Change search
Refine search result
1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Gyllenpalm, Jakob
    Stockholm University, Faculty of Science, Department of Mathematics and Science Education.
    Inquiry and flow in science education2018In: Cultural Studies of Science Education, ISSN 1871-1502, E-ISSN 1871-1510, Vol. 13, no 2, p. 429-435Article in journal (Refereed)
    Abstract [en]

    Ellwood's and Abrams's paper, Students's social interaction in inquiry-based science education: how experiences of flow can increase motivation and achievement, describes two groups of students and their experiences in an extended inquiry unit. For one of these, the Off-Campus group, several educational aspects were enhanced compared with the group that stayed on campus for their fieldwork. In the analysis this was related to the nature and quality of students' social interactions during the project and their experiences of flow. This forum article seeks to expand and reframe some of the interpretations made by the authors concerning the role of time, place and attention for setting up conditions for experiences of flow in general, and in scientific inquiry in particular. A comparison with the result from research on wait-time is made, and the significance of place and social interactions are related to a typology of attention helpful for understanding Flow theory. It is suggested that an additional finding may be that there are certain moments in an inquiry unit where slowing down the tempo of instruction to allow for feedback and discussion is particularly important, because doing so can significantly alter the subsequent development and quality of students' social interactions, experiences of flow, and consequently learning. Implications for science teaching and teacher education are discussed.

  • 2.
    Gyllenpalm, Jakob
    Stockholm University, Faculty of Science, Department of Mathematics and Science Education.
    Teachers' Language of Inquiry: The Conflation Between Methods of Teaching and Scientific Inquiry in Science Education2010Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The objective of this thesis is to describe and analyse customs of science teaching in secondary schools and teacher education programmes in Sweden in relation to the notion of “inquiry” in science education. The main focus is on customs of language use and the educational goal of learning about scientific inquiry as distinct from the related goals of learning to do inquiry and learning canonical science content. There is also an exploration and description of different teaching approaches associated with “inquiry”. Previous research has noted that a key issue for reaching the goal of learning about scientific inquiry is the extent to which teachers are able to guide students to explicitly reflect upon this topic. A prerequisite is that teachers give students access to relevant categories of language for explicit reflection on the characteristics of scientific inquiry. Because of the situated nature of language use and learning, this also raises the need to address topics of context, culture and customs in science education. This thesis addresses the questions of how existing customs of teaching science are related to the goal of learning about scientific inquiry, how inquiry-related terminology is used in this context, and how relevant distinctions can be made to aid explicit reflection on these issues. Data has been collected in two studies and analysed and presented in four papers. Study 1 is based on interviews with twelve secondary school science teachers, and Study 2 is based on focus group interviews with 32 pre-service teacher students. The results include a description of the existing customs of inquiry-oriented instructional approaches in Swedish secondary schools. They show that these are often not connected with an explicit focus on teaching about the characteristics of scientific inquiry.  Inquiry-related terminology is analysed with a focus on the role and use of the terms “hypothesis” and “experiment”. Based on a theoretical framework of sociocultural and pragmatist views on language and learning, it is shown how the use of these terms, both in secondary schools and teacher education, tend to conflate the two categories methods of teaching and methods of scientific inquiry. Some problematic consequences for reaching the goal of learning about scientific inquiry are discussed, as well as possible origins of the problems and how the results from this thesis can be useful in overcoming these.

  • 3.
    Gyllenpalm, Jakob
    et al.
    Stockholm University, Faculty of Science, Department of Mathematics and Science Education.
    Christiansson, Ulf
    Friggebo, Patrik
    Connecting two laboratory tasks under an umbrella of uncertainty: Hooke's law and simple harmonic motion2018In: Physics Education, ISSN 0031-9120, E-ISSN 1361-6552, Vol. 53, no 5, article id 055023Article in journal (Refereed)
    Abstract [en]

    Laboratory work in physics has traditionally focused on the verification of facts, theories and laws. In contrast, this article describes how laboratory tasks can be used to promote students understanding about the nature of science and scientific inquiry. In the project reported here, students learn about measurement uncertainties and a simplified graphical method for propagating errors. By using this knowledge to compare the precision of two common methods to determine the spring constant, Hooke's Law and simple harmonic motion, students learn about the nature of experimentation in physics. From this specific example, comparisons can then be made with authentic research to highlight more general aspects of the nature of science and scientific inquiry.

  • 4.
    Gyllenpalm, Jakob
    et al.
    Stockholm University, Faculty of Science, Department of Mathematics and Science Education.
    Wickman, Per-Olof
    Stockholm University, Faculty of Science, Department of Mathematics and Science Education.
    Experiments" and the Inquiry Emphasis Conflation in Science Teacher Education2011In: Science Education, ISSN 0036-8326, E-ISSN 1098-237X, Vol. 95, no 5, p. 908-926Article in journal (Refereed)
    Abstract [en]

    This article examines the use and role of the term experiment in science teacher education as described by teacher students. Data were collected through focus group interviews conducted at seven occasions with 32 students from six well-known Swedish universities. The theoretical framework is a sociocultural and pragmatist perspective on language and learning with the analysis based on the notion of pivot terms, introduced in an earlier article, to operationalize language use as habit and mediated action. The term experiment was found to be conflated with laboratory task and referred to as primarily a pedagogical activity in contrast to a research methodology, in line with the previously described inquiry emphasis conflation. The notion of controlled experiment was unfamiliar to most students and had not been explicitly discussed in terms of research methodology during their teacher education. The pedagogical meaning given to the term experiment is discussed in contrast to its use and function in scientific research. The possible problems of this conflation of terms are discussed in relation to the educational goal of teaching students about the nature of scientific inquiry. Recommendations for teacher education are discussed, and a heuristic model to use pivot terms to facilitate explicit reflection on unexamined customs of science education is introduced.

  • 5.
    Gyllenpalm, Jakob
    et al.
    Stockholm University, Faculty of Science, Department of Mathematics and Science Education.
    Wickman, Per-Olof
    Stockholm University, Faculty of Science, Department of Mathematics and Science Education.
    The Uses of the Term Hypothesis and the Inquiry Emphasis Conflation in Science Teacher Education2011In: International Journal of Science Education, ISSN 0950-0693, E-ISSN 1464-5289, Vol. 33, no 14, p. 1993-2015Article in journal (Refereed)
    Abstract [en]

    This paper examines the use and role of the term 'hypothesis' in science teacher education as described by teacher students. Data were collected through focus group interviews conducted at seven occasions with 32 students from six well-known Swedish universities. The theoretical framework is a sociocultural and pragmatist perspective on language and learning, introducing the notion of pivot terms to operationalise language use as a habit and mediated action. We describe three different customs of using the term 'hypothesis' within four cultural institutions that can be said to constitute science teacher education in Sweden. Students were found to habitually use the term hypothesis as meaning a guess about an outcome. This is contrasted to the function of this term in scientific research as a tentative explanation. We also found differences in how this term was used between the pure science courses given by the science departments of universities and science education courses taken only by teacher students. Findings also included further support for school students hypothesis fear reported in an earlier study. It is discussed how these findings can obstruct learning and teaching about the nature of scientific inquiry. Constructivist theories of learning are suggested as a possible origin of these problems. The findings are also related to curricular reform and development.

  • 6.
    Gyllenpalm, Jakob
    et al.
    Stockholm University, Faculty of Science, Department of Mathematics and Science Education.
    Wickman, Per-Olof
    Stockholm University, Faculty of Science, Department of Mathematics and Science Education.
    The Uses of the Term Hypothesis and the Inquiry Emphasis Conflation in Science Teacher Education2011In: International Journal of Science Education, ISSN 0950-0693, E-ISSN 1464-5289, Vol. 33, no 14, p. 1993-2015Article in journal (Refereed)
    Abstract [en]

    This paper examines the use and role of the term ‘hypothesis’ in science teacher education as described by teacher students. Data were collected through focus group interviews conducted at seven occasions with 32 students from six well‐known Swedish universities. The theoretical framework is a sociocultural and pragmatist perspective on language and learning, introducing the notion of pivot terms to operationalise language use as a habit and mediated action. We describe three different customs of using the term ‘hypothesis’ within four cultural institutions that can be said to constitute science teacher education in Sweden. Students were found to habitually use the term hypothesis as meaning a guess about an outcome. This is contrasted to the function of this term in scientific research as a tentative explanation. We also found differences in how this term was used between the pure science courses given by the science departments of universities and science education courses taken only by teacher students. Findings also included further support for school students hypothesis fear reported in an earlier study. It is discussed how these findings can obstruct learning and teaching about the nature of scientific inquiry. Constructivist theories of learning are suggested as a possible origin of these problems. The findings are also related to curricular reform and development.

  • 7.
    Gyllenpalm, Jakob
    et al.
    Stockholm University, Faculty of Science, Department of Mathematics and Science Education.
    Wickman, Per-Olof
    Stockholm University, Faculty of Science, Department of Mathematics and Science Education.
    Holmgren, Sven-Olof
    Stockholm University, Faculty of Science, Department of Physics.
    Secondary science teachers’ selective traditions and examples of inquiry-oriented approaches2010In: NorDiNa: Nordic Studies in Science Education, ISSN 1504-4556, E-ISSN 1894-1257, Vol. 6, no 1, p. 44-60Article in journal (Refereed)
    Abstract [en]

    This paper describes aspects of the existing tradition of practical work in secondary science education in Sweden, with a focus on inquiry-oriented teaching approaches. Twelve secondary science teachers were interviewed and asked to describe examples of their own teaching practices that they believed constituted inquiry-oriented teaching. The descriptions are analysed in relation to key components of inquiry as conceptualised in the science education literature. In addition, the teachers’ way of talking about their own teaching in relation to inquiry is described and analysed. The results show a wide variety of teaching approaches that are associated with inquiry in different ways. Although inquiry is valued by many teachers, it is also problematic. We discuss the nature of the problems associated with inquiry by the teachers and the possible consequences of these for teacher education, in-service training and curriculum development.

  • 8.
    Gyllenpalm, Jakob
    et al.
    Stockholm University, Faculty of Science, Department of Mathematics and Science Education.
    Wickman, Per-Olof
    Stockholm University, Faculty of Science, Department of Mathematics and Science Education.
    Holmgren, Sven-Olof
    Stockholm University, Faculty of Science, Department of Physics.
    Teachers' language on scientific inquiry: Methods of teaching or methods of inquiry?2010In: International Journal of Science Education, ISSN 0950-0693, E-ISSN 1464-5289, Vol. 32, no 9, p. 1151-1172Article in journal (Refereed)
    Abstract [en]

    With a focus on the use of language related to scientific inquiry, this paper explores how 12 secondary school science teachers describe instances of students’ practical work in their science classes. The purpose of the study was to shed light on the culture and traditions of secondary school science teaching related to inquiry as expressed in the use of language. Data consisted of semi-structured interviews about actual inquiry units used by the teachers. These were used to situate the discussion of their teaching in a real context. The theoretical background is sociocultural and pragmatist views on the role of language in science learning. The analysis focuses on two concepts of scientific inquiry: hypothesis and experiment. It is shown that the teachers tend to use these terms with a pedagogical function thus conflating methods of teaching with methods of inquiry as part of an emphasis on teaching the children the correct explanation. The teachers did not prioritise an understanding of scientific inquiry as a knowledge goal. It discusses how learners’ possibilities to learn about the characteristics of scientific inquiry and the nature of science are affected by an unreflective use of everyday discourse.

  • 9. Lederman, Judith
    et al.
    Lederman, Norman
    Bartels, Selina
    Jimenez, Juan
    Akubo, Mark
    Aly, Shereen
    Bao, Chengcheng
    Blanquet, Estelle
    Blonder, Ron
    Soares de Andrade, Mariana Bologna
    Buntting, Catherine
    Cakir, Mustafa
    EL-Deghaidy, Heba
    ElZorkani, Ahmed
    Gaigher, Estelle
    Guo, Shuchen
    Hakanen, Arvi
    Hamed Al-Lal, Soraya
    Han-Tosunoglu, Cigdem
    Hattingh, Annemarie
    Hume, Anne
    Irez, Serhat
    Kay, Gillian
    Kivilcan Dogan, Ozgur
    Kremer, Kerstin
    Kuo, Pi-Chu
    Lavonen, Jari
    Lin, Shu-Fen
    Liu, Cheng
    Liu, Enshan
    Liu, Shiang-Yao
    Lv, Bin
    Mamlok-Naaman, Rachel
    McDonald, Christine
    Neumann, Irene
    Pan, Yaozhen
    Picholle, Eric
    Rivero Garcia, Ana
    Rundgren, Carl-Johan
    Stockholm University, Faculty of Science, Department of Mathematics and Science Education.
    Santibanez-Gomez, David
    Saunders, Kathy
    Schwartz, Renee
    Voitle, Frauke
    von Gyllenpalm, Jakob
    Stockholm University, Faculty of Science, Department of Mathematics and Science Education.
    Wei, Fangbing
    Wishart, Jocelyn
    Wu, Zhifeng
    Xiao, Huang
    Yalaki, Yalcin
    Zhou, Qiaoxue
    An international collaborative investigation of beginning seventh grade students' understandings of scientific inquiry: Establishing a baseline2019In: Journal of Research in Science Teaching, ISSN 0022-4308, E-ISSN 1098-2736, Vol. 56, no 4, p. 486-515Article in journal (Refereed)
    Abstract [en]

    Although understandings of scientific inquiry (as opposed to conducting inquiry) are included in science education reform documents around the world, little is known about what students have learned about inquiry during their elementary school years. This is partially due to the lack of any assessment instrument to measure understandings about scientific inquiry. However, a valid and reliable assessment has recently been developed and published, Views About Scientific Inquiry (VASI; Lederman et al. [2014], Journal of Research in Science Teaching, 51, 65-83). The purpose of this large-scale international project was to collect the first baseline data on what beginning middle school students have learned about scientific inquiry during their elementary school years. Eighteen countries/regions spanning six continents including 2,634 students participated in the study. The participating countries/regions were: Australia, Brazil, Chile, Egypt, England, Finland, France, Germany, Israel, Mainland China, New Zealand, Nigeria, South Africa, Spain, Sweden, Taiwan, Turkey, and the United States. In many countries, science is not formally taught until middle school, which is the rationale for choosing seventh grade students for this investigation. This baseline data will simultaneously provide information on what, if anything, students learn about inquiry in elementary school, as well as their beginning knowledge as they enter secondary school. It is important to note that collecting data from all of the approximately 200 countries globally was not humanly possible, and it was also not possible to collect data from every region of each country. The results overwhelmingly show that students around the world at the beginning of grade seven have very little understandings about scientific inquiry. Some countries do show reasonable understandings in certain aspects but the overall picture of understandings of scientific inquiry is not what is hoped for after completing 6 years of elementary education in any country.

1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf