Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.
  • 1.
    Moa, Sara
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Quantum chemical study of mechanism and stereoselectivity of secondary alcohol dehydrogenase2017In: Journal of Inorganic Biochemistry, ISSN 0162-0134, E-ISSN 1873-3344, Vol. 175, p. 259-266Article in journal (Refereed)
    Abstract [en]

    Secondary alcohol dehydrogenase from Thermoanaerobacter brockii (TbSADH) is a Zn- and NADP-dependent enzyme that catalyses the reversible transformation of secondary alcohols into ketones. It is of potential biocatalytic interest as it can be used in the synthesis of chiral alcohols by asymmetric reduction of ketones. In this paper, density functional theory calculations are employed to elucidate the origins of the enantioselectivity of TbSADH using a large model of the active site and considering two different substrates, 2-butanol and 3-hexanol. For these two substrates the enzyme has experimentally been shown to have the opposite enantioselectivity. The energy profiles for the reactions are calculated and the stationary points along the reaction path are characterised. The calculations first confirm that the general mechanism proposed for other alcohol dehydrogenases is energetically viable. In this mechanism, a proton is first transferred from the substrate to a histidine residue at the surface, followed by a hydride transfer to the NADP cofactor. The calculated overall energy barrier is consistent with the measured rate constant. Very importantly, the calculations are able to reproduce and rationalise the enantioselectivity of the enzyme for both substrates. The detailed characterisation of the energies and geometries of the involved transition states will be valuable in the rational engineering of TbSADH to expand its utility in biocatalysis.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf