Change search
Refine search result
45678910 301 - 350 of 1038
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 301.
    Görbe, Tamás
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Gustafson, Karl P. J.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Verho, Oscar
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kervefors, Gabriella
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Zheng, Haoquan
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Zou, Xiaodong
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Johnston, Eric V.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Design of a Pd(0)-CalB CLEA Biohybrid Catalyst and Its Application in a One-Pot Cascade Reaction2017In: ACS Catalysis, ISSN 2155-5435, E-ISSN 2155-5435, Vol. 7, no 3, p. 1601-1605Article in journal (Refereed)
    Abstract [en]

    Herein, a design of a biohybrid catalyst is described, consisting of Pd nanoparticles and a cross-linked network of aggregated lipase B enzyme of Candida antarctica (CalB CLEA) functioning as an active support for the Pd nanoparticles. Both entities of the hybrid catalyst showed good catalytic activity. The applicability was demonstrated in a one-pot reaction, where the Pd-catalyzed cycloisomerization of 4-pentynoic acid afforded a lactone that serves as an acyl donor in a subsequent selective enzymatic kinetic resolution of a set of sec-alcohols. The catalyst proved to be robust and could be recycled five times without a significant loss of activity.

  • 302.
    Görbe, Tamás
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Lihammar, Richard
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Heterogeneous Acid-Catalyzed Racemization of Tertiary Alcohols2018In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 24, no 1, p. 77-80Article in journal (Refereed)
    Abstract [en]

    Tertiary alcohols are important structural motifs in natural products and building blocks in organic synthesis but only few methods are known for their enantioselective preparation. Chiral resolution is one of these approaches that leaves one enantiomer (50% of the material) unaffected. An attractive method to increase the efficiency of those resolutions is to racemize the unaffected enantiomer. In the present work, we have developed a practical racemization protocol for tertiary alcohols. Five different acidic resin materials were tested. The Dowex 50WX8 was the resin of choice since it was capable of racemizing tertiary alcohols without any byproduct formation. Suitable solvents and a biphasic system were investigated, and the optimized system was capable of racemizing differently substituted tertiary alcohols.

  • 303.
    Görbe, Tamás
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Löfgren, Johanna
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Oschmann, Michael
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    S. Humble, Maria
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Transesterification of tert-Alcohols by Engineered Candida antarctica Lipase AManuscript (preprint) (Other academic)
  • 304.
    Hamark, Christoffer
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    The sweet side of molecular structure: NMR spectroscopic studies of glycans and their interactions with proteins2015Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    In this thesis, within the topic of bioorganic chemistry, the molecular structure of carbohydrates has been studied. Carbohydrates, or glycans, are ubiquitous biomolecules exhibiting a wide range of biological roles. The specific functions of these molecules are largely determined by their interactions with proteins and molecular structure ultimately governs such specialized recognition events.

    Glycan-binding proteins, such as lectins or enzymes, often interact with their sweet ligands in a transient fashion and nuclear magnetic resonance spectroscopy (NMR) is a viable technique to probe these complexes. In particular, ligand-based NMR techniques have been employed, typically in combination with other biophysical as well as biochemical and computational methods. The aim of this work has been to gain new insights about specific biological systems, to develop methods and to devise protocols for their studies.

    The first two papers cover NMR-interaction studies of native ligands as well as inhibitor glycans with the enzyme hen egg-white lysozyme and the lectin botulinum neurotoxin type A. Screening experiments were performed to investigate ligand affinities and selectivities. Solution models in combination with X-ray crystal structures were compared in order to evaluate their agreement and the details of interactions.

    A method for application in carbohydrate ligand NMR-screening was developed in paper three. The heteronucleus selenium was exploited as a reporter of selenoglycosides binding to lectins. 77Se NMR spectroscopy proved sensitive to binding events and the presented approach should be useful in large screenings of glycomimetic inhibitors.  In order to obtain sufficient amounts of glycans for bioorganic studies their production often relies on chemical synthesis. In the last paper, the structure of some conformationally highly activated glycosyl donors was thoroughly investigated and related to their reactivity in synthetic glycosylation reactions.  

  • 305.
    Hamark, Christoffer
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Landström, Jens
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Eriksson, Lars
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Ethyl 3,6-di-O-benzyl-2-deoxy-N-phthalimido-1-thio-β-D-glucopyranoside2010In: Acta Crystallographica Section E: Structure Reports Online, ISSN 1600-5368, E-ISSN 1600-5368, Vol. E66, p. o3250-o3251Article in journal (Refereed)
    Abstract [en]

    In the title compound, C30H31NO6S, the plane of the N-phthalimido group is nearly orthogonal to the least-squares plane of the sugar ring (defined by atoms C2, C3, C5 and O5 using standard glucose nomenclature), making a dihedral angle of 72.8 (1)°. The thioethyl group has the exo-anomeric conformation. The hydroxy group forms an intermolecular hydrogen bond to the O atom in the sugar ring, generating [100] chains. There are four close - contacts with centroid-centroid distances less than 4.0 Å, all with dihedral angles between the interacting systems of only 8°, supporting energetically favourable stacking interactions

  • 306.
    Hamark, Christoffer
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Landström, Jens
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Eriksson, Lars
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Ethyl 4,6-O-benzylidene-2-deoxy-N-phthalimido-1-thio-β-D-glucopyranoside2010In: Acta Crystallographica Section E: Structure Reports Online, ISSN 1600-5368, E-ISSN 1600-5368, Vol. E66, p. o3249-Article in journal (Refereed)
  • 307.
    Hamark, Christoffer
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Landström, Jens
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    SEAL by NMR: Glyco-Based Selenium-Labeled Affinity Ligands Detected by NMR Spectroscopy2014In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 20, no 43, p. 13905-13908Article in journal (Refereed)
    Abstract [en]

    We report a method for the screening of interactions between proteins and selenium-labeled carbohydrate ligands. SEAL by NMR is demonstrated with selenoglycosides binding to lectins where the selenium nucleus serves as an NMR-active handle and reports on binding through Se-77 NMR spectroscopy. In terms of overall sensitivity, this nucleus is comparable to C-13 NMR, while the NMR spectral width is ten times larger, yielding little overlap in Se-77 NMR spectroscopy, even for similar compounds. The studied ligands are singly selenated bioisosteres of methyl glycosides for which straightforward preparation methods are at hand and libraries can readily be generated. The strength of the approach lies in its simplicity, sensitivity to binding events, the tolerance to additives and the possibility of having several ligands in the assay. This study extends the increasing potential of selenium in structure biology and medicinal chemistry. We anticipate that SEAL by NMR will be a beneficial tool for the development of selenium-based bioactive compounds, such as glycomimetic drug candidates.

  • 308. Hammarström, Lars G. J.
    et al.
    Harmel, Robert K.
    Granath, Mikael
    Ringom, Rune
    Gravenfors, Ylva
    Stockholm University, Faculty of Science, Department of Organic Chemistry. Stockholm University, Science for Life Laboratory (SciLifeLab).
    Färnegårdh, Katarina
    Stockholm University, Faculty of Science, Department of Organic Chemistry. Stockholm University, Science for Life Laboratory (SciLifeLab).
    Svensson, Per H.
    Wennman, David
    Lundin, Göran
    Roddis, Ylva
    Kitambi, Satish S.
    Bernlind, Alexandra
    Lehmann, Fredrik
    Ernfors, Patrik
    The Oncolytic Efficacy and in Vivo Pharmacokinetics of [2-(4-Chlorophenyl)quinolin-4-yl](piperidine-2-yl)methanol (Vacquinol-1) Are Governed by Distinct Stereochemical Features2016In: Journal of Medicinal Chemistry, ISSN 0022-2623, E-ISSN 1520-4804, Vol. 59, no 18, p. 8577-8592Article in journal (Refereed)
    Abstract [en]

    Glioblastoma remains an incurable brain cancer. Drugs developed in the past 20 years have not improved the prognosis for patients, necessitating the development of new treatments. We have previously reported the therapeutic potential of the quinoline methanol Vacquinol-1 (1) that targets glioblastoma cells and induces cell death by catastrophic vacuolization. Compound 1 is a mixture of four stereoisomers due to the two adjacent stereogenic centers in the molecule, complicating further development in the preclinical setting. This work describes the isolation and characterization of the individual isomers of 1 and shows that these display stereospecific pharmacokinetic and pharmacodynamic features. In addition, we present a stereoselective synthesis of the active isomers, providing a basis for further development of this compound series into a novel experimental therapeutic for glioblastoma.

  • 309.
    Hansson, Jonas
    Stockholm University.
    Synthesis of phosphate-containing oligosaccharides corresponding to capsular antigen structures from Haemophilus influenzae2000Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis describes the synthesis of spacer-equipped di- and trimeric oligosaccharide structures corresponding to fragments of the capsular polysaccharides of Haemophilus influenzae types c and f. Both of these polysaccharides are of the teichoic acid type, built up by disaccharide repeating units linked via interglycosidic phosphodiester bonds. Introduction of the phosphodiester linkages was accomplished employing the glycosyl H-phosphonate method. The syntheses are designed in such a way as to allow the formation of even larger structures, as well as conjugation to a carrier protein. The first section of this thesis presents a general overview of the biological significance and structural features of anomeric phosphodiesters and synthetic approaches towards these structures, including a literature survey of research in this area during the past decade. In the second part, a new approach to the synthesis of anomeric phosphodiester linkages, utilizing non-anomeric glycosyl H-phosphonate acceptors and various galactosyl donors in glycosylation reactions, is described. Finally, synthesis of the capsular polysaccharide fragments of H. influenzae types c and f is discussed.

  • 310. Harper, James K.
    et al.
    Tishler, Derek
    Richardson, David
    Lokvam, John
    Pendrill, Robert
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Solid-State NMR Characterization of the Molecular Conformation in Disordered Methyl alpha-L-Rhamnofuranoside2013In: Journal of Physical Chemistry A, ISSN 1089-5639, E-ISSN 1520-5215, Vol. 117, no 26, p. 5534-5541Article in journal (Refereed)
    Abstract [en]

    A combination of solid-state C-13 NMR tensor data and DFT computational methods is utilized to predict the conformation in disordered methyl alpha-L-rhamnofuranoside. This previously uncharacterized solid is found to be crystalline and consists of at least six distinct conformations that exchange on the kHz time scale. A total of 66 model structures were evaluated, and six were identified as being consistent with experimental C-13 NMR data. All feasible structures have very similar carbon and oxygen positions and differ most significantly in OH hydrogen orientations. A concerted rearrangement of OH hydrogens is proposed to account for the observed dynamic disorder. This rearrangement is accompanied by smaller changes in ring conformation and is slow enough to be observed on the NMR time scale due to severe steric crowding among ring substituents. The relatively minor differences in non-hydrogen atom positions in the final structures suggest that characterization of a complete crystal structure by X-ray powder diffraction may be feasible.

  • 311. Hatcher, Elizabeth
    et al.
    Säwén, Elin
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    MacKerell, Jr., Alexander D.
    Conformational properties of methyl β-maltoside and methyl α- and β-cellobioside disaccharides2011In: Journal of Physical Chemistry B, ISSN 1520-6106, E-ISSN 1520-5207, Vol. 115, no 3, p. 597-608Article in journal (Refereed)
    Abstract [en]

    An investigation of the conformational properties of methyl β-maltoside, methyl α-cellobioside, and methyl β-cellobioside disaccharides using NMR spectroscopy and molecular dynamics (MD) techniques, is presented. Emphasis is placed on validation of a recently presented force field for hexopyranose disaccharides followed by elucidation of the conformational properties of two different types of glycosidic linkages, α-(1 → 4) and β-(1 → 4). Both gas-phase and aqueous-phase simulations are performed to gain insight into the effect of solvent on the conformational properties. A number of transglycosidic J-coupling constants and proton−proton distances are calculated from the simulations and are used to identify the percent sampling of the three glycosidic conformations (syn, anti-, and anti-ψ) and, in turn, describe the flexibility around the glycosidic linkage. The results show the force field to be in overall good agreement with experiment, although some very small limitations are evident. Subsequently, a thorough hydrogen bonding analysis is performed to obtain insights into the conformational properties of the disaccharides. In methyl β-maltoside, competition between HO2′−O3 intramolecular hydrogen bonding and intermolecular hydrogen bonding of those groups with solvent leads to increased sampling of syn, anti-, and anti-ψ conformations and better agreement with NMR J-coupling constants. In methyl α- and β-cellobioside, O5′−HO6 and HO2′−O3 hydrogen bonding interactions are in competition with intermolecular hydrogen bonding involving the solvent molecules. This competition leads to retention of the O5′−HO3 hydrogen bond and increased sampling of the syn region of the /ψ map. Moreover, glycosidic torsions are correlated to the intramolecular hydrogen bonding occurring in the molecules. The present results verify that in the β-(1 → 4)-linkage intramolecular hydrogen bonding in the aqueous phase is due to the decreased ability of water to successfully compete for the O5′ and HO3 hydrogen bonding moieties, in contrast to that occurring between the O5′ and HO6 atoms in this α-(1 → 4)-linkage.

  • 312. Hayashi, Yukiko
    et al.
    Santoro, Stefano
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Azuma, Yuki
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Ohshima, Takashi
    Mashima, Kazushi
    Enzyme-Like Catalysis via Ternary Complex Mechanism: Alkoxy-Bridged Dinuclear Cobalt Complex Mediates Chemoselective O-Esterification over N-Amidation2013In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 135, no 16, p. 6192-6199Article in journal (Refereed)
    Abstract [en]

    Hydroxy group-selective acylation in the presence of more nucleophilic amines was achieved using acetates of first-row late transition metals, such as Mn, Fe, Co, Cu, and Zn. Among them, cobalt(II) acetate was the best catalyst in terms of reactivity and selectivity. The combination of an octanuclear cobalt carboxylate cluster [Co-4(OCOR)(6)O](2) (2a: R = CF3, 2b: R = CH3, 2c: R = Bu-t) with nitrogen-containing ligands, such as 2,2'-bipyridine, provided an efficient catalytic system for transesterification, in which an alkoxide-bridged dinuclear complex, Co-2((OCOBu)-Bu-t)(2)-(bpy)(2)(mu(2)-OCH2-C6H4-4-CH3)(2) (10), was successfully isolated as a key intermediate. Kinetic studies and density functional theory calculations revealed Michaelis-Menten behavior of the complex 10 through an ordered ternary complex mechanism similar to dinuclear metallo-enzymes, suggesting the formation of alkoxides followed by coordination of the ester.

  • 313.
    Henry, Jeffrey L.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Posevins, Daniels
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Yang, Bin
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Qiu, Youai
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Highly Selective Olefin-Assisted Pd-II-Catalyzed Oxidative Alkynylation of Enallenes2017In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 23, no 33, p. 7896-7899Article in journal (Refereed)
    Abstract [en]

    An olefin-assisted, palladium-catalyzed oxidative alkynylation of enallenes for regio- and stereoselective synthesis of substituted trienynes has been developed. The reaction shows a broad substrate scope and good tolerance for various functional groups on the allene moiety, including carboxylic acid esters, free hydroxyls, imides, and alkyl groups. Also, a wide range of terminal alkynes with electron-donating and electron-withdrawing aryls, heteroaryls, alkyls, trimethylsilyl, and free hydroxyl groups are tolerated.

  • 314.
    Hermansson, Kerstin
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    The structures of three bacterial polysaccharides and model studies on oligosaccharides and polyisoprenoids using NMR and FAB-MS1993Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Some vicinally branched milk and blood group oligosaccharides were analyzed using nuclear magnetic resonance (NMR) spectroscopy in order to investigate NMR chemical shift changes that originate from the branching. These 13C-NMR chemical shift changes were used to calculate NMR spectra of oligo- and polysaccharides using the computer program CASPER.

    The structures of three bacterial polysaccharides from Aerococcus viridans var. homari, Fusobacterium necrophorum and Vibrio cholerae 0:5 were investigated using NMR spectroscopy, fast atom bombardment mass spectrometry (FAB-MS) and chemical degradation as the principal methods. All of these polysaccharides contained unusual sugars and non-sugar components, some of which had not been found in nature previously.

    FAB-MS was used for determination of structural features of polyisoprenoids. Different matrices and additives for positive ion FAB-MS of model polyprenol and dolichol compounds were investigated. Negative ion FAB-MS spectra showed peaks for the molecular ions of dolichyl phosphates from rat liver extracts.

  • 315. Hernández-Toribio, Jorge
    et al.
    Gómez Arrayás, Ramón
    Martín-Matute, Belén
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Carretero, Juan C.
    Catalytic asymmetric 1,3-dipolar cycloaddition of azomethine ylides with α,β-unsaturated ketones2009In: Organic Letters, ISSN 1523-7060, E-ISSN 1523-7052, Vol. 11, no 2, p. 393-396Article in journal (Refereed)
  • 316.
    Heshmat, Mojgan
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Privalov, Timofei
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Carbonyl Activation by Borane Lewis Acid Complexation: Transition States of H-2 Splitting at the Activated Carbonyl Carbon Atom in a Lewis Basic Solvent and the Proton-Transfer Dynamics of the Boroalkoxide Intermediate2017In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 23, no 38, p. 9098-9113Article in journal (Refereed)
    Abstract [en]

    By using transition-state (TS) calculations, we examined how Lewis acid (LA) complexation activates carbonyl compounds in the context of hydrogenation of carbonyl compounds by H-2 in Lewis basic (ethereal) solvents containing borane LAs of the type (C6F5)(3)B. According to our calculations, LA complexation does not activate a ketone sufficiently enough for the direct addition of H-2 to the O = C unsaturated bond; but, calculations indicate a possibly facile heterolytic cleavage of H-2 at the activated and thus sufficiently Lewis acidic carbonyl carbon atom with the assistance of the Lewis basic solvent (i.e., 1,4-dioxane or THF). For the solvent-assisted H-2 splitting at the carbonyl carbon atom of (C6F5)(3)B adducts with different ketones, a number of TSs are computed and the obtained results are related to insights from experiment. By using the Born-Oppenheimer molecular dynamics with the DFT for electronic structure calculations, the evolution of the (C6F5)(3)B-alkoxide ionic intermediate and the proton transfer to the alkoxide oxygen atom were investigated. The results indicate a plausible hydrogenation mechanism with a LA, that is, (C6F5)(3)B, as a catalyst, namely, 1) the step of H-2 cleavage that involves a Lewis basic solvent molecule plus the carbonyl carbon atom of thermodynamically stable and experimentally identifiable (C6F5)(3)B-ketone adducts in which (C6F5)(3)B is the Lewis acid promoter, 2) the transfer of the solvent-bound proton to the oxygen atom of the (C6F5)(3)B-alkoxide intermediate giving the (C6F5)(3)B-alcohol adduct, and 3) the S(N)2-style displacement of the alcohol by a ketone or a Lewis basic solvent molecule.

  • 317.
    Heshmat, Mojgan
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Privalov, Timofei
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Computational Elucidation of a Role That Bronsted Acidification of the Lewis Acid-Bound Water Might Play in the Hydrogenation of Carbonyl Compounds with H-2 in Lewis Basic Solvents2017In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 23, no 48, p. 11489-11493Article in journal (Refereed)
    Abstract [en]

    Bronsted acidification of water by Lewis acid (LA) complexation is one of the fundamental principles in chemistry. Using transition-state calculations (TS), herein we investigate the role that Bronsted acidification of the LA-bound water might play in the mechanism of the hydrogenation of carbonyl compounds in Lewis basic solvents under non-anhydrous conditions. The potential energy scans and TS calculations were carried out with a series of eight borane LAs as well as the commonly known strong LA AlCl3 in 1,4-dioxane or THF as Lewis basic solvents. Our molecular model consists of the dative LA-water adduct with hydrogen bonds to acetone and a solvent molecule plus one additional solvent molecule that participates is the TS structure describing the cleavage of H-2 at acetone's carbonyl carbon atom. In all the molecular models applied here, acetone (O=CMe2) is the archetypical carbonyl substrate. We demonstrate that Bronsted acidification of the LA-bound water can indeed lower the barrier height of the solvent-involving H-2-cleavage at the acetone's carbonyl carbon atom. This is significant because at present it is believed that the mechanism of the herein considered reaction is described by the same mechanism regardless of whether the reaction conditions are strictly anhydrous or non-anhydrous. Our results offer an alternative to this belief that warrants consideration and further study.

  • 318.
    Heshmat, Mojgan
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Privalov, Timofei
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    H-2 Cleavage by Frustrated Lewis Pairs Characterized by the Energy Decomposition Analysis of Transition States: An Alternative to the Electron Transfer and Electric Field Models2018In: Journal of Physical Chemistry A, ISSN 1089-5639, E-ISSN 1520-5215, Vol. 122, no 36, p. 7202-7211Article in journal (Refereed)
    Abstract [en]

    Knowing that the Papai's electron transfer (ET) and the Grimme's electric field (EF) models draw attention to somewhat different physical aspects, we are going to systematically (re)examine interactions in the transition states (TSs) of the heterolytic H-2-cleavage by the Frustrated Lewis Pairs (FLPs). Our main vehicle is the quantitative energy decomposition analysis (EDA), a powerful method for elucidation of interactions, plus the analysis of molecular orbitals (MOs). Herein, the Lewis acid (LA) is B(C6F5)(3) and the Lewis bases (LBs) are tBu(3)P, (o-C6H4Me)(3)P, 2,6-lutidine, 2,4,6-lutidine, MeN=C(Ph)Me imine, MeN(H)-C(H)PhMe amine, THF, 1,4-dioxane, and acetone. For a series of the phosphorus-, nitrogen-, and oxygen-bearing LBs plus B(C6F5)(3), we will show that (i) neither the electrostatic nor the orbital interactions dominate but instead both are essential alongside the Pauli repulsion and (ii) the frontier molecular orbitals (FMOs) of a TS can arise not only from the push-pull molecular orbital scheme by Papai et al., which directly involves the occupied sigma and the empty sigma* MOs of H-2, but also from a more intricate but energetically more fitting orbital interactions which have escaped notice thus far.

  • 319.
    Heshmat, Mojgan
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Privalov, Timofei
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Structurally Flexible Oxocarbenium/Borohydride Ion Pair: Dynamics of Hydride Transfer on the Background of Conformational Roaming2018In: Journal of Physical Chemistry A, ISSN 1089-5639, E-ISSN 1520-5215, Vol. 122, no 23, p. 5098-5106Article in journal (Refereed)
    Abstract [en]

    We apply Born-Oppenheimer molecular dynamics to the practically significant [dioxane-H(+)-acetone]-[(C6F5)(3)B-H(-)] and [Et2O-H(+)-OCPr2][(C6F5)(3)B-H(-)] ion pair intermediates. Dynamics of hydride transfer in cation/anion ion pair takes place on the background of large amplitude configurational changes. Geometry of oxocarbenium/borohydride ion pairs is flexible, meaning that we uncover significant actual structural disorder at a finite temperature. Therefore, although the starting structure can be fairly close to the configurational area of the hydride transfer transition state (TS) and despite a low potential energy barrier (ca. 1.5 kcal/mol, according to the literature), already at T approximate to 325 K the system can remain ignorant of the TS region and move round and about (roam) in the configurational space for a period of time in the range between 10 and 100 ps. This indicates structural flexibility of oxocarbenium/borohydride ion pair on apparently a flat potential energy landscape of cation/anion interaction, and this has not been taken into consideration by the free energy estimations in static considerations made thus far. The difference between the dynamics-based representation of the system versus the static representation amounts to the difference between quasi-bimolecular versus unimolecular descriptions of the hydride transfer step.

  • 320.
    Heshmat, Mojgan
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Privalov, Timofei
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Surprisingly Flexible Oxonium/Borohydride Ion Pair Configurations2018In: Journal of Physical Chemistry A, ISSN 1089-5639, E-ISSN 1520-5215, Vol. 122, no 15, p. 3713-3727Article in journal (Refereed)
    Abstract [en]

    We investigate the geometry of oxonium/borohydride ion pairs [ether-H(+) ether] [LA-H(-)] with dioxane, THF, and Et2O as ethers and B(C6F5)(3) as the Lewis acid (LA). The question is about possible location of the disolvated proton [ether -H(+) -ether], with respect to the hydride of the structurally complex [LA -H(-)] anion. Using Born Oppenheimer molecular dynamics and a comparison of the potential and free energies of the optimized configurations, we show that herein considered ion pairs are much more flexible geometrically than previously thought. Conformers with different locations of cations with respect to anions are governed by a flat energy -landscape. We found a novel configuration in which oxonium is below [LA-11((-))], with respect to the direction of borane -> hydride vector, and the proton -hydride distance is ca. 6 A. With calculations of the vibrational spectra of [ether-H(+)-ether][(C6F5)(3)B-H(-)] for dioxane, THF, and Et2O as ethers, we investigate the manifestation of SSLB-type (short, strong, low -barrier) hydrogen bonding in the OHO motif of an oxonium cation.

  • 321.
    Heshmat, Mojgan
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Privalov, Timofei
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Theory-Based Extension of the Catalyst Scope in the Base-Catalyzed Hydrogenation of Ketones: RCOOH-Catalyzed Hydrogenation of Carbonyl Compounds with H-2 Involving a Proton Shuttle2017In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 23, no 72, p. 18193-18202Article in journal (Refereed)
    Abstract [en]

    As an extension of the reaction mechanism describing the base-catalyzed hydrogenation of ketones according to Berkessel et al., we use a standard methodology for transition-state (TS) calculations in order to check the possibility of heterolytic cleavage of H-2 at the ketone's carbonyl carbon atom, yielding one-step hydrogenation path with involvement of carboxylic acid as a catalyst. As an extension of the catalyst scope in the base-catalyzed hydrogenation of ketones, our mechanism involves a molecule with a labile proton and a Lewis basic oxygen atom as a catalyst-for example, R-C(= O) OH carboxylic acids-so that the heterolytic cleavage of H-2 could take place between the Lewis basic oxygen atom of a carboxylic acid and the electrophilic (Lewis acidic) carbonyl carbon of a ketone/aldehyde. According to our TS calculations, protonation of a ketone/aldehyde by a proton shuttle (hydrogen bond) facilitates the hydride-type attack on the ketone's carbonyl carbon atom in the process of the heterolytic cleavage of H-2. Ketones with electron-rich and electron-withdrawing substituents in combination with a few carboxylic and amino acids-in total, 41 substrate-catalyst couples-have been computationally evaluated in this article and the calculated reaction barriers are encouragingly moderate for many of the considered substrate-catalyst couples.

  • 322.
    Heshmat, Mojgan
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Privalov, Timofei
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Water and a Borohydride/Hydronium Intermediate in the Borane-Catalyzed Hydrogenation of Carbonyl Compounds with H-2 in Wet Ether: A Computational Study2018In: Journal of Physical Chemistry B, ISSN 1520-6106, E-ISSN 1520-5207, Vol. 122, no 38, p. 8952-8962Article in journal (Refereed)
    Abstract [en]

    We have computationally evaluated water as an active Lewis base (LB) and introduced the borohydride/hydronium intermediate in the mechanism of B(C6F5)(3)-catalyzed hydrogenation of carbonyl compounds with H-2 in wet/moist ether. Our calculations extend the known frustrated Lewis pair mechanism of this reaction toward the inclusion of water as the active participant in all steps. Although the definition of the zero-energy point interweaves in comparison of the scenarios with and without water, we will be able to show that (i) water (hydrogen bonded to its molecular environment) can, in principle, act as a reasonably viable LB in cooperation with the borane Lewis acid such as B(C6F5)(3) but relatively a strong borane-water complexation can be the hindering factor; (ii) the herein-proposed borohydride/hydronium intermediates with the hydronium cation having three OH center dot center dot center dot ether hydrogen bonds or a combination of the OH center dot center dot center dot ether/OH center dot center dot center dot ketone hydrogen bonds appear to be as valid as the previously considered borohydride/oxonium or borohydride/oxocarbenium intermediates; (iii) the proton-coupled hydride transfer from the borohydride/hydronium to a ketone (acetone) has a reasonably low barrier. Our findings could be useful for better mechanistic understanding and further development of the aforementioned reaction.

  • 323.
    Horváth, Attila
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Mild and Efficient Palladium(II)-Catalyzed Racemization of Allenes2004In: Chemical Communications, ISSN 1359-7345, E-ISSN 1364-548X, no 8, p. 964-965Article in journal (Refereed)
    Abstract [en]

    Allenes undergo racemization in the presence of catalytic amounts of Pd(OAc)2/LiBr under mild conditions; the reaction proceeds via a bromopalladation–debromopalladation sequence and tolerates various functional groups.

     

  • 324.
    Horváth, Attila
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Benner, Jessica
    Simple, Enantiocontrolled Synthesis of 3-Pyrrolines from α-Amino Allenes2004In: European Journal of Organic Chemistry, ISSN 1434-193X, E-ISSN 1099-0690, Vol. 2004, no 15, p. 3240-3243Article in journal (Refereed)
    Abstract [en]

    Cyclization of -amino allenes in the presence of N-bromosuccinimide afforded pyrrolines in good yields. The products were obtained with high enantiomeric excesses when optically active allenes were used as substrates. The synthesis of a 2,5-dehydroprolinol derivative is also presented.

  • 325. Huang, Genping
    et al.
    Diner, Colin
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Szabó, Kálmán J.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Mechanism and Stereoselectivity of the BINOL-Catalyzed Allylboration of Skatoles2017In: Organic Letters, ISSN 1523-7060, E-ISSN 1523-7052, Vol. 19, no 21, p. 5904-5907Article in journal (Refereed)
    Abstract [en]

    Density functional theory calculations have been performed to investigate the binaphthol-catalyzed allylboration of skatoles. The high stereoselectivity observed for the reaction is reproduced well by the calculations and was found to be mainly a result of steric repulsions in the corresponding Zimmerman-Traxler transition states. The role of the additive MeOH in enhancing the stereoselectivity was also investigated and is suggested to promote the formation of less reactive allylboronic ester intermediates, thereby suppressing the formation of allylboroxine species, which undergo the facile racemic background reaction.

  • 326.
    Huang, Genping
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kalek, Marcin
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Liao, Rong-Zhen
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Mechanism, reactivity, and selectivity of the iridium-catalyzed C(sp(3))-H borylation of chlorosilanes2015In: Chemical Science, ISSN 2041-6520, E-ISSN 2041-6539, Vol. 6, no 3, p. 1735-1746Article in journal (Refereed)
    Abstract [en]

    The iridium-catalyzed C(sp(3))-H borylation of methylchlorosilanes is investigated by means of density functional theory, using the B3LYP and M06 functionals. The calculations establish that the resting state of the catalyst is a seven-coordinate Ir(V) species that has to be converted into an Ir(III)tris(boryl) complex in order to effect the oxidative addition of the C-H bond. This is then followed by a C-B reductive elimination to yield the borylated product, and the catalytic cycle is finally completed by the regeneration of the active catalyst over two facile steps. The two employed functionals give somewhat different conclusions concerning the nature of the rate-determining step, and whether reductive elimination occurs directly or after a prior isomerization of the Ir(V) hydride intermediate complex. The calculations reproduce quite well the experimentally-observed trends in the reactivities of substrates with different substituents. It is demonstrated that the reactivity can be correlated to the Ir-C bond dissociation energies of the corresponding Ir(V) hydride intermediates. The effect of the chlorosilyl group is identified to originate from the alpha-carbanion-stabilizing effect of the silicon, which is further reinforced by the presence of an electron-withdrawing chlorine substituent. Furthermore, the source of selectivity for the borylation of primary over secondary C(sp(3))-H can be explained on a steric basis, by repulsion between the alkyl group and the Ir/ligand moiety. Finally, the difference in the reactivity between C(sp(3))-H and C(sp(2))-H borylation is investigated and rationalized in terms of distortion/interaction analysis.

  • 327.
    Höög, Christer
    Stockholm University.
    Three-dimensional structure of oligosaccharides from molecular dynamics simulations2000Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis focuses on the conformation and flexibility of oligosaccharides around the glycosidic linkage. The methods employed for the elucidation of the three-dimensional structures of biomolecules are briefly described. The main techniques used here are computer simulations and molecular dynamics simulations in aqueous solution in particular. The experimental data derived from these simulations have been compared with nuclear magnetic resonance measurements. The results obtained demonstrate the occurrence of more than one conformation, even though at the same time the high value of the generalised order parameter indicates rigidity. Of special interest are the folded conformers discovered at the same linkage in a vicinally substituted trisaccharide dissolved in water. Such, folded conformers have been detected in carbohydrates earlier, but never at the same linkage.

    The free energy simulation methods thermodynamic perturbation and thermodynamic integration are described briefly and have been used to calculate the anomeric ratio of the monosaccharides D-xylose in water and methyl D-xyloside in methanol. Solvent effect of the a/b ratios were found to be small. The solvent structures surrounding these four monosaccharides were investigated utilising radial and spatial distribution functions.

  • 328.
    Ibrahem, Ismail
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Development of organocatalytic asymmetric transformations2007Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The ability of amino acids and amino acid derivatives to mediate various organocatalytic asymmetric transformations has been investigated and applied in the development of various reactions. This work describes the development of a direct catalytic asymmetric α-aminomethylation of ketones and aldehydes, a catalytic asymmetric aziridination, hydrophosphination and amination of α,β-unsaturated aldehydes.

  • 329. Ibrahem, Ismail
    et al.
    Breistein, Palle
    Córdova, Armando
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    One-Pot Three-Component Catalytic Enantioselective Synthesis of Homoallylboronates2011In: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 50, no 50, p. 12036-12041Article in journal (Refereed)
  • 330.
    Ibrahem, Ismail
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Casas, Jesus
    Cordova, Armando
    Direct Catalytic Enantioselective a-aminomethylation of ketones2004In: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 43, p. 6528-Article in journal (Refereed)
  • 331.
    Ibrahem, Ismail
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Rios, Ramon
    Vesely, Jan
    Hammar, Peter
    Eriksson, Lars
    Himo, Fahmi
    Cordova, Armando
    Enantioselective Organocatalytic Hydrophosphination of α,β- Unsaturated Aldehydes2007In: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 46, p. 4507-Article in journal (Refereed)
  • 332.
    Ibrahem, Ismail
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Rios, Ramon
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Vesely, Jan
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Zhao, Gui-Ling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Cordova, Armando
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Catalytic enantioselective 5-hydroxyisoxazolidine synthesis: An asymmetric entry to beta-amino acids2008In: Synthesis (Stuttgart), ISSN 0039-7881, E-ISSN 1437-210X, no 7, p. 1153-1157Article in journal (Refereed)
    Abstract [en]

    The highly chemo- and enantioselective organocatalytic tandem reaction between N-carbamate-protected hydroxylamines and a,p-unsaturated aldehydes is presented. The reaction represents a unique entry for the asymmetric synthesis of 5-hydroxyisoxazolidines, oxazolidin-5-ones or gamma-hydroxyamino alcohols in high yields and 90-99% ee. A procedure for the conversion of the oxazolidin-5-ones into the corresponding beta-amino acids is also described.

  • 333.
    Ibrahem, Ismail
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Rios, Ramon
    Vesely, Jan
    Zhao, Guiling
    Cordova, Armando
    Organocatalytic Asymmetric 5-Hydroxyisoxazolidine Synthesis: A Highly Enantioselective Route to β-Amino Acids2007In: Chemical Communications, ISSN 1359-7345, E-ISSN 1364-548X, p. 849-852Article in journal (Refereed)
  • 334.
    Ibrahem, Ismail
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Rios, Ramón
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Vesely, Jan
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Hammar, Peter
    Eriksson, Lars
    Stockholm University, Faculty of Science, Department of Physical, Inorganic and Structural Chemistry.
    Himo, Fahmi
    Córdova, Armando
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Enantioselective organocatalytic hydrophosphination of alpha,beta-unsaturated aldehydes2007In: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 46, p. 4507-4510Article in journal (Refereed)
  • 335. ibrahem, Ismail
    et al.
    Samec, Joseph S M
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-E
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Córdiva, Armando
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Enantioselective addition of aldehydes to amines via combined catalytic biomimetic oxidation and organocatalytic C-C- bond formation2005In: Tetrahedron Letters, ISSN 0040-4039, E-ISSN 1359-8562, Vol. 46, no 23, p. 3965-3968Article in journal (Refereed)
    Abstract [en]

    The biomimetic catalytic enantioselective addition of aldehydes to amines is reported. This was accomplished by combining biomimetic coupled catalytic aerobic oxidation of amines involving ruthenium-induced dehydrogenation and organocatalytic asymmetric Mannich reactions. The novel one-pot reactions furnished β-amino aldehyde and α-amino acid derivatives in high yields with excellent chemoselectivity and up to >99% ee.

  • 336. Ibrahem, Ismail
    et al.
    Santoro, Stefano
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Córdova, Armando
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Enantioselective conjugate silyl additions to α,β-unsaturated aldehydes catalyzed by combination of transition metal and chiral amine catalysts2011In: Advanced Synthesis and Catalysis, ISSN 1615-4150, E-ISSN 1615-4169, Vol. 353, no 2+3, p. 245-252Article in journal (Refereed)
    Abstract [en]

    We report that transition metal-catalyzed nucleophilic activation can be combined with chiral amine-catalyzed iminium activation as exemplified by the unprecedented enantioselective conjugate addition of a dimethylsilanyl group to α,β-unsaturated aldehydes. These reactions proceed with excellent 1,4-selectivity to afford the corresponding β-silyl aldehyde products 3 in high yields and up to 97:3 er using inexpensive bench stable copper salts and simple chiral amine catalysts. The reaction canalso generate a quaternary stereocenter with goodenantioselectivity. Density functional calculations are performed to elucidate the reaction mechanism and the origin of enantioselectivity.

  • 337.
    Ibrahem, Ismail
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Zhao, Guiling
    Cordova, Armando
    Direct Catalytic Enantioselective α-Aminomethylation of Aldehydes2007In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 13, p. 683-Article in journal (Refereed)
  • 338.
    Ilchenko, Nadia
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Development of Catalytic ElectrophilicTrifluoromethylation and Fluorination Methods2014Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis is focused on development of new catalytic, electrophilic fluorination and trifluoromethylation methods of alkenes. These reactions were carried out using hypervalent trifluoromethyl and fluoroiodine reagents.

    The first project involved copper catalyzed oxytrifluoromethylation of terminal alkenes and alkynes. In this reaction the employed hypervalent iodine underwent a formal addition to C-C multiple bonds. Subsequently, we have also shown that under similar reaction conditions in the presence of B2pin2 as additive quinones can smoothly undergo C-H trifluoromethylation.

    We also developed a cyanotrifluoromethylation reaction of styrenes, which proceds in the presence of copper cyanide and PCy3 as additive. This reaction allows addition of both trifluoromethyl and cyanofunctionality to the styrene, creating two new carbon-carbon bonds.

    The interesting substituent effects and the acceleration of B2pin2 and PCy3 additives inspired us to further investigate the mechanism for the above trifluoromethylation reactions. The Hammett studies showed that the oxytrifluoromethylation reactions are slightly accelerated by electron donor substituents. The C-H trifluoromethylation does not show deuterium isotope effect. Both B2pin2 and PCy3 accelerated the trifluoromethylation reactions but the extent of the acceleration was dependent on the reaction type and on the substituent effects.

    Inspired by our trifluoromethylation results, we have also studied the silver-mediated difluorination of styrenes in the presence of an electrophilic hypervalent iodine based fluorine source. We obtained over 50% of the difluorinated product which suggests that one fluorine atom comes from the fluoroiodine reagent and the other one from BF4-. A phenonium ion intermediate has been proposed to be involved in the mechanism of the difluorination reaction.

  • 339.
    Ilchenko, Nadia O.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Novel Applications of Benziodoxole Reagents in the Synthesis of Organofluorine Compounds2017Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis concerns method development of new synthetic routes by applying electrophilic hypervalent iodine reagents, such as trifluoromethyl-benziodoxole (Togni reagent) and fluoro-benziodoxole. The first project involved the addition of an oxygen moiety and trifluoromethyl group across double and triple bonds (both groups derived from the hypervalent iodine reagent). We observed that electron donating substituents on the aromatic ring of the substrate accelerated the oxytrifluoromethylation reaction. This transformation was further expanded to halo-trifluoromethylation reaction of a vinyl silane substrate. We also developed a copper mediated cyanotrifluoromethylation reaction, which was accelerated by PCy3 additive. This transformation allowed for the creation of two new C-C bonds in a single addition reaction. The direct C-H trifluoromethylation reaction of quinones was achived using the Togni-reagent in the presence of B2pin2 additive. The intriguing additive effects of both B2pin2 and PCy3 inspired us to examine the mechanism of these transformations.

    Fluoro-benziodoxole is the fluoroiodane analogue of the trifluoromethylating Togni reagent. We developed a AgBF4 mediated geminal difluorination of styrenes using this fluoroiodine reagent. In this process one fluorine atom came from the fluoroiodane, while the other fluorine was derived from the tetrafluoroborate ion. A similar approach was applied for the 1,3-oxyfluorination and difluorination of cyclopropanes. Similarly, this fluorinative ring opening of unactivated cyclopropanes involved the introduction of an electrophilic fluorine atom from the fluoroiodane reagent and a nucleophilic one from the tetrafluoroborate ion. This reaction was extended to synthesis of 1,3-oxyfluorinated products. When alkenes reacted with the fluoro-benziodoxole reagent in the presence of palladium catalyst the iodofluorination reaction occurred.  Both the iodine and fluorine atoms were derived from the fluoroiodane reagent. The iodofluorination reaction with disubstituted and cyclic alkenes proceeded with high regio- and stereoselectivity.

  • 340.
    Ilchenko, Nadia O.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Cortes, Miguel A.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Szabó, Kálmán J.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Palladium-Catalyzed lodofluorination of Alkenes Using Fluorolodoxole Reagent2016In: ACS Catalysis, ISSN 2155-5435, E-ISSN 2155-5435, Vol. 6, no 1, p. 447-450Article in journal (Refereed)
    Abstract [en]

    The application of an air- and moisture-stable fluoroiodane reagent was investigated in the palladium-catalyzed iodofluorination reaction of alkenes. Both the iodo and fluoro substituents arise from the fluoroiodane reagent. In the case of certain palladium catalysts, the alkene substrates undergo allylic rearrangement prior to the iodofluorination process. The reaction is faster for electron-rich alkenes than for electron-deficient ones.

  • 341.
    Ilchenko, Nadia O.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Hedberg, Martin
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Szabó, Kálmán J.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Fluorinative ring-opening of cyclopropanes by hypervalent iodine reagents. An efficient method for 1,3-oxyfluorination and 1,3-difluorination2017In: Chemical Sience, ISSN 2041-6520, Vol. 8, no 2, p. 1056-1061Article in journal (Refereed)
    Abstract [en]

    A new method is presented for 1,3-difluorination and 1,3-oxyfluorination reactions. The process is based on iodonium mediated opening of 1,1-disubstituted cyclopropanes. The reaction proceeds with high chemo- and regioselectivity under mild reaction conditions typically at room temperature in a couple of hours. The reaction probably occurs via electrophilic ring-opening of cyclopropanes.

  • 342.
    Ilchenko, Nadia O.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Janson, Pär G.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Szabó, Kálmán J.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Copper-Mediated Cyanotrifluoromethylation of Styrenes Using the Togni Reagent2013In: Journal of Organic Chemistry, ISSN 0022-3263, E-ISSN 1520-6904, Vol. 78, no 21, p. 11087-11091Article in journal (Refereed)
    Abstract [en]

    Styrenes with an electron-deficient double bond undergo cyanotrifluoromethylation with a trifluoromethylated hypervalent iodine reagent in the presence of CuCN. The reaction proceeds under mild conditions in the presence of bulky phosphines or B(2)pin(2) additives. The process is highly regioselective and involves the consecutive formation of two C-C bonds in a single addition reaction. In the presence of a p-methoxy substituent in the styrene, oxytrifluoromethylation occurs instead of the cyanotrifluoromethylation.

  • 343.
    Ilchenko, Nadia O.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Janson, Pär
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Szabó, Kálmán J.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Copper-mediated C-H trifluoromethylation of quinones2013In: Chemical Communications, ISSN 1359-7345, E-ISSN 1364-548X, Vol. 49, no 59, p. 6614-6616Article in journal (Refereed)
    Abstract [en]

    Quinones undergo copper-mediated C-H trifluoromethylation reactions using a hypervalent iodine reagent. The reactions have a broad synthetic scope involving naphtho, alkyl, chloro and methoxy quinones.

  • 344.
    Ilchenko, Nadia O.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Szabó, Kálmán J.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Geminal difluorination of alpha,alpha '-disubstituted styrenes using fluoro-benziodoxole reagent. Migration aptitude of the alpha-substituents2017In: Journal of fluorine chemistry, ISSN 0022-1139, E-ISSN 1873-3328, Vol. 203, p. 104-109Article in journal (Refereed)
    Abstract [en]

    alpha,alpha'-Disubstituted styrenes undergo a difluorination-rearrangement reaction with fluoro-benzoiodoxole reagent 1. The reaction is catalyzed by Pd(MeCN)(4)(BF4)(2) and Cu(MeCN)(4)PF6. We have studied the rearrangement of alpha,alpha'-diaryl substituted styrenes, in which the aryl groups have different electronic character. In the case of a aryl, alpha'-alkyl substituted styrenes, the aryl substituent has a higher migratory aptitude than the alkyl group. We have also extended the reactions to cycloalkyl styrenes, which underwent interesting ring contraction/expansion reactions. The regioselectivity of the migration can be explained on the basis of the formation of a phenonium intermediate.

  • 345.
    Ilchenko, Nadia O.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Tasch, Boris O. A.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Szabó, Kálmán J.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Mild Silver-Mediated Geminal Difluorination of Styrenes Using an Air- and Moisture-Stable Fluoroiodane Reagent2014In: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 53, no 47, p. 12897-12901Article in journal (Refereed)
    Abstract [en]

    An air-and moisture-stable fluoroiodane in the presence of AgBF4 is suitable for selective geminal difluorination of styrenes under mild reaction conditions. One of the C-F bonds is formed by transfer of electrophilic fluorine from the hypervalent iodine reagent, while the other one arises from the tetrafluoroborate counterion of silver. Deuterium-isotope-labelling experiments and rearrangement of methyl styrene substrates suggest that the reaction proceeds through a phenonium ion intermediate.

  • 346.
    Ioannidis, Panagiotis
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Synthesis of 5'-C-phosphonomethyl, 2'-C- and 3'-C-branched nucleoside analogues as potential candidates for therapeutic intervention towards HIV1993Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Syntheses of some 5'-C-phosphonomethyl-, 2'-C- and 3'-C-branched nucleoside analogues as potential anti-HIV agents are described. Synthesis of the various nucleoside analogues is based either on the construction of a suitably protected sugar moiety that can be glycosylated with different nucleoside bases by the Vorbrüggen procedure, or on the use of a novel alcohol transposition in the carbohydrate moiety of different 2'-C- or 3'-C-methylene nucleoside analogues, using the reagent system chlorodiphenylphosphine-iodine-imidazole. All target compounds were tested for anti-HIV activity. Of these, only 2',3'-dideoxy-2'-Chydroxymethylcytidine and l-(3,5-dideoxy-ß-D-cryrAro-hexofuranosyl)thymine demonstrated moderate and weak anti-HIV activities, respectively.

  • 347. Jakhetia, Richa
    et al.
    Marri, Aruna
    Ståhle, Jonas
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Verma, Naresh K.
    Serotype-conversion in Shigella flexneri: identification of a novel bacteriophage, Sf101, from a serotype 7a strain2014In: BMC Genomics, ISSN 1471-2164, E-ISSN 1471-2164, Vol. 15, p. 742-Article in journal (Refereed)
    Abstract [en]

    Background: Shigella flexneri is the major cause of bacillary dysentery in the developing countries. The lipopolysaccharide (LPS) O-antigen of S. flexneri plays an important role in its pathogenesis and also divides S. flexneri into 19 serotypes. All the serotypes with an exception for serotype 6 share a common O-antigen backbone comprising of N-acetylglucosamine and three rhamnose residues. Different serotypes result from modification of the basic backbone conferred by phage-encoded glucosyltransferase and/or acetyltransferase genes, or plasmid-encoded phosphoethanolamine transferase. Recently, a new site for O-acetylation at positions 3 and 4 of Rha(III), in serotypes 1a, 1b, 2a, 5a and Y was shown to be mediated by the oacB gene. Additionally, this gene was shown to be carried by a transposon-like structure inserted upstream of the adrA region on the chromosome. Results: In this study, a novel bacteriophage Sf101, encoding the oacB gene was isolated and characterised from a serotype 7a strain. The complete sequence of its 38,742 bp genome encoding 66 open reading frames (orfs) was determined. Comparative analysis revealed that phage Sf101 has a mosaic genome, and most of its proteins were >90% identical to the proteins from 12 previously characterised lambdoid phages. In addition, the organisation of Sf101 genes was found to be highly similar to bacteriophage Sf6. Analysis of the Sf101 OacB identified two amino acid substitutions in the protein; however, results obtained by NMR spectroscopy confirmed that Sf101-OacB was functional. Inspection of the chromosomal integration site of Sf101 phage revealed that this phage integrates in the sbcB locus, thus unveiling a new site for integration of serotype-converting phages of S. flexneri, and determining an alternative location of oacB gene in the chromosome. Furthermore, this study identified oacB gene in several serotype 7a isolates from various regions providing evidence of O-acetyl modification in serotype 7a. Conclusions: This is the first report on the isolation of bacteriophage Sf101 which contains the S. flexneri O-antigen modification gene oacB. Sf101 has a highly mosaic genome and was found to integrate in the sbcB locus. These findings contribute an advance in our current knowledge of serotype converting phages of S. flexneri.

  • 348.
    Jalalian, Nazli
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Development and Applications of Hypervalent Iodine Compounds: Powerful Arylation and Oxidation Reagents2012Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The first part of this thesis describes the efficient synthesis of several hypervalent iodine(III) compounds. Electron-rich diaryliodonium salts have been synthesized in a one-pot procedure, employing mCPBA as the oxidant. Both symmetric and unsymmetric diaryliodonium tosylates can be isolated in high yields. An in situ anion exchange also enables the synthesis of previously unobtainable diaryliodonium triflates.

    A large-scale protocol for the synthesis of a derivative of Koser’s reagent, that is an isolable intermediate in the diaryliodonium tosylate synthesis, is furthermore described. The large-scale synthesis is performed in neat TFE, which can be recovered and recycled. This is very desirable from an environmental point of view.

    One of the few described syntheses of enantiopure diaryliodonium salts is discussed. Three different enantiopure diaryliodonium salts bearing electron-rich substituents are synthesized in moderate to high yields. The synthesis of these three salts shows the challenge in the preparation of electron-rich substituted unsymmetric salts.

    The second part of the thesis describes the application of both symmetric and unsymmetric diaryliodonium salts in organic synthesis. A metal-free efficient and fast method for the synthesis of diaryl ethers from diaryliodonium salts has been developed. The substrate scope is wide as both the phenol and the diaryliodonium salt can be varied. Products such as halogenated ethers, ortho-substituted ethers and bulky ethers, that are difficult to obtain with metal-catalyzed procedures, are readily prepared. The mild protocol allows arylation of racemization-prone a-amino acid derivatives without loss of enantiomeric excess.

    A chemoselectivity investigation was conducted, in which unsymmetric diaryliodonium salts were employed in the arylation of three different nucleophiles in order to understand the different factors that influence which aryl moiety that is transferred to the nucleophile.

  • 349.
    Jalalian, Nazli
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Synthesis and applications of diaryliodonium salts2010Licentiate thesis, comprehensive summary (Other academic)
  • 350.
    Jalalian, Nazli
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Ishikawa, Eloisa E.
    Universidade de Sao Paulo, Instituto de Quimica.
    Silva Jr., Luiz F.
    Universidade de Sao Paulo, Instituto de Quimica.
    Olofsson, Berit
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Room temperature, metal-free synthesis of diaryl ethers with use of diaryliodonium salts2011In: Abstracts of Papers, 242nd ACS National Meeting & Exposition, Denver, CO, United States, August 28-September 1, 2011, American Chemical Society , 2011Conference paper (Other academic)
    Abstract [en]

    Diaryl ethers are common structural features in numerous natural products and biol. active compds.  Despite more than a century of immense focus on finding efficient synthetic routes to this compd. class, diaryl ethers remain difficult to obtain.  Routes that are catalytic in copper have been developed, but high catalyst loadings, excess reagents, elevated temps. and long reaction times are still needed.  Pd-catalyzed cross-couplings of phenols and aryl halides at temps. up to 100 °C have recently been reported to give high yields of diaryl ethers.  Diaryliodonium salts are non-toxic alternatives to transition metals in the synthesis of diaryl ethers and we have recently developed effective synthetic routes to these salts.  Herein we report a fast, high-yielding synthesis of diaryl ethers.  The reaction conditions are mild, metal-free, and avoid the use of halogenated solvents, additives, or excess reagents.  Precautions to avoid air or moisture are not needed.  The scope includes ortho- and halo-substituted diaryl ethers, which are difficult to obtain by metal-catalyzed protocols .

45678910 301 - 350 of 1038
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf