Ändra sökning
Avgränsa sökresultatet
1 - 6 av 6
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1. Danielsson, Frida
    et al.
    James, Tojo
    Gomez-Cabrero, David
    Huss, Mikael
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik. Stockholms universitet, Science for Life Laboratory (SciLifeLab).
    Assessing the consistency of public human tissue RNA-seq data sets2015Ingår i: Briefings in Bioinformatics, ISSN 1467-5463, E-ISSN 1477-4054, Vol. 16, nr 6, s. 941-949Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Sequencing-based gene expression methods like RNA-sequencing (RNA-seq) have become increasingly common, but it is often claimed that results obtained in different studies are not comparable owing to the influence of laboratory batch effects, differences in RNA extraction and sequencing library preparation methods and bioinformatics processing pipelines. It would be unfortunate if different experiments were in fact incomparable, as there is great promise in data fusion and meta-analysis applied to sequencing data sets. We therefore compared reported gene expression measurements for ostensibly similar samples (specifically, human brain, heart and kidney samples) in several different RNA-seq studies to assess their overall consistency and to examine the factors contributing most to systematic differences. The same comparisons were also performed after preprocessing all data in a consistent way, eliminating potential bias from bioinformatics pipelines. We conclude that published human tissue RNA-seq expression measurements appear relatively consistent in the sense that samples cluster by tissue rather than laboratory of origin given simple preprocessing transformations. The article is supplemented by a detailed walkthrough with embedded R code and figures.

  • 2.
    Forslund, Kristoffer
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Schreiber, Fabian
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Thanintorn, Nattaphon
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Sonnhammer, Erik L. L.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    OrthoDisease: tracking disease gene orthologs across 100 species2011Ingår i: Briefings in Bioinformatics, ISSN 1467-5463, E-ISSN 1477-4054, Vol. 12, nr 5, s. 463-473Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Orthology is one of the most important tools available to modern biology, as it allows making inferences from easily studied model systems to much less tractable systems of interest, such as ourselves. This becomes important not least in the study of genetic diseases. We here review work on the orthology of disease-associated genes and also present an updated version of the InParanoid-based disease orthology database and web site OrthoDisease, with 14-fold increased species coverage since the previous version. Using this resource, we survey the taxonomic distribution of orthologs of human genes involved in different disease categories. The hypothesis that paralogs can mask the effect of deleterious mutations predicts that known heritable disease genes should have fewer close paralogs. We found large-scale support for this hypothesis as significantly fewer duplications were observed for disease genes in the OrthoDisease ortholog groups.

  • 3. Marschall, Tobias
    et al.
    Marz, Manja
    Abeel, Thomas
    Dijkstra, Louis
    Dutilh, Bas E.
    Ghaffaari, Ali
    Kersey, Paul
    Kloosterman, Wigard P.
    Makinen, Veli
    Novak, Adam M.
    Paten, Benedict
    Porubsky, David
    Rivals, Eric
    Alkan, Can
    Baaijens, Jasmijn A.
    De Bakker, Paul I. W.
    Boeva, Valentina
    Bonnal, Raoul J. P.
    Chiaromonte, Francesca
    Chikhi, Rayan
    Ciccarelli, Francesca D.
    Cijvat, Robin
    Datema, Erwin
    Van Duijn, Cornelia M.
    Eichler, Evan E.
    Ernst, Corinna
    Eskin, Eleazar
    Garrison, Erik
    El-Kebir, Mohammed
    Klau, Gunnar W.
    Korbel, Jan O.
    Lameijer, Eric-Wubbo
    Langmead, Benjamin
    Martin, Marcel
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik. Stockholms universitet, Science for Life Laboratory (SciLifeLab).
    Medvedev, Paul
    Mu, John C.
    Neerincx, Pieter
    Ouwens, Klaasjan
    Peterlongo, Pierre
    Pisanti, Nadia
    Rahmann, Sven
    Raphael, Ben
    Reinert, Knut
    de Ridder, Dick
    de Ridder, Jeroen
    Schlesner, Matthias
    Schulz-Trieglaff, Ole
    Sanders, Ashley D.
    Sheikhizadeh, Siavash
    Shneider, Carl
    Smit, Sandra
    Valenzuela, Daniel
    Wang, Jiayin
    Wessels, Lodewyk
    Zhang, Ying
    Guryev, Victor
    Vandin, Fabio
    Ye, Kai
    Schonhuth, Alexander
    Computational pan-genomics: status, promises and challenges2018Ingår i: Briefings in Bioinformatics, ISSN 1467-5463, E-ISSN 1477-4054, Vol. 19, nr 1, s. 118-135Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Many disciplines, from human genetics and oncology to plant breeding, microbiology and virology, commonly face the challenge of analyzing rapidly increasing numbers of genomes. In case of Homo sapiens, the number of sequenced genomes will approach hundreds of thousands in the next few years. Simply scaling up established bioinformatics pipelines will not be sufficient for leveraging the full potential of such rich genomic data sets. Instead, novel, qualitatively different computational methods and paradigms are needed. We will witness the rapid extension of computational pan-genomics, a new sub-area of research in computational biology. In this article, we generalize existing definitions and understand a pan-genome as any collection of genomic sequences to be analyzed jointly or to be used as a reference. We examine already available approaches to construct and use pan-genomes, discuss the potential benefits of future technologies and methodologies and review open challenges from the vantage point of the above-mentioned biological disciplines. As a prominent example for a computational paradigm shift, we particularly highlight the transition from the representation of reference genomes as strings to representations as graphs. We outline how this and other challenges from different application domains translate into common computational problems, point out relevant bioinformatics techniques and identify open problems in computer science. With this review, we aim to increase awareness that a joint approach to computational pan-genomics can help address many of the problems currently faced in various domains.

  • 4. Schmartz, Georges Pierre
    et al.
    Kern, Fabian
    Fehlmann, Tobias
    Wagner, Viktoria
    Fromm, Bastian
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för molekylär biovetenskap, Wenner-Grens institut. Stockholms universitet, Science for Life Laboratory (SciLifeLab).
    Keller, Andreas
    Encyclopedia of tools for the analysis of miRNA isoforms2021Ingår i: Briefings in Bioinformatics, ISSN 1467-5463, E-ISSN 1477-4054, Vol. 22, nr 4, artikel-id bbaa346Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    RNA sequencing data sets rapidly increase in quantity. For microRNAs (miRNAs), frequently dozens to hundreds of billion reads are generated per study. The quantification of annotated miRNAs and the prediction of new miRNAs are leading computational tasks. Now, the increased depth of coverage allows to gain deeper insights into the variability of miRNAs. The analysis of isoforms of miRNAs (isomiRs) is a trending topic, and a range of computational tools for the analysis of isomiRs has been developed. We provide an overview on 27 available computational solutions for the analysis of isomiRs. These include both stand-alone programs (17 tools) and web-based solutions (10 tools) and span a publication time range from 2010 to 2020. Seven of the tools were published in 2019 and 2020, confirming the rising importance of the topic. While most of the analyzed tools work for a broad range of organisms or are completely independent of a reference organism, several tools have been tailored for the analysis of human miRNA data or for plants. While 14 of the tools are general analysis tools of miRNAs, and isomiR analysis is one of their features, the remaining 13 tools have specifically been developed for isomiR analysis. A direct comparison on 20 deep sequencing data sets for selected tools provides insights into the heterogeneity of results. With our work, we provide users a comprehensive overview on the landscape of isomiR analysis tools and in that support the selection of the most appropriate tool for their respective research task.

  • 5.
    Schmitt, Thomas
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Messina, David N.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Schreiber, Fabian
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Sonnhammer, Erik L. L.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Letter to the Editor: SeqXML and OrthoXML: standards for sequence and orthology information2011Ingår i: Briefings in Bioinformatics, ISSN 1467-5463, E-ISSN 1477-4054, Vol. 12, nr 5, s. 485-488Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    There is a great need for standards in the orthology field. Users must contend with different ortholog data representations from each provider, and the providers themselves must independently gather and parse the input sequence data. These burdensome and redundant procedures make data comparison and integration difficult. We have designed two XML-based formats, SeqXML and OrthoXML, to solve these problems. SeqXML is a lightweight format for sequence records the input for orthology prediction. It stores the same sequence and metadata as typical FASTA format records, but overcomes common problems such as unstructured metadata in the header and erroneous sequence content. XML provides validation to prevent data integrity problems that are frequent in FASTA files. The range of applications for SeqXML is broad and not limited to ortholog prediction. We provide read/write functions for BioJava, BioPerl, and Biopython. OrthoXML was designed to represent ortholog assignments from any source in a consistent and structured way, yet cater to specific needs such as scoring schemes or meta-information. A unified format is particularly valuable for ortholog consumers that want to integrate data from numerous resources, e. g. for gene annotation projects. Reference proteomes for 61 organisms are already available in SeqXML, and 10 orthology databases have signed on to OrthoXML. Adoption by the entire field would substantially facilitate exchange and quality control of sequence and orthology information.

  • 6. Yan, Jing
    et al.
    Friedrich, Stefanie
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik. Stockholms universitet, Science for Life Laboratory (SciLifeLab).
    Kurgan, Lukasz
    A comprehensive comparative review of sequence-based predictors of DNA- and RNA-binding residues2016Ingår i: Briefings in Bioinformatics, ISSN 1467-5463, E-ISSN 1477-4054, Vol. 17, nr 1, s. 88-105Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    Motivated by the pressing need to characterize protein-DNA and protein-RNA interactions on large scale, we review a comprehensive set of 30 computational methods for high-throughput prediction of RNA- or DNA-binding residues from protein sequences. We summarize these predictors from several significant perspectives including their design, outputs and availability. We perform empirical assessment of methods that offer web servers using a new benchmark data set characterized by a more complete annotation that includes binding residues transferred from the same or similar proteins. We show that predictors of DNA-binding (RNA-binding) residues offer relatively strong predictive performance but they are unable to properly separate DNA- from RNA-binding residues. We design and empirically assess several types of consensuses and demonstrate that machine learning (ML)-based approaches provide improved predictive performance when compared with the individual predictors of DNA-binding residues or RNA-binding residues. We also formulate and execute first-of-its-kind study that targets combined prediction of DNA- and RNA-binding residues. We design and test three types of consensuses for this prediction and conclude that this novel approach that relies on ML design provides better predictive quality than individual predictors when tested on prediction of DNA- and RNA-binding residues individually. It also substantially improves discrimination between these two types of nucleic acids. Our results suggest that development of a new generation of predictors would benefit from using training data sets that combine both RNA- and DNA-binding proteins, designing new inputs that specifically target either DNA- or RNA-binding residues and pursuing combined prediction of DNA- and RNA-binding residues.

1 - 6 av 6
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf