Ändra sökning
Avgränsa sökresultatet
1 - 6 av 6
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Lloris-Garcera, Pilar
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Bianchi, Frans
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Slusky, Joanna S. G.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Seppälä, Susanna
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Daley, Daniel O.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    von Heijne, Gunnar
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Antiparallel Dimers of the Small Multidrug Resistance Protein EmrE Are More Stable Than Parallel Dimers2012Ingår i: Journal of Biological Chemistry, ISSN 0021-9258, E-ISSN 1083-351X, Vol. 287, nr 31, s. 26052-26059Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The bacterial multidrug transporter EmrE is a dual-topology membrane protein and as such is able to insert into the membrane in two opposite orientations. The functional form of EmrE is a homodimer; however, the relative orientation of the subunits in the dimer is under debate. Using EmrE variants with fixed, opposite orientations in the membrane, we now show that, although the proteins are able to form parallel dimers, an antiparallel organization of the subunits in the dimer is preferred. Blue-native PAGE analyses of intact oligomers and disulfide cross-linking demonstrate that in membranes, the proteins form parallel dimers only if no oppositely orientated partner is present. Co-expression of oppositely orientated proteins almost exclusively yields antiparallel dimers. Finally, parallel dimers can be disrupted and converted into antiparallel dimers by heating of detergent-solubilized protein. Importantly, in vivo function is correlated clearly to the presence of antiparallel dimers. Our results suggest that an antiparallel arrangement of the subunits in the dimer is more stable than a parallel organization and likely corresponds to the functional form of the protein.

  • 2.
    Lloris-Garcerá, Pilar
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    EmrE, a puzzling transporter: Assembly, biogenesis and evolution of a dual-topology membrane protein2013Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    Biological membranes are the key to cell existence, as they are able to both isolate and connect their interior with the environment. Membranes are composed of lipids and proteins that create a semi-permeable barrier; because the lipid bilayer stops free diffusion of most molecules and ions, membrane proteins play an important role in connecting the interior of the cell with its environment. They function as receptors, sensing signals to trigger a response; cell adhesion molecules, holding neighboring cells together, or transporters and channels importing nutrients and extruding waste, among other chemical compounds, in a controlled manner.

    In order for membrane proteins to function correctly, proper insertion, folding and oligomerization in the bilayer is essential. While most membrane proteins adopt a unique orientation in the membrane, some proteins adopt multiple topologies. A well-known case is the dual-topology membrane proteins that adopt two opposite orientations in the membrane. The best-studied dual-topology protein is EmrE, a dimeric multidrug transporter found in Escherichia coli, and other bacteria.

    The existence of dual-topology proteins raises many questions regarding oligomerization, biogenesis and evolution of membrane proteins. In this thesis, EmrE has been used as a model protein to study some of these issues. Our goals were (i) to settle the controversy regarding whether the arrangement of the monomers within the EmrE dimer is parallel or antiparallel, (ii) to test the validity of the published X-ray structure by in vivo experiments and, (iii) to elucidate the mechanism of membrane insertion (iv) and the evolution of dual-topology membrane proteins.

  • 3.
    Lloris-Garcerá, Pilar
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Seppälä, Susanna
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Slusky, Joanna
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Rapp, Mikaela
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    von Heijne, Gunnar
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Why have Small Multidrug Resistance proteins not evolved into fused, internally homologous structures?Manuskript (preprint) (Övrigt vetenskapligt)
  • 4.
    Lloris-Garcerá, Pilar
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Seppälä, Susanna
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Slusky, Joanna S. G.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik. Stockholms universitet, Science for Life Laboratory (SciLifeLab).
    Rapp, Mikaela
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    von Heijne, Gunnar
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik. Stockholms universitet, Science for Life Laboratory (SciLifeLab).
    Why Have Small Multidrug Resistance Proteins Not Evolved into Fused, Internally Duplicated Structures?2014Ingår i: Journal of Molecular Biology, ISSN 0022-2836, E-ISSN 1089-8638, Vol. 426, nr 11, s. 2246-2254Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The increasing number of solved membrane protein structures has led to the recognition of a common feature in a large fraction of the small-molecule transporters: inverted repeat structures, formed by two fused homologous membrane domains with opposite orientation in the membrane. An evolutionary pathway in which the ancestral state is a single gene encoding a dual-topology membrane protein capable of forming antiparallel homodimers has been posited. A gene duplication event enables the evolution of two oppositely orientated proteins that form antiparallel heterodimers. Finally, fusion of the two genes generates an internally duplicated transporter with two oppositely orientated membrane domains. Strikingly, however, in the small multidrug resistance (SMR) family of transporters, no fused, internally duplicated proteins have been found to date. Here, we have analyzed fused versions of the dual-topology transporter EmrE, a member of the SMR family, by blue-native PAGE and in vivo activity measurements. We find that fused constructs give rise to both intramolecular inverted repeat structures and competing intermolecular dimers of varying activity. The formation of several intramolecularly and intermolecularly paired species indicates that a gene fusion event may lower the overall amount of active protein, possibly explaining the apparent absence of fused SMR proteins in nature.

  • 5.
    Lloris-Garcerá, Pilar
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Slusky, Joanna S. G.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Seppäla, Susanna
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Priess, Marten
    Schäfer, Lars V.
    von Heijne, Gunnar
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik. Stockholms universitet, Science for Life Laboratory (SciLifeLab).
    In Vivo Trp Scanning of the Small Multidrug Resistance Protein EmrE Confirms 3D Structure Models2013Ingår i: Journal of Molecular Biology, ISSN 0022-2836, E-ISSN 1089-8638, Vol. 425, nr 22, s. 4642-4651Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The quaternary structure of the homodimeric small multidrug resistance protein EmrE has been studied intensely over the past decade. Structural models derived from both two- and three-dimensional crystals show EmrE as an anti-parallel homodimer. However, the resolution of the structures is rather low and their relevance for the in vivo situation has been questioned. Here, we have challenged the available structural models by a comprehensive in vivo Trp scanning of all four transmembrane helices in EmrE. The results are in close agreement with the degree of lipid exposure of individual residues predicted from coarse-grained molecular dynamics simulations of the anti-parallel dimeric structure obtained by X-ray crystallography, strongly suggesting that the X-ray structure provides a good representation of the active in vivo form of EmrE.

    Ladda ner fulltext (pdf)
    Fulltext
  • 6.
    Seppälä, Susanna
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Slusky, Joanna S.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Lloris-Garcera, Pilar
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Rapp, Mikaela
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    von Heijne, Gunnar
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Control of Membrane Protein Topology by a Single C-Terminal Residue2010Ingår i: Science, ISSN 0036-8075, E-ISSN 1095-9203, Vol. 328, nr 5986, s. 1698-1700Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The mechanism by which multispanning helix-bundle membrane proteins are inserted into their target membrane remains unclear. In both prokaryotic and eukaryotic cells, membrane proteins are inserted cotranslationally into the lipid bilayer. Positively charged residues flanking the transmembrane helices are important topological determinants, but it is not known whether they act strictly locally, affecting only the nearest transmembrane helices, or can act globally, affecting the topology of the entire protein. Here we found that the topology of an Escherichia coli inner membrane protein with four or five transmembrane helices could be controlled by a single positively charged residue placed in different locations throughout the protein, including the very C terminus. This observation points to an unanticipated plasticity in membrane protein insertion mechanisms.

1 - 6 av 6
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf