Change search
Refine search result
17181920 951 - 959 of 959
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.
  • 951.
    Zmudzka, Katarzyna
    et al.
    Polish Acad Sci, Ctr Mol & Macromol Studies.
    Johansson, Tommy
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Wojcik, Marzena
    Polish Acad Sci, Ctr Mol & Macromol Studies.
    Janicka, Magdalena
    Polish Acad Sci, Ctr Mol & Macromol Studies.
    Nowak, Marian
    Polish Acad Sci, Ctr Mol & Macromol Studies.
    Stawinski, Jacek
    Nawrot, Barbara
    Polish Acad Sci, Ctr Mol & Macromol Studies.
    Novel DNA Analogues with 2-, 3- and 4-Pyridylphosphonate Internucleotide Bonds: Synthesis and Hybridisation Properties2003In: New Journal of Chemistry, ISSN 1144-0546, Vol. 27, no 12, p. 1698-1705Article in journal (Refereed)
    Abstract [en]

    Oligothymidylates modified with stereodefined 2-pyridyl-, 3-pyridyl- and 4-pyridylphosphonate moieties at one or two juxtaposed internucleotide positions were prepared, and their avidity towards complementary single stranded DNA and RNA, as well as toward double stranded DNA were evaluated by UV melting temperature and CD studies. It was found that the sense of chirality at the phosphorus centre and the position of the nitrogen atom in the pyridyl ring of a pyridylphosphonate moiety are important factors governing stability of double- and triple-stranded complexes formed by these oligonucleotides. DNA/DNA and DNA/RNA duplexes containing oligothymidylate strands with R-P-pyridylphosphonate units differed only slightly from unmodified reference complexes. In contrast to this, the S-P-pyridylphosphonate derivatives exhibited lower binding affinity than both their R-P-counterparts and the unmodified reference oligonucleotide T-20. Triplexes of oligo(thymidyl pyridylphosphonate)s with hairpin oligomer d(A(21)C(4)T(21)) were found mostly to be thermodynamically slightly more stable in pH 7.4 and less stable in pH 5.0 than non-modified complexes. As expected, oligonucleotides with pyridylphosphonate internucleotide bonds were recognised by 3'- and 5'-exonucleases but the chimeric oligonucleotide chains were not cleaved at the modi. cation sites.

  • 952.
    Åberg, Jenny B.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Mechanistic Studies on Ruthenium-Catalyzed Hydrogen Transfer Reactions2009Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Mechanistic studies on three different ruthenium-based catalysts have been performed. The catalysts have in common that they have been employed in hydrogen transfer reactions involving alcohols and ketones, amines and imines or both.

    Bäckvall’s catalyst, η5-(Ph5C5)Ru(CO)2Cl, finds its application as racemization catalyst in dynamic kinetic resolution, where racemic alcohols are converted to enantiopure acetates in high yields. The mechanism of the racemization has been investigated and both alkoxide and alkoxyacyl intermediates have been characterized by NMR spectroscopy and in situ FT-IR measurements. The presence of acyl intermediates supports a mechanism via CO assistance. Substantial support for coordination of the substrate during the racemization cycle is provided, including exchange studies with both external and internal potential ketone traps. We also detected an unexpected alkoxycarbonyl complex from 5-hydroxy-1-hexene, which has the double bond coordinated to ruthenium.

    Shvo’s catalyst, [Ru2(CO)4(μ-H)(C4Ph4COHOCC4Ph4)] is a powerful catalyst for transfer hydrogenation as well as for dynamic kinetic resolution. The mechanism of this catalyst is still under debate, even though a great number of studies have been published during the past decade. In the present work, the mechanism of the reaction with imines has been investigated. Exchange studies with both an external and an internal amine as potential traps have been performed and the results can be explained by a stepwise inner-sphere mechanism. However, if there is e.g. a solvent cage effect, the results can also be explained by an outer-sphere mechanism. We have found that there is no cage effect in the reduction of a ketone containing a potential internal amine trap. If the mechanism is outer-sphere, an explanation as to why the solvent cage effect is much stronger in the case of imines than ketones is needed.

    Noyori’s catalyst, [p-(Me2CH)C6H4Me]RuH(NH2CHPhCHPhNSO2C6H4-p-CH3), has successfully been used to produce chiral alcohols and amines via transfer hydrogenation. The present study shows that the mechanism for the reduction of imines is different from that of ketones and aldehydes. Acidic activation of the imine was found necessary and an ionic mechanism was proposed.

  • 953.
    Åberg, Jenny B.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Nyhlén, Jonas
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Martín-Matute, Belén
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Privalov, Timofei
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    CO Assistance in ligand exchange of a ruthenium racemization catalyst: identification of an acyl intermediate2009In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 131, no 27, p. 9500-9501Article in journal (Refereed)
    Abstract [en]

    An acyl intermediate in the activation of eta(5)-(Ph(5)Cp)Ru(CO)(2)Cl by t-BuOK was identified by means of in situ FT-IR measurements and NMR spectroscopy. This strongly supports the conclusion that the ligand exchange takes place via CO assistance, i.e., that the activation occurs via nucleophilic attack by tert-butoxide on one of the CO ligands. The tert-butoxycarbonyl intermediate shows stretching vibrations at 1933 and 1596 cm(-1), corresponding to the CO and COOt-Bu groups, respectively. In the (13)C NMR spectrum, the CO group appears at 209.5 ppm and the COOt-Bu group at 208.7 ppm. The NMR assignments were confirmed by density functional theory calculations. The subsequent alcohol-alkoxide exchange is also thought to take place via CO assistance. However, no intermediate in that step could be detected.

  • 954.
    Åberg, Jenny B.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Warner, Madeleine C.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Unexpected formation of a cyclopentadienylruthenium alkoxycarbonyl complex with a coordinated C=C bond2009In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 131, no 38, p. 13622-13624Article in journal (Refereed)
  • 955.
    Åberg, Jenny
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Samec, Joseph S. M.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Mechanistic Investigation on the Hydrogenation of Imines by [p-(Me2CH)C6H4Me]RuH(NH2CHPhCHPhNSO2C6H4-p-CH3). Experimental support for an  Ionic Pathway2006In: Chemical Communications, ISSN 1359-7345, E-ISSN 1364-548X, no 26, p. 2771-2773Article in journal (Refereed)
    Abstract [en]

    The need for acidic activation in the stoichiometric hydrogenation of benzyl-[1-phenyl-ethylidene]-amine ( 6a) or [1-(4-methoxy-phenyl)-ethylidene]-methyl-amine ( 6b) by Noyori's catalyst [p-(Me2CH)C6H4Me]RuH(NH2CHPhCHPhNSO2C6H4-p-CH3)( 2) is inconsistent with the proposed concerted mechanism and supports an ionic mechanism.

  • 956.
    Öhberg, Liselotte
    Stockholm University.
    Synthesis of a key derivative of glycosylphosphatidylinositol substances and synthesis of spacer glycosides for use in the formation of glycoconjugates and of self-assembled monolayer surfaces1998Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The first chapter of this thesis describes glycosylation strategies for obtaining derivatives of 2-amino-2-deoxy-a-D-glucopyranosyl-(1-->6)-D-myo-inositol, a key building block for synthesis of glycosylphosphatidylinositol anchor substances and also proposed to be part of a second messenger for insulin.

    The second chapter describes the synthesis of bifunctional oligoethylene glycol spacers and glycosylation of these for use in formation of glycoconjugates. Synthesis of glycosyl succinimides and their conversion into glycoconjugates are also described.

    In the third chapter, synthesis of various terminated alkane thiols are described for use in formation of self-assembled monolayer surfaces. Globotriose linked alkane thiols with or without oligoethylene glycol spacers in between were mixed with hydroxyl or oligoethylene glycol terminated alkane thiols for formation of model surfaces.

  • 957. Öksnes Dalheim, Marianne
    et al.
    Björk Arnfinnsdottir, Nina
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Christensen, Björn E.
    The size and shape of three water-soluble, non-ionic polysaccharides produced by lactic acid bacteria: A comparative study2016In: Carbohydrate Polymers, ISSN 0144-8617, E-ISSN 1879-1344, Vol. 142, p. 91-97Article in journal (Refereed)
    Abstract [en]

    Three water-soluble, non-ionic extracellular polysaccharides (EPS) obtained from lactic acid bacteria (S. thermophilus THS, L. helveticus K16 and S. thermophilus ST1) were subjected to a comparative study by means of multidetector size-exclusion chromatography, providing distributions and averages of molar masses, radii of gyration and intrinsic viscosities. All polysaccharides displayed random coil character. Further analysis of the data reveals differences in chain stiffness and extension that could be well correlated to structural features. The calculated persistence lengths ranged from 5 to 10 nm and fall within the range typical for many single-stranded bacterial or plant polysaccharides. The ST1 polysaccharide had the highest molar mass but the lowest persistence length, which is attributed to the presence of the flexible (1 6)-linkage in the main chain.

  • 958.
    Östervall, Jennie
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Conformational Dynamics of Carbohydrates Studied by NMR Spectroscopy and Molecular Simulations2006Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Carbohydrates play important roles in biological processes. Their function is closely related to their conformation. In this thesis, conformational studies of carbohydrates by NMR spectroscopy and molecular dynamics computer simulations are described.

    The first two papers discuss the anomalous solubility of β-cyclodextrin compared to other cyclodextrins. Time correlation functions revealed flexibility in all cyclodextrins. Molecular dynamics computer simulations showed that the glycosidic linkages were rather rigid and the flexibility was suggested to be macrocyclic. From spatial distribution functions β-cyclodextrin was found to have greater ability to order the surrounding water than the other cyclodextrins. Paper III deals with some of the difficulties of conformational studies. In Paper IV, a new method, Additative Potential Maximum Entropy, APME, is applied to a disaccharide. Conformational distribution functions are derived from NOEs, J-couplings and residual dipolar couplings and calculated from computer simulations. All distribution functions were found to be in good agreement. In papers V and VI oligosaccharides from human milk are studied. Residual dipolar coupling, J-couplings and cross relaxation rates were measured by NMR spectroscopy and molecular dynamics computer simulations were carried out. Both oligosaccharides showed high flexibility for the β-D-GlcpNAc-(1→3)-β-D-Galp linkage.

  • 959. Číhalová, Sylva
    et al.
    Dziedzic, Pawel
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Córdova, Armando
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Veselý, Jan
    Asymmetric Aza-Morita–Baylis–Hillman-type reactions: The highly enantioselective reaction between unmodified α,β-unsaturated aldehydes and N-acylimines by organo-co-catal2011In: Advanced Synthesis and Catalysis, ISSN 1615-4150, E-ISSN 1615-4169, Vol. 353, no 7, p. 1096-1108Article in journal (Refereed)
    Abstract [en]

    The highly enantioselective organo-co-catalytic aza-Morita–Baylis–Hillman (MBH)-type reaction between N-carbamate-protected imines and α,β-unsaturated aldehydes has been developed. The organic co-catalytic system of proline and 1,4-diazabicyclo[2.2.2]octane (DABCO) enables the asymmetric synthesis of the corresponding N-Boc- and N-Cbz-protected β-amino-α-alkylidene-aldehydes in good to high yields and up to 99% ee. In the case of aza-MBH-type addition of enals to phenylprop-2-ene-1-imines, the co-catalytic reaction exhibits excellent 1,2-selectivity. The organo-co-catalytic aza-MBH-type reaction can also be performed by the direct highly enantioselective addition of α,β-unsaturated aldehydes to bench-stableN-carbamate-protected α-amidosulfones to give the corresponding β-amino-α-alkylidene-aldehydes with up to 99% ee.The organo-co-catalytic aza-MBH-type reaction is also an expeditious entry to nearly enantiomerically pure β-amino-α-alkylidene-amino acids and β-amino-α-alkylidene-lactams (99% ee). The mechanism and stereochemistry of the chiral amine and DABCO co-catalyzed aza-MBH-type reaction arealso discussed.

17181920 951 - 959 of 959
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf