The relative composition of the two major monocytic subsets CD14+CD16− and CD14+CD16+ is altered in some allergic diseases. These two subsets display different patterns of Toll-like receptor levels, which could have implications for activation of innate immunity leading to reduced immunoglobulin E-specific adaptive immune responses. This study aimed to investigate if allergic status at the age of 5 years is linked to differences in monocytic subset composition and their Toll-like receptor levels, and further, to determine if Toll-like receptor regulation and cytokine production upon microbial stimuli is influenced by the allergic phenotype. Peripheral blood mononuclear cells from 5-year-old allergic and non-allergic children were stimulated in vitro with lipopolysaccharide and peptidoglycan. Cells were analysed with flow cytometry for expression of CD14, Toll-like receptors 2 and 4 and p38-mitogen-activated protein kinase (MAPK). The release of cytokines and chemokines [tumour necrosis factor, interleukin (IL)-1β, IL-6, IL-8, IL-10, IL-12p70] into culture supernatants was measured with cytometric bead array. For unstimulated cells there were no differences in frequency of the monocytic subsets or their Toll-like receptor levels between allergic and non-allergic children. However, monocytes from allergic children had a significantly lower up-regulation of Toll-like receptor 2 upon peptidoglycan stimulation. Further, monocytes from allergic children had a higher spontaneous production of IL-6, but there were no differences between the two groups regarding p38-MAPK activity or cytokine and chemokine production upon stimulation. The allergic subjects in this study have a monocytic population that seems to display a hyporesponsive state as implicated by impaired regulation of Toll-like receptor 2 upon peptidoglycan stimulation.
Microbial exposure early in life influences immune maturation and potentially also the development of immune-mediated disease. Here we studied early-life gut colonization in relation to cytokine responses at two years of age. Fecal samples were collected from infants during the first two months of life. DNA was extracted from the fecal samples and Bifidobacterium (B.) adolescentis, B. breve, B. bifidum, a group of lactobacilli (L. casei, L. paracasei and L. rhamnosus) as well as Staphylococcus (S.) aureus were detected with real time PCR. Peripheral mononuclear cells were stimulated with phytohaemagglutinin (PHA) and numbers of IL-4-, IL-10- and IFN-γ secreting cells were evaluated using ELISpot. We further stimulated peripheral blood mononuclear cells with bacterial supernatants in vitro and assessed the IL-4-, IL-10- and IFN-γ inducing capacity by flow cytometry and ELISA. Early S. aureus colonization associated with higher numbers of IL-4- (p = 0.022) and IL-10 (p = 0.016) producing cells at two years of age. In contrast to colonization with S. aureus alone, co-colonization with lactobacilli associated with suppression of IL-4- (p = 0.004), IL-10- (p = 0.004) and IFN-γ (p = 0.034) secreting cells. In vitro stimulations of mononuclear cells with bacterial supernatants supported a suppressive role of L. rhamnosus GG on S. aureus-induced cytokine responses. We demonstrate that the early gut colonization pattern associates with the PHA-induced cytokine profile at two years of age and our in vitro findings support that specific bacterial species influence the T helper cell subsets. This suggests that dysbiosis in the early microbiota may modulate the risk of developing inflammatory conditions like allergy.
Biological therapy options for the treatment of rheumatic disease target molecules that can affect the cross-talk between innate and adaptive immune responses upon vaccination. Influenza vaccination in children with rheumatic disease has been recommended, but there are only sparse data on the quality of vaccine responses from pediatric patients treated with biological therapy. We conducted an influenza vaccine study over 3 consecutive seasons where the antibody response to TIV was evaluated in children with PRD (n = 78), including both non-treated (n = 17) and treated (with methotrexate, TNF-inhibitors with or without methotrexate, or IL-inhibitors, n = 61) children as well as healthy age-matched controls (n = 24). Peripheral B cells, T and NK cell populations, as well as CXCR5+ (follicular) helper T cells (T-FH) and chemokines involved in antibody responses were assessed prior to immunization in the same cohort. Data on disease duration, therapy and data on previous influenza vaccinations were retrieved. The proportion of circulating T-FH cells were significantly lower in non-treated children with PRD compared to treated patients and healthy controls. The significantly lower proportion of T-FH cells was mirrored by a marked significant increase in CXCL13 serum level, the ligand for CXCR5, with higher levels in non-treated children with PRD compared to treated patients and healthy controls. However, the proportion of T-FH cells or CXCL13 level at the time of vaccination was not a predictor of the antibody response to TIV in this cohort of children. Children with PRD had an overall similar response to TIV as healthy children. Although not significant, children treated with TNF-inhibitors differed as a few children remained seronegative towards H3N2- and influenza B viruses after immunization. Our data show that children with PRD respond to TIV as healthy children. Furthermore, plasma CXCL13 levels did not correlate to the proportion of T-FH cells in blood prior to immunisation, or to antibody responses following immunization.
Allergic diseases are influenced by genetics and the environment. Maternal allergy appears to confer a higher risk for allergic sensitization than paternal allergy, suggesting an in utero influence. A decrease in particular infections or a lower exposure to microbial components during infancy is suggested to contribute to the high allergy prevalence in affluent societies. Toll-like receptors (TLR) 2 and 4 recognize peptidoglycan (PGN) and LPS respectively, are expressed on e.g. monocytes, and have been implicated in modulating the risk of IgE-sensitization. This thesis aimed to study the influence of maternal allergy and early microbial exposure on monocyte function and allergic sensitization during childhood.
Blood samples from children participating in a prospective allergy cohort were used. Two-year old infants with allergic mothers had lower IL-6 production and reduced activation of the TLR-signalling intermediate p38-MAPK in response to PGN than children with non-allergic mothers. In 5-year old children, allergic disease and not maternal allergy influenced monocytic TLR2-regulation. Five-year olds who were seropositive for Epstein-Barr virus (EBV) at 2-years of age had a lower risk of persistent IgE-sensitization while EBV contraction after 2-years of age related to a higher risk of IgE-sensitization. Upon in vitro stimulation, NK cells from EBV+ 2-year olds produced lower IFN-g levels. EBV+ 2-year olds had also lower systemic IFN-g. In comparison to CD14++CD16- monocytes, CD14+CD16+ cells induced NK-cell IFN-g more potently in vitro, and EBV+ infants tended to have lower proportions of these CD14+CD16+ monocytes.
This thesis highlights the importance of early-life microbial (EBV) exposure for a proper allergy-protective immunity. Also, maternal allergic heredity appears to influence monocytic microbial responses in early infancy. All these aspects relate to altered monocyte functionality, which suggest that they could have a role in allergic sensitization.
EBV infection is inversely associated with IgE sensitization in children, and this association is further enhanced by CMV coinfection. In mice, herpesvirus latency causes systemic innate activation and protection from bacterial coinfection, implying the importance of herpesviruses in skewing immune responses during latent infection. Early control of viral infections depends on IFN- release by NK cells, which generally requires the presence of accessory cells. We investigated IFN- production by NK cells in PBMCs from children seropositive (SP) for EBV alone, for both EBV and CMV, or seronegative for both viruses. The ability of classical (CD14++CD16–) and proinflammatory (CD14+CD16+) monocytes to induce autologous NK cell IFN- was studied by coculture experiments with enriched CD3–CD56+ cells. Transwell experiments were used to evaluate how monocytes interact with NK cells to induce IFN- synthesis. SP children had a significantly reduced proportion of IFN-+ NK cells and cognate intracellular IFN- levels, which was more pronounced in CMV-coinfected subjects. Also, resting PBMCs of SP children displayed lower proportions of proinflammatory monocytes. IFN- production by NK cells was dependent on interactions with monocytes, with the proinflammatory subset inducing the highest IFN-. Finally, SP children had markedly lower levels of plasma IFN-, concurrent with in vitro findings. Herpesvirus infections could be one contributing factor for maturation toward balanced Th1-Th2 responses. Our data indicate that early infection by herpesviruses may affect NK cell and monocyte interactions and thereby also influence the development of allergies.
BACKGROUND: Infection with EBV has previously been implicated in influencing allergic disorders, but its precise role remains contradictory. The timing of primary infection may contribute to the discrepancies. OBJECTIVE: This study aimed at investigating whether the time-point of primary EBV infection during childhood could be of importance in modulating the risk of developing IgE sensitization. METHODS: A total of 219 Swedish infants were followed prospectively to 5 years of age with clinical examinations, skin prick testing, specific IgE analyses, and determination of serostatus against EBV. RESULTS: After analysis of the children's EBV serostatus, we found that 5-year-olds who were infected with EBV before the age of 2 years were at a significantly lower risk of being persistently IgE-sensitized-that is, sensitized at both 2 and 5 years of age (adjusted odds ratio, 0.34; 95% CI, 0.12-0.94). In contrast, contraction of EBV after 2 years of age was highly associated with late-onset IgE sensitization (adjusted odds ratio, 4.64; 95% CI, 1.57-13.69). Persistently sensitized 5-year-olds had higher specific-IgE levels than children with late-onset IgE sensitization (P < .01). CONCLUSION: Our data support the value of early-life microbial exposure for protection against the development of IgE sensitization and underscore the proximate postnatal years as an important period during which EBV could contribute to an allergo-protective immune profile.
P>Human monocytes can be divided into two major subpopulations, CD14++ CD16- and CD14+ CD16+ cells, which are suggested to play different roles in antimicrobial responses. In neonates, characteristics and functional responses of monocyte subsets have not previously been explored, and might contribute to the qualitative difference between neonatal and adult cytokine profiles. We report that at baseline, monocyte subsets in cord blood and adult peripheral blood are present in similar frequencies, and show similar expression of CD11c, CD80/CD86, CD163 and HLA-DR. In response to the bacterial ligand peptidoglycan, cord blood monocytes had high inherent capacity for production of the early-response cytokines with levels of tumour necrosis factor and interleukin-12p70 exceeding adult levels, and also a higher phosphorylation of p38-mitogen-activated protein kinase. The CD14+ CD16+ cells expressed more interleukin-12p70 than CD14++ CD16- cells and were present in a higher frequency in peptidoglycan-stimulated cord blood mononuclear cell cultures. Together, the behaviour of cord blood CD14+ CD16+ cells following peptidoglycan stimulation might indicate a qualitative difference between the neonatal antimicrobial response and that of the adult. In addition we found that serum factors in cord blood and adult sera affected cytokine production similarly, with the exception of tumour necrosis factor, regardless of the source of serum or cells. Overall, our data provide new insights into monocyte heterogeneity in cord blood and monocyte subset responses to a bacterial ligand at birth.