to be isolated in a pure state. Electrochemical studies have provided an insight into the catalytic mechanisms under strongly acidic conditions, and have also shown that complexes 3 and 6 are electro-active in aqueous solution even in the absence of acid, presumably due to hydrogen bonding. Hydrogen evolution, driven by visible light, has been observed for three-component systems consisting of [Ru(bpy)3]2+, complex 1, 2, or 3, and ascorbic acid in CH3CN/D2O solution by on-line mass spectrometry.

  • 272.
    Gao, Yan
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Torbjörn
    Liu, Jianhui
    Sun, Licheng
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Nucleophilic attack of hydroxide on a MnV oxo complex: a model of the O-O bond formation in the oxygen evolving complex of photosystem II2009In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 131, no 25, p. 8726-8727Article in journal (Refereed)
  • 273.
    Gemma, Emiliano
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Synthesis of Oligosaccharides for Interaction Studies with Various Lectins2005Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    In this thesis, the syntheses of oligosaccharides for interaction studies with various lectins are described. The first section reports the syntheses of tetra, tri- and disaccharides corresponding to truncated versions of the glucosylated arm of Glc1Man9(GlcNAc)2, found in the biosynthesis of N-glycans. The thermodynamic parameters of their interaction with calreticulin, a lectin assisting and promoting the correct folding of newly synthesised glycoproteins, were established by isothermal titration calorimetry. In the second section, a new synthetic pathway leading to the same tetra- and trisaccharides is discussed. Adoption of a convergent strategy and of a different protecting group pattern resulted in significantly increased yields of the target structures. The third section describes the syntheses of a number of monodeoxy-trisaccharides related to the above trisaccharide Glc-α-(1→3)-Man-α-(1→2)-Man-α-OMe. Differentsynthetic approaches were explored and the choice of early introduction of the deoxy functionality proved the most beneficial. In the last section, the synthesis of spacer-linked LacNAc dimers as substrates for the lectins galectin-1 and -3 is presented. This synthesis was realized by glycosidation of a number diols with peracetylated LacNAc-oxazoline. Pyridinium triflate was tested as a new promoter, affording the target dimers in high yields. This promoter in combination with microwave irradiation gave even higher yields and also shortened the reaction times.

  • 274.
    Gemma, Emiliano
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Lahmann, Martina
    Oscarson, Stefan
    Synthesis of the tetrasaccharide α-D-Glcp-(1→3)-α-D-Manp-(1→2)-α-D-Manp-(1→2)-α-D-Manp recognised by Calreticulin/Calnexin2005In: Carbohydrate Research, ISSN 0008-6215, E-ISSN 1873-426X, Vol. 340, no 16, p. 2558-2562Article in journal (Refereed)
    Abstract [en]

    The title compound as its methyl glycoside was efficiently synthesized using a block synthesis approach. Halide-assisted glycosidations between 6-O-acetyl-2,3,4-tri-O-benzyl-α-d-glucopyranosyl iodide and ethyl 2-O-acetyl-4,6-di-O-benzyl-1-thio-α-d-mannopyranoside using triphenylphosphine oxide as promoter yielded, with complete α-selectivity, a disaccharide building block in high yield. The perbenzylated derivative of this proved to be an excellent donor affording 88% of the protected target tetrasaccharide in an NIS/AgOTf-promoted coupling to a known methyl dimannoside acceptor. Deprotection through catalytic hydrogenolysis then gave the target compound in 47% overall yield.

  • 275.
    Georgieva, Polina
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Quantum chemical modeling of enzymatic reactions: The Case of histone lysine methyltransferase2010In: Journal of Computational Chemistry, ISSN 0192-8651, E-ISSN 1096-987X, Vol. 31, no 8, p. 1707-1714Article in journal (Refereed)
    Abstract [en]

    Quantum chemical cluster models of enzyme active sites are today an important and powerful tool in the study of various aspects of enzymatic reactivity. This methodology has been applied to a wide spectrum of reactions and many important mechanistic problems have been solved. Herein, we report a systematic study of the reaction mechanism of the histone lysine methyltransferase (HKMT) SET7/9 enzyme, which catalyzes the methylation of the N-terminal histone tail of the chromatin structure. In this study, HKMT SET7/9 serves as a representative case to examine the modeling approach for the important class of methyl transfer enzymes. Active site models of different sizes are used to evaluate the methodology. In particular, the dependence of the calculated energies on the model size, the influence of the dielectric medium, and the particular choice of the dielectric constant are discussed. In addition, we examine the validity of some technical aspects, such as geometry optimization in solvent or with a large basis set, and the use of different density functional methods.

  • 276. Georgieva, Polina
    et al.
    Wu, Qian
    McLeish, Michael J.
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    The reaction mechanism of phenylethanolamine N-methyltransferase: A density functional theory study2009In: Biochimica et Biophysica Acta, ISSN 0006-3002, E-ISSN 1878-2434, Vol. 1794, no 12, p. 1831-1837Article in journal (Refereed)
  • 277.
    Ghosh, Raju
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Lindstedt, Erik
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Jalalian, Nazli
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Olofsson, Berit
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Room Temperature, Metal-Free Arylation of Aliphatic Alcohols2014In: ChemistryOpen, ISSN 2191-1363, Vol. 3, no 2, p. 54-57Article in journal (Refereed)
    Abstract [en]

    Diaryliodonium salts are demonstrated as efficient arylating agents of aliphatic alcohols under metal-free conditions. The reaction proceeds at room temperature within 90min to give alkyl aryl ethers in good to excellent yields. Aryl groups with electron-withdrawing substituents are transferred most efficiently, and unsymmetric iodonium salts give chemoselective arylations. The methodology has been applied to the formal synthesis of butoxycaine.

  • 278.
    Ghosh, Raju
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Olofsson, Berit
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Metal-Free Synthesis of N-Aryloxyimides and Aryloxyamines2014In: Organic Letters, ISSN 1523-7060, E-ISSN 1523-7052, Vol. 16, no 6, p. 1830-1832Article in journal (Refereed)
    Abstract [en]

    N-Hydroxyphthalimide and N-hydroxysuccinimide have been arylated with diaryliodonium salts to provide N-aryloxyimides in excellent yields in short reaction times. A novel hydrolysis under mild and hydrazine-free conditions yielded aryloxyamines, which are valuable building blocks in the synthesis of oxime ethers and benzofurans.

  • 279.
    Ghosh, Raju
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Stridfeldt, Elin
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Olofsson, Berit
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Metal-Free One-Pot Synthesis of Benzofurans2014In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 20, no 29, p. 8888-8892Article in journal (Refereed)
    Abstract [en]

    Ethyl acetohydroxamate was efficiently arylated with diaryliodonium salts at room temperature under transition-metal-free conditions. The obtained O-arylated products were reacted in situ with ketones under acidic conditions to yield substituted benzo[b]furans through oxime formation, [3,3]-rearrangement, and cyclization in a fast and operationally simple one-pot fashion without using excess reagents. Alternatively, the O-arylated products could be isolated or transformed in situ to aryloxyamines or O-arylaldoximes. The methodology was applied to the synthesis of Stemofuran A and the formal syntheses of Coumestan, Eupomatenoid 6, and (+)-machaeriol B.

  • 280.
    Gigant, Nicolas
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Access to Cinnamyl Derivatives from Arenes and Allyl Esters by a Biomimetic Aerobic Oxidative Dehydrogenative Coupling2014In: Organic Letters, ISSN 1523-7060, E-ISSN 1523-7052, Vol. 16, no 6, p. 1664-1667Article in journal (Refereed)
    Abstract [en]

    An efficient biomimetic aerobic oxidative dehydrogenative alkenylation of arenes with allyl esters is presented. The reaction proceeds under an ambient pressure of oxygen with relatively low catalyst loading of palladium acetate, employing catalytic amounts of electron-transfer mediators (ETMs). This study represents a new environmentally friendly method for the synthesis of cinnamyl derivatives.

  • 281.
    Gigant, Nicolas
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Aerobic Direct C-H Arylation of Nonbiased Olefins2014In: Organic Letters, ISSN 1523-7060, E-ISSN 1523-7052, Vol. 16, no 17, p. 4432-4435Article in journal (Refereed)
    Abstract [en]

    An efficient ligand-promoted biomimetic aerobic oxidative dehydrogenative cross-coupling between arenes and nonbiased olefins is presented. Acridine as a ligand was found to significantly enhance the rate, the yield, and the scope of the reaction under ambient oxygen pressure, providing a variety of alkenylarenes via an environmentally friendly procedure.

  • 282.
    Gigant, Nicolas
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Aerobic Double Dehydrogenative Cross Coupling between Cyclic Saturated Ketones and Simple Arenes2014In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 20, no 20, p. 5890-5894Article in journal (Refereed)
    Abstract [en]

    The synthesis of 3-aryl-2-cyclohexenones is a topic of current interest as they are not only privileged structures in bioactive molecules, but they are also relevant feedstocks for the synthesis of substituted phenols or anilines, which are ubiquitous structural elements both in drug design and medicinal chemistry. A simple and sustainable one-pot aerobic double dehydrogenative reaction under mild conditions for the introduction of arenes in the -position of cyclic ketones has been developed. Starting from the corresponding saturated ketone, this reaction sequence proceeds under relatively low Pd catalyst loading and involves catalytic amounts of electron-transfer mediators (ETMs) under ambient oxygen pressure.

  • 283.
    Gigant, Nicolas
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry. Université Paris-Sud, France.
    Quintin, Francois
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Preparation of Tetrasubstituted Olefins Using Mono or Double Aerobic Direct C-H Functionalization Strategies: Importance of Steric Effects2015In: Journal of Organic Chemistry, ISSN 0022-3263, E-ISSN 1520-6904, Vol. 80, no 5, p. 2796-2803Article in journal (Refereed)
    Abstract [en]

    A novel protocol for the synthesis of tetrasubstituted olefins through a biomimetic approach has been explored. Both mono- and diarylations were performed under ambient oxygen pressure, giving a range of highly hindered tetrasubstituted alkenes. For diarylation of disubstituted substrates, it was demonstrated that the second arylation is the rate-limiting step of the overall transformation.

  • 284. Girgis, Adel S.
    et al.
    Mabied, Ahmed F.
    Stawinski, Jacek
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Hegazy, Lamees
    George, Riham F.
    Farag, Hanaa
    Shalaby, ElSayed M.
    Farag, I. S. Ahmed
    Synthesis and DFT studies of an antitumor active spiro-oxindole2015In: New Journal of Chemistry, ISSN 1144-0546, E-ISSN 1369-9261, Vol. 39, no 10, p. 8017-8027Article in journal (Refereed)
    Abstract [en]

    An anti-oncological active spiro-oxindole 7 was synthesized regioselectively via a [3+2]-cycloaddition reaction of azomethine ylide to exocyclic olefinic linkage of 4-piperidone 6, exhibiting properties against diverse tumor cell lines including leukemia, melanoma and cancers of the lung, colon, brain, ovary, breast, prostate, and kidney. Compound 7 crystallizes in the monoclinic system and P21/c space group with four molecules in the unit cell. The structure was also studied by AM1, PM3 and DFT techniques. DFT studies support the stereochemical selectivity of the reaction and determine the molecular electrostatic potential and frontier molecular orbitals.

  • 285. Godefroid, Marie
    et al.
    Svensson, Mona V
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Cambier, Pierre
    Uzureau, Sophie
    Mirabella, Aurélie
    De Bolle, Xavier
    Van Cutsem, Pierre
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Letesson, Jean-Jacques
    Brucella melitensis 16M produces a mannan and other extracellular matrix components typical of a biofilm2010In: FEMS Immunology and Medical Microbiology, ISSN 0928-8244, E-ISSN 1574-695X, Vol. 59, no 3, p. 364-377Article in journal (Refereed)
  • 286.
    Goncalves, Sylvie
    et al.
    Universite de Strasbourg, Faculte de Pharmacie UMR/CNRS 7199, Laboratoire des Systemes Chimiques Fonctionnels, Illkirch, France.
    Santoro, Stefano
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Nicolas, Marc
    Les Laboratoires Pierre Fabre, Centre de Developpement Chimique et Industriel, Gaillac, France.
    Wagner, Alain
    Universite de Strasbourg, Faculte de Pharmacie UMR/CNRS 7199, Laboratoire des Systemes Chimiques Fonctionnels, Illkirch, France.
    Maillos, Philippe
    Les Laboratoires Pierre Fabre, Centre de Developpement Chimique et Industriel, Gaillac, France.
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Baati, Rachid
    Universite de Strasbourg, Faculte de Pharmacie UMR/CNRS 7199, Laboratoire des Systemes Chimiques Fonctionnels, Illkirch, France.
    Cationic cyclization of 2-alkenyl-1,3-dithiolanes: DiastereoselectiveSynthesis of trans-decalins2011In: Journal of Organic Chemistry, ISSN 0022-3263, E-ISSN 1520-6904, Vol. 76, no 9, p. 3274-3285Article in journal (Refereed)
    Abstract [en]

    An unprecedented and highly diastereoselective 6-endo-trig cyclization of 2-alkenyl-1,3-dithiolanes has beendeveloped yielding trans-decalins, an important scaffold present in numerous di- and triterpenes. The novelty of this 6-endo-trigc yclization stands in the stepwise mechanism involving 2-alkenyl-1,3-dithiolane, acting as a novel latent initiator. It is suggested that the thioketal opens temporarily under the influence of TMSOTf, triggering the cationic 6-endo-trig cyclization, andcloses after C−C bond formation and diastereoselective protonation to terminate the process. DFT calculations confirm this mechanistic proposal and provide a rationale for the observed diastereoselectivity. The reaction tolerates a wide range of functionalities and nucleophilic partners within the substrate. We have also shown that the one-pot 6-endo-trig cyclization followedby in situ 1,3-dithiolane deprotection afford directly the corresponding ketone. This improvement allowed the achievement of the shortest total synthesis of triptophenolide and the shortest formal synthesis of triptolide.

  • 287.
    González Miera, Greco
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Homogeneous and heterogeneous Cp*Ir(III) catalytic systems: Mechanistic studies of redox processes catalyzed by bifunctional iridium complexes, and synthesis of iridium-functionalized MOFs2017Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The purpose of this doctoral thesis is to investigate and develop catalytic processes mediated by iridium(III) complexes. By understanding the mechanisms, the weaknesses of the designed catalysts can be identified and be overcome in the following generation.

    The thesis is composed of two general sections dedicated to the synthesis and applications of homogeneous catalysts and to the preparation of heterogeneous catalysts based on metal-organic frameworks (MOFs). After a general introduction (Chapter 1), the first part of the thesis (Chapters 2-4, and Appendix 1) covers the use of several homogeneous bifunctional [Cp*Ir(III)] catalysts in a variety of chemical transformations, as well as mechanistic studies.

    Chapter 2 summarizes the studies on the N-alkylation of anilines with benzyl alcohols catalyzed by bifunctional Ir(III) complexes. Mechanistic investigations when the reactions were catalyzed by Ir(III) complexes with a hydroxy-functionalized N-heterocyclic carbene (NHC) ligand are discussed, followed by the design of a new generation of catalysts. The chapter finishes presenting the improved catalytic performance of these new complexes.   

    A family of these NHC-iridium complexes was evaluated in the acceptorless dehydrogenation of alcohols, as shown in Chapter 3. The beneficial effect of a co-solvent was investigated too. Under these base-free conditions, a wide scope of alcohols was efficiently dehydrogenated in excellent yields. The unexpected higher activity of the hydroxy-containing bifunctional NHC-Ir(III) catalysts, in comparison to that of the amino-functionalized one, was investigated experimentally.

    In the fourth chapter, the catalytic process presented in Chapter 3 was further explored on 1,4- and 1,5-diols, which were transformed into their corresponding tetrahydrofurans and dihydropyrans, respectively. Mechanistic investigations are also discussed.

    In the second part of the thesis (Chapter 5), a Cp*Ir(III) complex was immobilized into a MOF. The heterogenization of the metal complex was achieved efficiently, reaching high ratios of functionalization. However, a change in the topology of the MOF was observed. In this chapter, the use of advanced characterization techniques such as X-ray absorption spectroscopy (XAS) and pair distribution function (PDF) analyses enabled to study a phase transformation in these materials.

  • 288.
    González Miera, Greco
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Nonclassical cyclodehydration of diols assisted by metal-ligand cooperation2017Article in journal (Refereed)
  • 289.
    González Miera, Greco
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bermejo Gómez, Antonio
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Chupas, Peter J.
    Martín-Matute, Belén
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Chapman, Karena W.
    Platero-Prats, Ana E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Topological Transformation of a Metal–Organic Framework Triggered by Ligand Exchange2017In: Inorganic Chemistry, ISSN 0020-1669, E-ISSN 1520-510X, Vol. 56, no 8, p. 4576-4583Article in journal (Refereed)
    Abstract [en]

    Here we describe the topological transformation of the pores of a new framework in the bio-MOF-100 family (dia-c) into the known isomer (lcs) by doubling the pore volume, which occurs during postsynthesis modifications. During this transformation, reassembling of the metal–organic framework (MOF) building blocks into a completely different framework occurs, involving breaking/forming of metal–ligand bonds. MOF crystallinity and local structure are retained, as determined by powder X-ray diffraction (PXRD) and pair distribution function (PDF) analyses, respectively. We exploited the inherent dynamism of bio-MOF-100 by coupling chemical decorations of the framework using solvent-assisted ligand exchange to the topological change. Following this method and starting from the pristine dense dia-c phase, open lcs-bio-MOF-100 was prepared and functionalized in situ with an iridium complex (IrL). Alternatively, the dia-c MOF could be modified with wide-ranging amounts of IrL up to ca. 50 mol %, as determined by solution 1H NMR spectroscopy, by tuning the concentration of the solutions used and with no evidence for isomer transformation. The single-site nature of the iridium complexes within the MOFs was assessed by X-ray absorption spectroscopy (XAS) and PDF analyses. Ligand exchanges occurred quantitatively at room temperature, with no need of excess of the iridium metallolinker.

  • 290.
    González Miera, Greco
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Martínez-Castro, Elisa
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Martín-Matute, Belén
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Acceptorless Alcohol Dehydrogenation: OH vs NH Effect in Bifunctional NHC–Ir(III) Complexes2018In: Organometallics, ISSN 0276-7333, E-ISSN 1520-6041, Vol. 37, no 5, p. 636-644Article in journal (Refereed)
    Abstract [en]

    Bifunctional complexes bearing N-heterocyclic carbene (NHC) ligands functionalized with hydroxy or amine groups were synthesized to measure the beneficial effect of different modes of metal–ligand cooperation in the acceptorless dehydrogenation of alcohols. In comparison to complexes with an amine moiety, hydroxy-functionalized iridium catalysts showed superior activity. In contrast to alcohols, 1,4-diols underwent cyclization to give the corresponding tetrahydrofurans without involving dehydrogenation processes. Mechanistic investigations to rationalize the “OH effect” in these types of complexes have been undertaken.

  • 291. Goulart, Paula N.
    et al.
    da Silva, Clarissa O.
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    The importance of orientation of exocyclic groups in a naphthoxyloside: A specific rotation calculation study2017In: Journal of Physical Organic Chemistry, ISSN 0894-3230, E-ISSN 1099-1395, Vol. 30, no 12, article id e3708Article in journal (Refereed)
    Abstract [en]

    2-Naphthyl -d-xylopyranoside (XylNap) inhibits -1,4-galactosyltransferase 7 (4GalT7) and thereby growth of tumor cells both in vitro and in vivo. The binding pocket of 4GalT7 has a defined orientation of hydrogen bond acceptors and hydrophobic moiety. Knowing the orientation of the hydroxyl and naphthyl groups of this molecule would help in the development of more efficient inhibitors. In this work, we have tried, for the first time, to determine the exocyclic hydroxyl and aglycon groups orientation of XylNap, using ab initio descriptions, and calculation of the specific rotation values, in methanol solutions, using 2 different solvent descriptions: a dielectric continuum approach (polarizable continuum model [PCM]) and a microsolvated+continuum approach (MS+PCM). In the PCM approach, [](D)=-59 deg/(dm(g/cm(3))) whereas for the MS+PCM approach [](D)=-29 deg/(dm(g/cm(3))). The latter is in excellent agreement with the experimentally determined value in methanol solution, viz, [](D)=-30 deg/(dm(g/cm(3))). This agreement allows us to say that the hydroxyl groups have similar orientations in xylose and XylNap, and the naphthyl group has a very well-defined dihedral angle value in the most abundant conformations.

  • 292.
    Gudmundsson, Arnar
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Gustafson, Karl P. J.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Yang, Bin
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Efficient Formation of 2,3-Dihydrofurans via Iron-Catalyzed Cycloisomerization of alpha-Allenols2018In: ACS Catalysis, ISSN 2155-5435, E-ISSN 2155-5435, Vol. 8, no 1, p. 12-16Article in journal (Refereed)
    Abstract [en]

    Herein, we report a highly efficient iron-catalyzed intramolecular nucleophilic cyclization of alpha-allenols to furnish substituted 2,3-dihydrofurans under mild reaction conditions. A highly diastereoselective variant of the reaction was developed as well, giving diastereomeric ratios of up to 98:2. The combination of the iron-catalyzed cycloisomerization with enzymatic resolution afforded the 2,3-dihydrofuran in high ee. A detailed DFT study provides insight into the reaction mechanism and gives a rationalization for the high chemo-and diastereoselectivity.

  • 293. Gupta, Arvind Kumar
    et al.
    Akkarasamiyo, Sunisa
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Orthaber, Andreas
    Rich Coordination Chemistry of pi-Acceptor Dibenzoarsole Ligands2017In: Inorganic Chemistry, ISSN 0020-1669, E-ISSN 1520-510X, Vol. 56, no 8, p. 4504-4511Article in journal (Refereed)
    Abstract [en]

    A series of dibenzoarsole (also known as 9-arsafluorene) derivatives have been prepared, and their coordination chemistry has been investigated. The different ligand topology and the arsenic substituents govern the reactivity of the ligands. We report various crystal structures of palladium and platinum complexes derived from this family of ligands. The biphenyl backbone of the bridged bidentate ligands allows very flexible coordination. We have also studied the application of an allylic Pd complex in nucleophilic substitution reactions, revealing that the benzoarsole substituent is susceptible to metal insertion.

  • 294.
    Gustafson, Karl P. J.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Studies on Metalloenzymatic Dynamic Kinetic Resolutions and Iron-Catalyzed Reactions of Allenes2018Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The main focus of this thesis lies in the development of new transition metal-catalyzed chemoenzymatic dynamic kinetic resolutions (DKR) of both alcohols and amines. The first part of the thesis deals with the development of new heterogeneous systems for the DKR of amines. The racemization catalysts in these different systems are all composed of palladium nanoparticles supported on either mesoporous silica or incorporated in a biocomposite that is composed of a bioactive cross-linked enzyme aggregate. 

    The second part of the thesis deals with the development of a homogeneous iron catalyst in the racemization of sec-alcohols for the implementation in a chemoenzymatic DKR. Two protocols for the racemization of sec-alcohols are reported. The first one could not be combined with a chemoenzymatic kinetic resolution, although this was overcome in the second iron based protocol. 

    Following the successful iron catalyzed chemoenzymatic DKR of sec-alcohols, the iron catalyst was used in the cyclization of α-allenic alcohols and N-protected amines to furnish 2,3-dihydrofurans and 2,3-dihydropyrroles, respectively. The cyclization is proceeding in a diastereoselective manner.

    The last part of the thesis deals with attempts to further elucidate the mechanism of activation of a known ruthenium racemization catalyst. X-ray absorption spectroscopy using synchrotron radiation was used for this purpose.

  • 295.
    Gustafson, Karl P. J.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Guðmundsson, Arnar
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bajnóczi, Éva
    Ning, Yuan
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Persson, Ingmar
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    In-Situ Structure Determination of a Ruthenium Racemization Catalyst and its Activated Intermediates using X-ray Absorption SpectroscopyManuscript (preprint) (Other academic)
  • 296.
    Gustafson, Karl P. J.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Görbe, Tamás
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    de Gonzalo Calvo, Gonzalo
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Yuan, Ning
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Schreiber, Cynthia
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Shchukarev, Andrey
    Tai, Cheuk-Wai
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Persson, Ingmar
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Application and further structure elucidation of Pd(0)-CalB CLEA biohybrid catalyst- Chemoenzymatic dynamic kinetic resolution of primary benzylic aminesManuscript (preprint) (Other academic)
  • 297.
    Gustafson, Karl P. J.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Lihammar, Richard
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Verho, Oscar
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Engström, Karin
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Chemoenzymatic Dynamic Kinetic Resolution of Primary Amines Using a Recyclable Palladium Nanoparticle Catalyst Together with Lipases2014In: Journal of Organic Chemistry, ISSN 0022-3263, E-ISSN 1520-6904, Vol. 79, no 9, p. 3747-3751Article in journal (Refereed)
    Abstract [en]

    A catalyst consisting of palladium nanoparticles supported on amino-functionalized siliceous mesocellular foam (Pd-AmP-MCF) was used in chemoenzymatic dynamic kinetic resolution (DKR) to convert primary amines to amides in high yields and excellent ee's. The efficiency of the nanocatalyst at temperatures below 70 degrees C enables reaction conditions that are more suitable for enzymes. In the present study, this is exemplified by subjecting 1-phenylethylamine (1a) and analogous benzylic amines to DKR reactions using two commercially available lipases, Novozyme-435 (Candida antartica Lipase B) and Amano Lipase PS-C1 (lipase from Burkholderia cepacia) as biocatalysts. The latter enzyme has not previously been used in the DKR of amines because of its low stability at temperatures over 60 degrees C. The viability of the heterogeneous Pd-AmP-MCF was further demonstrated in a recycling study, which shows that the catalyst can be reused up to five times.

  • 298.
    Gustafson, Karl P. J.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Shatskiy, Andrey
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Verho, Oscar
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kärkäs, Markus D.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Schluschass, Bastian
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Tai, Cheuk-Wai
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Johnston, Eric V.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Water oxidation mediated by ruthenium oxide nanoparticles supported on siliceous mesocellular foam2017In: Catalysis Science & Technology, ISSN 2044-4753, E-ISSN 2044-4761, Vol. 7, no 1, p. 293-299Article in journal (Refereed)
    Abstract [en]

    Artificial photosynthesis is an attractive strategy for converting solar energy into fuel. In this context, development of catalysts for oxidation of water to molecular oxygen remains a critical bottleneck. Herein, we describe the preparation of a well-defined nanostructured RuO2 catalyst, which is able to carry out the oxidation of water both chemically and photochemically. The developed heterogeneous RuO2 nanocatalyst was found to be highly active, exceeding the performance of most known heterogeneous water oxidation catalysts when driven by chemical or photogenerated oxidants.

  • 299.
    Guðmundsson, Arnar
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Gustafson, Karl P. J.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Khanh Mai, Binh
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Hobiger, Viola
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Yang, Bin
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Iron Catalyzed Cyclization of N-protected a-Allenic Amines to 2,3-dihydropyrrolesManuscript (preprint) (Other academic)
  • 300.
    Görbe, Tamás
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Heterogeneous catalysis in racemization and kinetic resolution along a journey in protein engineering2018Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The first part of my thesis concerns the use of heterogeneous acidic resins for racemization of tert-alcohols without any side-product formation. The focus was to develop a system which can be further extended to a DKR protocol consisting of an enzymatic KR reaction. Based on our knowledge of the resins, an unexpected migratory DKR protocol turned out to be an efficient method for the synthesis of carbocyclic allylic carbinols.

    The development of enzyme and metal catalyst hybrids was already an ongoing theme in our group. A supporter-free biohybrid catalyst was developed which can be used in several different types of reactions. The Pd(0)-CalB CLEA catalyst was applied in a two-step-cascade transformation and in the DKR of benzylic primary amines. The catalyst was characterized by different analytical techniques, to understand its composition and structure.

    The enzymes have always been the main focus of the studies and therefore wild type enzymes were initially utilized. However, these natural biocatalysts are associated with certain limitations. In contrast, protein engineering allows for enzymes to be modified and optimized. We have used the technique to create a subtilisin Carlsberg mutant, which was studied both by modeling and in vitro. The mutant was found to catalyze the (S)-selective transesterification of sec-alcohols containing long aliphatic carbon chains, and it also exhibited higher performance in organic solvent.

    The last project concerned the protein engineering of CalA enzyme towards tert-alcohols. The kinetic resolution of tert-alcohols with this enzyme is very slow but it occurs with good enantioselectivity. The aim was therefore to improve the activity of CalA via protein engineering. Seven amino acids were mutated close to the active site and a library was created based on our prediction. Throughout the screening, a few variants showed higher activity, which were sequenced and further analyzed in the transesterification of tert-alcohols.

3456789 251 - 300 of 1038
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf