Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Bruton, Joseph D.
    et al.
    Aydin, Jan
    Yamada, Takashi
    Shabalina, Irina G.
    Stockholm University, Faculty of Science, The Wenner-Gren Institute , Physiology.
    Ivarsson, Niklas
    Zhang, Shi-Jin
    Wada, Masanobu
    Tavi, Pasi
    Nedergaard, Jan
    Stockholm University, Faculty of Science, The Wenner-Gren Institute , Physiology.
    Katz, Abram
    Westerblad, Håkan
    Increased fatigue resistance linked to Ca(2+)-stimulated mitochondrial biogenesis in muscle fibres of cold-acclimated mice2010In: Journal of Physiology, ISSN 0022-3751, E-ISSN 1469-7793, Vol. 588, no 21, p. 4275-4288Article in journal (Refereed)
    Abstract [en]

    Mammals exposed to a cold environment initially generate heat by repetitive muscle activity (shivering). Shivering is successively replaced by the recruitment of uncoupling protein-1 (UCP1)-dependent heat production in brown adipose tissue. Interestingly, adaptations observed in skeletal muscles of cold-exposed animals are similar to those observed with endurance training. We hypothesized that increased myoplasmic free [Ca2+] ([Ca2+]i) is important for these adaptations. To test this hypothesis, experiments were performed on flexor digitorum brevis (FDB) muscles, which do not participate in the shivering response, of adult wild-type (WT) and UCP1-ablated (UCP1-KO) mice kept either at room temperature (24 ºC) or cold-acclimated (4 ºC) for 4-5 weeks. [Ca2+]i (measured with indo-1) and force were measured under control conditions and during fatigue induced by repeated tetanic stimulation in intact single fibres. The results show no differences between fibres from WT and UCP1-KO mice. However, muscle fibres from cold-acclimated mice showed significant increases in basal [Ca2+]i (~50%), tetanic [Ca2+]i (~40%), and sarcoplasmic reticulum (SR) Ca2+ leak (~four-fold) as compared to fibres from room-temperature mice. Muscles of cold-acclimated mice showed increased expression of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) and increased citrate synthase activity (reflecting increased mitochondrial content). Fibres of cold-acclimated mice were more fatigue resistant with higher tetanic [Ca2+]i and less force loss during fatiguing stimulation. In conclusion, cold exposure induces changes in FDB muscles similar to those observed with endurance training and we propose that increased [Ca2+]i is a key factor underlying these adaptations.

  • 2. Radwani, Houda
    et al.
    Lopez-Gonzalez, Maria José
    Cattaert, Daniel
    Roca-Lapirot, Olivier
    Dobremez, Eric
    Bouali-Benazzouz, Rabia
    Eiríksdóttir, Emelía
    Stockholm University, Faculty of Science, Department of Neurochemistry.
    Langel, Ülo
    Stockholm University, Faculty of Science, Department of Neurochemistry.
    Favereaux, Alexandre
    Errami, Mohammed
    Landry, Marc
    Fossat, Pascal
    Cav1.2 and Cav1.3 L-type calcium channels independently control short- and long-term sensitization to pain2016In: Journal of Physiology, ISSN 0022-3751, E-ISSN 1469-7793, Vol. 594, no 22, p. 6607-6626Article in journal (Refereed)
    Abstract [en]

    KEY POINTS: L-type calcium channels in the CNS exist as two subunit forming channels, Cav1.2 and Cav1.3, which are involved in short- and long-term plasticity. We demonstrate that Cav1.3 but not Cav1.2 is essential for wind-up. These results identify Cav1.3 as a key conductance responsible for short-term sensitization in physiological pain transmission. We confirm the role of Cav1.2 in a model of long-term plasticity associated with neuropathic pain. Up-regulation of Cav1.2 and down-regultation of Cav1.3 in neuropathic pain underlies the switch from physiology to pathology. Finally, the results of the present study reveal that therapeutic targeting molecular pathways involved in wind-up may be not relevant in the treatment of neuropathy.

    ABSTRACT: Short-term central sensitization to pain temporarily increases the responsiveness of nociceptive pathways after peripheral injury. In dorsal horn neurons (DHNs), short-term sensitization can be monitored through the study of wind-up. Wind-up, a progressive increase in DHNs response following repetitive peripheral stimulations, depends on the post-synaptic L-type calcium channels. In the dorsal horn of the spinal cord, two L-type calcium channels are present, Cav1.2 and Cav1.3, each displaying specific kinetics and spatial distribution. In the present study, we used a mathematical model of DHNs in which we integrated the specific patterns of expression of each Cav subunits. This mathematical approach reveals that Cav1.3 is necessary for the onset of wind-up, whereas Cav1.2 is not and that synaptically triggered wind-up requires NMDA receptor activation. We then switched to a biological preparation in which we knocked down Cav subunits and confirmed the prominent role of Cav1.3 in both naive and spinal nerve ligation model of neuropathy (SNL). Interestingly, although a clear mechanical allodynia dependent on Cav1.2 expression was observed after SNL, the amplitude of wind-up was decreased. These results were confirmed with our model when adapting Cav1.3 conductance to the changes observed after SNL. Finally, our mathematical approach predicts that, although wind-up amplitude is decreased in SNL, plateau potentials are not altered, suggesting that plateau and wind-up are not fully equivalent. Wind-up and long-term hyperexcitability of DHNs are differentially controlled by Cav1.2 and Cav1.3, therefore confirming that short- and long-term sensitization are two different phenomena triggered by distinct mechanisms.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf