Change search
Refine search result
1234567 101 - 150 of 1017
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 101.
    Björklund, Catarina
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Design and Synthesis of BACE-1 Inhibitors: Novel Compounds Targeting an Aspartic Protease Important in the Pathogenesis of Alzheimer’s Disease2009Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis deals with the design and synthesis of protease inhibitors targeting the aspartic protease BACE-1 (β-site APP cleaving enzyme-1), an enzyme important in the pathogenesis of Alzheimer’s disease. The inhibitors are evaluated with respect to inhibition data, in a structure-activity relationship part.

    Alzheimer’s disease is a disabling, progressive and ultimately fatal form of dementia afflicting approximately 40 percent of the population over 80 years, with over 30 million people suffering from Alzheimer’s disease worldwide. This makes Alzheimer’s disease the most common form of dementia. The identification of the amyloid-β peptide (Aβ) as the main constituent of extracellular plaques, which characterize Alzheimer’s disease, suggests that Aβ plays a vital role in the pathology of Alzheimer’s disease. The formation of Aβ occurs when amyloid-β precursor protein (APP) is cleaved by β-secretase (BACE-1) and γ-secretase, which differ in length by 39-42 amino acids. This suggests that β-secretase is a suitable target for the development of therapeutics against Alzheimer’s disease.

    The synthetic work of this thesis comprises development of BACE-1 inhibitors containing a hydroxyethylene (HE) central core transition state isostere. The target molecules were readily synthesized from chiral carbohydrate starting materials. Highly potent inhibitors were produced by varying the substituents coupled to the HE central core. Selecting an aryloxymethyl P1 side-chain and a methoxy P1’ side-chain resulted in exceptionally potent BACE-1 inhibitors that also exhibit high selectivity over cathepsin D. In a further development, the ether oxygen linkage in the P1 side-chain was removed, resulting in a carba analogue, providing improved potency in a cell-based assay.

  • 102.
    Björsne, Magnus
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Synthesis of potential candidates for therapeutic intervention against the human immunodeficiency virus1995Doctoral thesis, comprehensive summary (Other academic)
  • 103.
    Blomberg, Margareta R. A.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Mechanism of Oxygen Reduction in Cytochrome c Oxidase and the Role of the Active Site Tyrosine2016In: Biochemistry, ISSN 0006-2960, E-ISSN 1520-4995, Vol. 55, no 3, p. 489-500Article in journal (Refereed)
    Abstract [en]

    Cytochrome c oxidase, the terminal enzyme in the respiratory chain, reduces molecular oxygen to water and stores the released energy through electrogenic chemistry and proton pumping across the membrane. Apart from the heme-copper binuclear center, there is a conserved tyrosine residue in the active site (BNC). The tyrosine delivers both an electron and a proton during the O-O bond cleavage step, forming a tyrosyl radical. The catalytic cycle then occurs in four reduction steps, each taking up one proton for the chemistry (water formation) and one proton to be pumped. It is here suggested that in three of the reduction steps the chemical proton enters the center of the BNC, leaving the tyrosine unprotonated with radical character. The reproprotonation of the tyrosine occurs first in the final reduction step before binding the next oxygen molecule. It is also suggested that this reduction mechanism and the presence of the tyrosine are essential for the proton pumping. Density functional theory calculations on large cluster models of the active site show that only the intermediates with the proton in the center of the BNC and with an unprotonated tyrosyl radical have a high electron affinity of similar size as the electron donor, which is essential for the ability to take up two protons per electron and thus for the proton pumping. This type of reduction mechanism is also the only one that gives a free energy profile in accordance with experimental observations for the amount of proton pumping in the working enzyme.

  • 104.
    Blomberg, Margareta R. A.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Borowski, Tomasz
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Liao, Rong-Zhen
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Siegbahn, Per E. M.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Quantum Chemical Studies of Mechanisms for Metalloenzymes2014In: Chemical Reviews, ISSN 0009-2665, E-ISSN 1520-6890, Vol. 114, no 7, p. 3601-3658Article, review/survey (Refereed)
  • 105.
    Blomberg, Margareta R. A.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Siegbahn, Per E. M.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    How cytochrome c oxidase can pump four protons per oxygen molecule at high electrochemical gradient2015In: Biochimica et Biophysica Acta - Bioenergetics, ISSN 0005-2728, E-ISSN 1879-2650, Vol. 1847, no 3, p. 364-376Article in journal (Refereed)
    Abstract [en]

    Experiments have shown that the A-family cytochrome c oxidases pump four protons per oxygen molecule, also at a high electrochemical gradient. This has been considered a puzzle, since two of the reduction potentials involved, Cu(II) and Fe(III), were estimated from experiments to be too low to afford proton pumping at a high gradient The present quantum mechanical study (using hybrid density functional theory) suggests a solution to this puzzle. First, the calculations show that the charge compensated Cu(II) potential for Cu-B is actually much higher than estimated from experiment, of the same order as the reduction potentials for the tyrosyl radical and the ferryl group, which are also involved in the catalytic cycle. The reason for the discrepancy between theory and experiment is the very large uncertainty in the experimental observations used to estimate the equilibrium potentials, mainly caused by the lack of methods for direct determination of reduced Cu-B. Second, the calculations show that a high energy metastable state, labeled E-H, is involved during catalytic turnover. The E-H state mixes the low reduction potential of Fe(III) in heme a(3) with another, higher potential, here suggested to be that of the tyrosyl radical, resulting in enough exergonicity to allow proton pumping at a high gradient In contrast, the corresponding metastable oxidized state, O-H, is not significantly higher in energy than the resting state, O. Finally, to secure the involvement of the high energy E-H state it is suggested that only one proton is taken up via the K-channel during catalytic turnover.

  • 106.
    Blomberg, Margareta R. A.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Siegbahn, Per E. M.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Improved free energy profile for reduction of NO in cytochrome c dependent nitric oxide reductase (cNOR)2016In: Journal of Computational Chemistry, ISSN 0192-8651, E-ISSN 1096-987X, Vol. 37, no 19, p. 1810-1818Article in journal (Refereed)
    Abstract [en]

    Quantum chemical calculations play an essential role in the elucidation of reaction mechanisms for redox-active metalloenzymes. For example, the cleavage and the formation of covalent bonds can usually not be described only on the basis of experimental information, but can be followed by the calculations. Conversely, there are properties, like reduction potentials, which cannot be accurately calculated. Therefore, computational and experimental data has to be carefully combined to obtain reliable descriptions of entire catalytic cycles involving electron and proton uptake from donors outside the enzyme. Such a procedure is illustrated here, for the reduction of nitric oxide (NO) to nitrous oxide and water in the membrane enzyme, cytochrome c dependent nitric oxide reductase (cNOR). A surprising experimental observation is that this reaction is nonelectrogenic, which means that no energy is conserved. On the basis of hybrid density functional calculations a free energy profile for the entire catalytic cycle is obtained, which agrees much better with experimental information on the active site reduction potentials than previous ones. Most importantly the energy profile shows that the reduction steps are endergonic and that the entire process is rate-limited by high proton uptake barriers during the reduction steps. This result implies that, if the reaction were electrogenic, it would become too slow when the gradient is present across the membrane. This explains why this enzyme does not conserve any of the free energy released.

  • 107.
    Blomberg, Margareta R. A.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Siegbahn, Per E. M.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Proton pumping in cytochrome c oxidase: Energetic requirements and the role of two proton channels2014In: Biochimica et Biophysica Acta - Bioenergetics, ISSN 0005-2728, E-ISSN 1879-2650, Vol. 1837, no 7, p. 1165-1177Article in journal (Refereed)
    Abstract [en]

    Cytochrome c oxidase is a superfamily of membrane bound enzymes catalyzing the exergonic reduction of molecular oxygen to water, producing an electrochemical gradient across the membrane. The gradient is formed both by the electrogenic chemistry, taking electrons and protons from opposite sides of the membrane, and by proton pumping across the entire membrane. In the most efficient subfamily, the A-family of oxidases, one proton is pumped in each reduction step, which is surprising considering the fact that two of the reduction steps most likely are only weakly exergonic. Based on a combination of quantum chemical calculations and experimental information, it is here shown that from both a thermodynamic and a kinetic point of view, it should be possible to pump one proton per electron also with such an uneven distribution of the free energy release over the reduction steps, at least up to half the maximum gradient. A previously suggested pumping mechanism is developed further to suggest a reason for the use of two proton transfer channels in the A-family. Since the rate of proton transfer to the binuclear center through the D-channel is redox dependent, it might become too slow for the steps with low exergonicity. Therefore, a second channel, the K-channel, where the rate is redox-independent is needed. A redox-dependent leakage possibility is also suggested, which might be important for efficient energy conservation at a high gradient. A mechanism for the variation in proton pumping stoichiometry over the different subfamilies of cytochrome oxidase is also suggested. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.

  • 108.
    Bogár, Krisztián
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Synthetic Transformations via Metal- and Enzyme-Catalyzed Dynamic Kinetic Resolution2007Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis deals with the preparation of a new half-sandwich type ruthenium(II)- catalyst for racemization of optically active secondary alcohols and the development of a highly efficient method in combination with lipases such as Candida antarctica lipase B and Pseudomonas cepacia lipase for dynamic kinetic resolution of various functionalized alcohols under mild reaction conditions.

    It was shown that the RuCl(CO)25-C5Ph5) complex can racemize optically active aliphatic and aromatic secondary alcohols at room temperature in rather short times. Different parameters, such as the nature of the catalyst, catalyst loading and solvent effect were studied. After the optimization steps, the Ru-catalyzed racemization of (S)-1-phenylethanol in the presence of Candida antarctica lipase B was also investigated. The compatibility of the metal- and enzyme-catalyzed reactions led to a highly efficient coupled catalytic system for transformation of racemic alcohols to their enantiomerically pure acetates. This protocol was applied for a wide range of secondary alcohols. It was shown that in the case of allylic alcohols the obtained enantiopure allylic acetates are useful compounds for synthesis of α-methyl carboxylic acids such as (R)-Flurbiprofen and acyloin acetates. Highly selective dynamic kinetic asymmetric transformation of 3,5-piperidine diol to deliver various 3,5-dioxygenated piperidines is also described.

  • 109.
    Bogár, Krisztián
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    High-yielding metalloenzymatic dynamic kinetic resolution of fluorinated aryl alcohols2007In: Tetrahedron Letters, ISSN 0040-4039, E-ISSN 1359-8562, Vol. 48, no 31, p. 5471-5474Article in journal (Refereed)
    Abstract [en]

    Dynamic kinetic resolution (DKR) of various fluorinated aryl alcohols by a combination of lipase-catalyzed enzymatic resolution with in situ ruthenium-catalyzed alcohol racemization is described. (R)-Selective Candida antarctica lipase B (CALB) was employed for transesterification of different fluoroaryl alcohols in DKR reactions delivering the corresponding acetates in high yield (97%) with excellent enantiomeric excess (98%).

  • 110.
    Bogár, Krisztián
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Hoyos Vidal, Pilar
    Alcántara León, Andrés R.
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Chemoenzymatic Dynamic Kinetic Resolution of Allylic Alcohols: A Highly Enantioselective Route to Acyloin Acetates2007In: Organic Letters, ISSN 1523-7060, E-ISSN 1523-7052, Vol. 9, no 17, p. 3401-3404Article in journal (Refereed)
    Abstract [en]

    Dynamic kinetic resolution (DKR) of a series of sterically hindered allylic alcohols has been conducted with Candida antarctica lipase B (CALB) and ruthenium catalyst 1. The optically pure allylic acetates obtained were subjected to oxidative cleavage to give the corresponding acylated acyloins in high yields without loss of chiral information.

  • 111.
    Bogár, Krisztián
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Krumlinde, Patrik
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bacsik, Zoltán
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Hedin, Niklas
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Bäckvall, Jan E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Heterogenized Wilkinson's Catalyst for Transfer Hydrogenation of Carbonyl Compounds2011In: European Journal of Organic Chemistry, ISSN 1434-193X, E-ISSN 1099-0690, no 23, p. 4409-4414Article in journal (Refereed)
    Abstract [en]

    Wilkinson’s catalyst [RhCl(PPh3)3] was heterogenized on common silica by the use of a grafting/anchoring technique. The immobilized catalyst showed high activity and selectivity in transfer hydrogenation reactions of a range of carbonyl compounds in 2-propanol. Reactions carried out in 2-propanol at reflux afforded the corresponding alcohols in high yields in short reaction times. The heterogeneous feature ofthe catalyst allows for easy recovery and efficient reuse in the same reaction up to 5 times without any detectible loss of catalytic activity.

  • 112. Bogár, Krisztián
    et al.
    Krumlinde, Patrik
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Hydrogenized Wilkinson´s Catalyst for Transfer Hydrogenation of Carbonyl CompoundsManuscript (preprint) (Other academic)
    Abstract [en]

    Combining the advantages of homogeneous and heterogeneous catalysis is possible by heterogenization of homogeneous transition metal complexes based on a grafting/anchoring technique. Wilkinson’s catalyst ((RhCl(PPh3)3) immobilized on common silica showed high activity and selectivity in transfer hydrogenation reactions of different carbonyl compounds in isopropanol. Reactions conducted at reflux in isopropanol afforded the corresponding carbinols in high yields in short reaction times. The heterogeneous feature of the catalyst allows easy recovery and efficient reuse in the same reaction up to 5 times without loss of catalytic activity.

  • 113. Bogár, Krisztián
    et al.
    Martín-Matute, Belén
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Large-scale ruthenium- and enzyme-catalyzed dynamic kinetic resolution of (rac)-1-phenylethanol2007In: Beilstein Journal of Organic Chemistry, ISSN 1860-5397, Vol. 3, p. artikel nr 50-Article in journal (Refereed)
  • 114.
    Bogár, Krisztián
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Olofsson, Berit
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Fransson, Ann-Britt L.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Asymmetric synthesis of 3,5-disubstituted piperidines by enzyme-metal combo catalysis2006In: Enzymatic Synthesis, Stockholm, Sweden, 2006Conference paper (Other (popular science, discussion, etc.))
  • 115.
    Bollmark, Martin
    Stockholm University.
    Studies on the synthesis of nucleotide analogues containing P-F and P-Se bonds2001Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    In the present work, new synthetic approaches to the synthesis of nucleoside phosphorofluoridate and phosphorofluoridothioate diesters have been developed. These procedures involve either oxidative transformation of the corresponding H-phosphonate or H-phosphonothioate diesters in the presence of fluoride anion or iodine-promoted desulfurization of phosphorothioate or phosphorodithioate diesters in the presence of fluoride anion. Also, efficient protocols for the synthesis of nucleoside phosphorofluoridate, nucleoside phosphorofluoridothioate and nucleoside phosphorofluoridodithioate monoesters were developed.

    Furthermore, the chemistry of a new class of P(III) compounds containing selenium, i. e. H-phosphonoselenoate monoesters was developed and synthetic procedures for the conversion of these compounds into the corresponding diesters were designed. In addition, the usefulness of H-phosphonoselenoate diesters for the preparation of various selenium-containing nucleotide analogues was demonstrated.

    Finally, the possibility of employing triphenylphosphine selenide as a reagent for selenizing P(III) compounds was examined. Under mild conditions, this commercially available reagent was found to convert phosphite triesters and H-phosphonate diesters efficiently into the corresponding phosphoroselenoate derivatives.

  • 116.
    Bornschein, Christoph
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry. Universität Rostock, Germany.
    Gustafson, Karl P. J.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Verho, Oscar
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Beller, Matthias
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Evaluation of Fe and Ru Pincer-Type Complexes as Catalysts for the Racemization of Secondary Benzylic Alcohols2016In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 22, no 33, p. 11583-11586Article in journal (Refereed)
    Abstract [en]

    Fe and Ru pincer-type catalysts are used for the racemization of benzylic alcohols. Racemization with the Fe catalyst was achieved within 30 minutes under mild reaction conditions, with a catalyst loading as low as 2 mol %. This reaction constitutes the first example of an iron-catalyzed racemization of an alcohol. The efficiency for racemization of the Fe catalyst and its Ru analogue was evaluated for a wide range of sec-benzylic alcohols. The commercially available Ru complex proved to be highly robust and even tolerated the presence of water in the reaction mixture.

  • 117.
    Borén, Linnéa
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Enantioselective Synthesis of Sec-Alcohol Derivatives and Diols via Combined Ruthenium and Enzyme Catalysis2008Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The first part of this thesis describes the synthesis of enantiopure secondary alcohol derivatives. These syntheses are carried out via the combination of an enzyme as a resolution catalyst and a ruthenium catalyst as a racemization catalyst, in what is called dynamic kinetic resolution (DKR). By varying the resolution catalyst enantio-complementary processes can be obtained. A lipase (PS-C II) catalyzed DKR of γ-hydroxyamides gave the corresponding (R)-acetates in high yields and with high enantioselectivity. The synthetic usefulness of these obtained (R)-acetates was demonstrated by the synthesis of (R)-5-methyltetrahydrofurane-2-one. A protease (Subtilisin Carlsberg) catalyzed DKR of various secondary alcohols gave the corresponding (S)-acetates in high yields and with high enantioselectivity. In the second part of this thesis the DKR process has been extended into a dynamic kinetic asymmetric transformation (DYKAT) of diols. Various 1,5- and 1,4-diols were transformed into enantiopure diacetates in a lipase (CALB and PS-C II) catalyzed DYKAT. The synthetic utility of the obtained enantiopure diacetates were demonstrated by the synthesis of various enantiopure disubstituted heterocycles.

  • 118.
    Borén, Linnéa
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Leijondahl, Karin
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Dynamic Kinetic Asymmetric Transformation of 1,4-diols and Preparation of Trans-2,5-Disubstituted pyrrolidines2009In: Tetrahedron Letters, ISSN 0040-4039, E-ISSN 1359-8562, Vol. 50, no 26, p. 3237-3240Article in journal (Refereed)
    Abstract [en]

    Dynamic kinetic asymmetric transformation (DYKAT) of a series of 1,4-diols is carried out with Candida antarctica lipase B (CALB), Pseudomonas cepacia lipase II (PS-C II), and a ruthenium catalyst. A β-chloro-substituted 1,4-diol is successfully transformed into an optically pure 1,4-diacetate, which is a highly useful synthetic intermediate. The usefulness of the optically pure 1,4-diacetates is demonstrated by the synthesis of enantiopure 2,5-disubstituted pyrrolidines.

  • 119. Both, P.
    et al.
    Green, A. P.
    Gray, C. J.
    Sardzik, R.
    Voglmeir, J.
    Fontana, Carolina
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Austeri, M.
    Rejzek, M.
    Richardson, D.
    Field, R. A.
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Flitsch, S. L.
    Eyers, C. E.
    Discrimination of epimeric glycans and glycopeptides using IM-MS and its potential for carbohydrate sequencing2014In: Nature Chemistry, ISSN 1755-4330, E-ISSN 1755-4349, Vol. 6, no 1, p. 65-74Article in journal (Refereed)
    Abstract [en]

    Mass spectrometry is the primary analytical technique used to characterize the complex oligosaccharides that decorate cell surfaces. Monosaccharide building blocks are often simple epimers, which when combined produce diastereomeric glycoconjugates indistinguishable by mass spectrometry. Structure elucidation frequently relies on assumptions that biosynthetic pathways are highly conserved. Here, we show that biosynthetic enzymes can display unexpected promiscuity, with human glycosyltransferase pp-a-GanT2 able to utilize both uridine diphosphate N-acetylglucosamine and uridine diphosphate N-acetylgalactosamine, leading to the synthesis of epimeric glycopeptides in vitro. Ion-mobility mass spectrometry ( IM-MS) was used to separate these structures and, significantly, enabled characterization of the attached glycan based on the drift times of the monosaccharide product ions generated following collision-induced dissociation. Finally, ion-mobility mass spectrometry following fragmentation was used to determine the nature of both the reducing and non-reducing glycans of a series of epimeric disaccharides and the branched pentasaccharide Man3 glycan, demonstrating that this technique may prove useful for the sequencing of complex oligosaccharides.

  • 120.
    Bouma, M. J.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Olofsson, Berit
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    7.07 α-Oxygenation of Carbonyl Compounds2014In: Comprehensive Organic Synthesis II (Second Edition) / [ed] Paul Knochel and Gary A. Molander, Amsterdam: Oxford: Elsevier , 2014, 2nd, p. 213-241Chapter in book (Refereed)
    Abstract [en]

    Abstract The chapter describes synthetically useful strategies for α-oxygenation of carbonyl compounds, with special emphasis on recent methods for catalytic and asymmetric reactions. The oxidation of enolates, enols, enol ethers, and α,β-unsaturated compounds is discussed in detail. Classical oxidation reagents like metal oxides, molecular oxygen, peroxides, and peracids are covered, with asymmetric dihydroxylation of enol ethers giving the highest enantioselectivities together with organocatalytic methods using peroxides. Oxaziridines, nitrosoarenes, and hypervalent iodine compounds are more recently developed α-oxygenation alternatives that allow metal-free oxidations under mild conditions. The combination of nitrosoarenes with organocatalysis is currently the best method for enantioselective α-oxygenations. The area of asymmetric α-oxygenations with hypervalent iodine compounds is currently under development, and high enantioselectivities have only been achieved in intramolecular reactions and epoxidations.

  • 121.
    Bouma, Marinus J.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Olofsson, Berit
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    General One-Pot Synthesis of Alkynyliodonium Salts and Alkynyl Benziodoxolones from Aryl Iodides2012In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 18, no 45, p. 14242-14245Article in journal (Refereed)
  • 122. Boutet, Julien
    et al.
    Blasco, Pilar
    Centro de Investigaciones Biológicas, CSIC, Spain.
    Guerreiro, Catherine
    Thouron, Francoise
    Dartevelle, Sylvie
    Nato, Farida
    Javier Canada, F.
    Arda, Ana
    Phalipon, Armelle
    Jimenez-Barbero, Jesus
    Mulard, Laurence A.
    Detailed Investigation of the Immunodominant Role of O-Antigen Stoichiometric O-Acetylation as Revealed by Chemical Synthesis, Immunochemistry, Solution Conformation and STD-NMR Spectroscopy for Shigella flexneri 3a2016In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 22, no 31, p. 10892-10911Article in journal (Refereed)
    Abstract [en]

    Shigella flexneri 3a causes bacillary dysentery. Its O-antigen has the {2)-[alpha-d-Glcp-(1 -> 3)]-alpha-L-Rhap-(1 -> 2)-alpha-L-Rhap-( 1 -> 3)-[Ac -> 2]-alpha-L-Rhap-(1 ->)-[Ac -> 6](approximate to 40%)-beta-D-GlcpNAc-(1 ->} ([(E)AB(Ac)C(Ac)D]) repeating unit, and the non-Oacetylated equivalent defines S. flexneri X. Propyl hepta-, octa-, and decasaccharides sharing the (E') A'BAcCD(E) A sequence, and their non-O-acetylated analogues were synthesized from a fully protected BAcCD(E) A allyl glycoside. The stepwise introduction of orthogonally protected mono-and disaccharide imidate donors was followed by a two-step deprotection process. Monoclonal antibody binding to twenty-six S. flexneri types 3a and X di-to decasaccharides was studied by an inhibition enzyme-linked immunosorbent assay (ELISA) and STD-NMR spectroscopy. Epitope mapping revealed that the 2(C)-acetate dominated the recognition by monoclonal IgG and IgM antibodies and that the BAcCD segment was essential for binding. The glucosyl side chain contributed to a lesser extent, albeit increasingly with the chain length. Moreover, tr-NOESY analysis also showed interaction but did not reveal any meaningful conformational change upon antibody binding.

  • 123.
    Bowden, Tim
    Stockholm University.
    Studies on glycosylation mechanisms and synthesis of structures related to inositolphosphoglycans2000Doctoral thesis, comprehensive summary (Other academic)
  • 124. Bratt, Emma
    et al.
    Verho, Oscar
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Johansson, Magnus J.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    A General Suzuki Cross-Coupling Reaction of Heteroaromatics Catalyzed by Nanopalladium on Amino-Functionalized Siliceous Mesocellular Foam2014In: Journal of Organic Chemistry, ISSN 0022-3263, E-ISSN 1520-6904, Vol. 79, no 9, p. 3946-3954Article in journal (Refereed)
    Abstract [en]

    Suzuki-Miyaura cross-coupling reactions of heteroaromatics catalyzed by palladium supported in the cavities of amino-functionalized siliceous mesocellular foam are presented. The nanopalladium catalyst effectively couples not only heteroaryl halides with boronic acids but also heteroaryl halides with boronate esters, potassium trifluoroborates, MIDA boronates, and triolborates, producing a wide range of heterobiaryls in good to excellent yields. Furthermore, the heterogeneous palladium nanocatalyst can easily be removed from the reaction mixture by filtration and recycled several times with minimal loss in activity. This catalyst provides an alternative, environmentally friendly, low-leaching process for the preparation of heterobiaryls.

  • 125. Brown, Michael
    et al.
    Delorme, Marion
    Malmedy, Florence
    Malmgren, Joel
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Olofsson, Berit
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Wirth, Thomas
    Synthesis of New Chiral Diaryliodonium Salts2015In: Synlett: Accounts and Rapid Communications in Synthetic Organic Chemistry, ISSN 0936-5214, E-ISSN 1437-2096, Vol. 26, no 11, p. 1573-1577Article in journal (Refereed)
    Abstract [en]

    A structurally diverse range of chiral diaryliodonium salts have been synthesised which have potential application in metal-free stereoselective arylation reactions.

  • 126.
    Buitrago, Elina
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Transition metal catalyzed reduction of ketones2010Licentiate thesis, comprehensive summary (Other academic)
  • 127.
    Buitrago, Elina
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Transition metal-catalyzed reduction of carbonyl compounds: Fe, Ru and Rh complexes as powerful hydride mediators2012Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    A detailed mechanistic investigation of the previously reported ruthenium pseudo-dipeptide-catalyzed asymmetric transfer hydrogenation (ATH) of aromatic ketones was performed. It was found that the addition of alkali metals has a large influence on both the reaction rate and the selectivity, and that the rate of the reaction was substantially increased when THF was used as a co-solvent. A novel bimetallic mechanism for the ruthenium pseudo-dipeptide-catalyzed asymmetric reduction of prochiral ketones was proposed.

    There is a demand for a larger substrate scope in the ATH reaction, and heteroaromatic ketones are traditionally more challenging substrates. Normally a catalyst is developed for one benchmark substrate, and a substrate screen is carried out with the best performing catalyst. There is a high probability that for different substrates, another catalyst could outperform the one used. To circumvent this issue, a multiple screen was executed, employing a variety of ligands from different families within our group’s ligand library, and different heteroaromatic ketones to fine-tune and to find the optimum catalyst depending on the substrate. The acquired information was used in the formal total syntheses of (R)-fluoxetine and (S)-duloxetine, where the key reduction step was performed with high enantioselectivities and high yield, in each case.

    Furthermore, a new iron-N-heterocyclic carbene (NHC)-catalyzed hydrosilylation (HS) protocol was developed. An active catalyst was formed in situ from readily available imidazolium salts together with an iron source, and the inexpensive and benign polymethylhydrosiloxane (PMHS) was used as hydride donor. A set of sterically less demanding, potentially bidentate NHC precursors was prepared. The effect proved to be remarkable, and an unprecedented activity was observed when combining them with iron. The same system was also explored in the reduction of amides to amines with satisfactory results.

  • 128.
    Buitrago, Elina
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Lundberg, Helena
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Andersson, Hans
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Ryberg, Per
    Adolfsson, Hans
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    High Throughput Screening of a Catalyst Library for the Asymmetric Transfer Hydrogenation of Heteroaromatic Ketones: Formal Syntheses of (R)-Fluoxetine and (S)-Duloxetine2012In: ChemCatChem, ISSN 1867-3880, E-ISSN 1867-3899, Vol. 4, no 12, p. 2082-2089Article in journal (Refereed)
    Abstract [en]

    A total of 21 amino acid based ligands including hydroxy amide, thioamide, and hydroxamic acid functionalities, respectively, were combined with [Ru(p-cymene)Cl2]2 and [RhCp*Cl2]2, and used as catalysts for the asymmetric transfer hydrogenation of four different heteroaromatic ketones in 2-propanol. The reactions were performed on a Chemspeed automated high-throughput screening robotic platform. Optimal catalysts were identified for the individual heterocyclic substrate classes. Based on these results, the formal syntheses of the antidepressant drugs (R)-fluoxetine and (S)-duloxetine were conducted by using the found catalysts in the key reaction step, which results in high isolated yields (94?%) and excellent product enantioselectivities (>99?% ee) of the formed 1,3-amino alcohols.

  • 129.
    Buitrago, Elina
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Lundberg, Helena
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Andersson, Hans
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Ryberg, Per
    Aztra Zeneca, Global Process R&D, Södertälje, Sweden.
    Adolfsson, Hans
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Selective reduction of heteroaromatic ketones: A combinatorial approach2011Conference paper (Other academic)
    Abstract [en]

    The enantioselective reduction of prochiral ketones is a most productiveway towards enantio enriched secondary alcohols used in the preparation of biologically active compounds. There are numerous transition metal catalyzed methods for this transformation, particularly based on Ru(II)-and Rh(I)-complexes, but there is a demand for a larger substrate scope. Heteroaromatic ketones are traditionally more challenging substrates. Normally a catalyst is developed for one benchmark substrate, and asubstrate screen is made with the best performing catalyst. Using this methodology, there is a high probability that for different substrates, another catalyst could outperform the one used. We have executed a multiple screen, containing a variety of different ligands together with both Ru and Rh, and heteroaromatic ketones to fine-tune, and find the optimum catalyst depending on the substrate. The acquired information was used to synthesize known, biologically active compounds, where the key reduction steps were performed with high enantioselectivities and yields.

  • 130.
    Buitrago, Elina
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Tinnis, Fredrik
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Adolfsson, Hans
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Efficient and Selective Hydrosilylation of Carbonyls Catalyzed by Iron Acetate and N-Hydroxyethylimidazolium Salts2012In: Advanced Synthesis and Catalysis, ISSN 1615-4150, E-ISSN 1615-4169, Vol. 354, no 1, p. 217-222Article in journal (Refereed)
    Abstract [en]

    Aromatic aldehydes, along with aryl alkyl, heteroaryl alkyl, and dialkyl ketones were efficiently reduced to their corresponding primary and secondary alcohols, respectively, in high yields, using the commercially available and inexpensive polymeric silane, polymethylhydrosiloxane (PMHS), as reducing agent. The reaction is catalyzed by in situ generated iron complexes containing hydroxyethyl-functionalized NHC ligands. Turnover frequencies up to 600 h−1 were obtained

  • 131.
    Buitrago, Elina
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Zani, Lorenzo
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Adolfsson, Hans
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Fe/NHC-catalyzed hydrosilylation of aromatic ketones2009In: Abstracts of Papers, 238th ACS National Meeting, Washington, DC, United States, August 16-20, 2009, Washington, DC: American Chemical Society , 2009Conference paper (Other academic)
  • 132.
    Buitrago, Elina
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Zani, Lorenzo
    Adolfsson, Hans
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Selective hydrosilylation of ketones catalyzed by in situ-generated iron NHC complexes2011In: Applied organometallic chemistry, ISSN 0268-2605, E-ISSN 1099-0739, Vol. 25, no 10, p. 748-752Article in journal (Refereed)
    Abstract [en]

    Aryl alkyl-, heteroaryl alkyl- and dialkyl ketones were readily reduced to their corresponding secondary alcohols in high yields, using the commercially available and inexpensive polymeric silane polymethylhydrosiloxane (PMHS), as reducing agent. The reaction is catalyzed by an in situ-generated iron complex, conveniently generated from iron(II) acetate and the commercially available N-heterocyclic carbene (NHC) precursor IPr·HCl.

  • 133.
    Bunrit, Anon
    Stockholm University, Faculty of Science, Department of Organic Chemistry. Stockholm University.
    Direct Catalytic Nucleophilic Substitution of Non-Derivatized Alcohols2017Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis focuses on the development of methods for the activation of the hydroxyl group in non-derivatized alcohols in substitution reactions. The thesis is divided into two parts, describing three different catalytic systems.

    The first part of the thesis (Chapter 2) describes nucleophilic allylation of amines with allylic alcohols, using a palladium catalyst to generate unsymmetrical diallylated amines. The corresponding amines were further transformed by a one-pot ring-closing metathesis and aromatization reaction to afford β-substituted pyrroles with linear and branched alkyl, benzyl, and aryl groups in overall moderate to good yields.

    The second part (Chapters 3 and 4) describes the direct intramolecular stereospecific nucleophilic substitution of the hydroxyl group in enantioenriched alcohols by Lewis acid and Brønsted acid/base catalysis.

    In Chapter 3, the direct intramolecular substitution of non-derivatized alcohols has been developed using Fe(OTf)3 as catalyst. The hydroxyl groups of aryl, allyl, and alkyl alcohols were substituted by the attack of O- and N-centered nucleophiles, to provide five- and six-membered heterocycles in up to excellent yields with high enantiospecificities. Experimental studies showed that the reaction follows first-order dependence with respect to the catalyst, the internal nucleophile, and the internal electrophile of the substrate. Competition and catalyst-substrate interaction experiments demonstrated that this transformation proceeds via an SN2-type reaction pathway.

    In Chapter 4, a Brønsted acid/base catalyzed intramolecular substitution of non-derivatized alcohols was developed. The direct intramolecular and stereospecific substitution of different alcohols was successfully catalyzed by phosphinic acid (H3PO2). The hydroxyl groups of aryl, allyl, propargyl, and alkyl alcohols were substituted by O-, N-, and S-centered nucleophiles to generate five- and six-membered heterocycles in good to excellent yields with high enantiospecificities. Mechanistic studies (both experiments and density functional theory calculations) have been performed on the reaction forming five-membered heterocyclic compounds. Experimental studies showed that phosphinic acid does not promote SN1 reactivity. Rate-order determination indicated that the reaction follows first-order dependence with respect to the catalyst, the internal nucleophile, and the internal electrophile. DFT calculations corroborated with a reaction pathway in which the phosphinic acid has a dual activation mode and operates as a bifunctional Brønsted acid/Brønsted base to simultaneously activate both the nucleophile and nucleofuge, resulting in a unique bridging transition state in an SN2-type reaction mechanism.

  • 134. Bunrit, Anon
    et al.
    Dahlstrand, Christian
    Olsson, Sandra K.
    Srifa, Pemikar
    Huang, Genping
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Orthaber, Andreas
    Sjöberg, Per J. R.
    Biswas, Srijit
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Samec, Joseph S. M.
    Brønsted Acid-Catalyzed Intramolecular Nucleophilic Substitution of the Hydroxyl Group in Stereogenic Alcohols with Chirality Transfer2015In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 137, no 14, p. 4646-4649Article in journal (Refereed)
    Abstract [en]

    The hydroxyl group of enantioenriched benzyl, propargyl, allyl, and alkyl alcohols has been intramolecularly displaced by uncharged O-, N-, and S-centered nucleophiles to yield enantioenriched tetrahydrofuran, pyrrolidine, and tetrahydrothiophene derivatives with phosphinic acid catalysis. The five-membered heterocyclic products are generated in good to excellent yields, with high degree of chirality transfer, and water as the only side-product. Racemization experiments show that phosphinic acid does not promote S(N)1 reactivity. Density functional theory calculations corroborate a reaction pathway where the phosphinic acid operates as a bifunctional catalyst in the intramolecular substitution reaction. In this mechanism, the acidic proton of the phosphinic acid protonates the hydroxyl group, enhancing the leaving group ability. Simultaneously, the oxo group of phosphinic acid operates as a base abstracting the nucleophilic proton and thus enhancing the nucleophilicity. This reaction will open up new atom efficient techniques that enable alcohols to be used as nucleofuges in substitution reactions in the future.

  • 135.
    Bunrit, Anon
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Srifa, Pemikar
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Dahlstrand, Christian
    Huang, Genping
    Biswas, Srijit
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Watile, Rahul
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Samec, Joseph
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    H3PO2-Catalyzed Intramolecular Stereospecific Substitution of the Hydroxyl Group in Stereogenic Secondary Alcohols by N-, O-, and S-centered Nucleophiles to Generate HeterocyclesManuscript (preprint) (Other academic)
    Abstract [en]

    The direct intramolecular stereospecific substitution of the hydroxyl group in stereogenic secondary alcohols was successfully accomplished by phosphinic acid catalysis. The hydroxyl group was displaced by O-, S-, and N-centered nucleophiles to provide enantioenriched five- and six-membered heterocycles in good to excellent yields and high enantiospecificity with water as the only by product. Mechanistic studies using both experiments and calculations have been performed. Rate order determination shows first-order dependences in catalyst, internal nucleophile, and electrophile concentrations, however, independence on external nucleophile and electrophile. Furthermore, phosphinic acid does not promote SN1 reactivity. Computational studies support a bifunctional role of the phosphinic acid in which activations of both nucleofuge and nucleophile occur in a bridging SN2-type transition state. 

  • 136.
    Bunrit, Anon
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Watile, Rahul
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Lagerspets, Emi
    Lanekoff, Ingela
    Biswas, Srijit
    Repo, Timo
    Samec, Joseph
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Iron (III)-Catalyzed Intramolecular Stereospecific Substitution of the OH Group in Stereogenic Secondary and Tertiary AlcoholsManuscript (preprint) (Other academic)
    Abstract [en]

    We herein report a Fe(OTf)3-catalyzed stereospecific substitution of the hydroxyl (OH) group in secondary and tertiary alcohols by N-, and O-centered nucleophiles to generate synthetically precious enantioenriched pyrrolidines, tetrahydrofuran, 1,2,3,4-tetra-hydroquinolines, and chromanes. The substitution of the OH group in benzylic, allylic, and aliphatic alcohols proceed with high yields and high degree of enantiospecificity to give saturated five- and six-membered heterocyclic products and water as the only by-product. Mechanistic studies revealed that the intramolecular substitution reaction proceeds through an SN2 reaction with secondary alcohols and an SN1 reaction, comprising a tight ion pair, with tertiary alcohols giving products with inversion of configuration at the stereogenic carbon in both cases. The iron interacts with both nucleofile and nucloefuge, where the latter leads to a controlled carbon−oxygen (C–O) bond cleavage. The procedure opens up new atom efficient technique for catalytic stereospecific reactions that allow easily accessible stereogenic secondary and tertiary alcohols to be considered as substrates in substitution reactions. 

  • 137.
    Burkhardt, Anja
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Eriksson, Lars
    Stockholm University, Faculty of Science, Department of Physical, Inorganic and Structural Chemistry, Department of Structural Chemistry.
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Cumpstey, Ian
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    (Z)-1,2:5,6-di-O-isopropylidene-α-D-ribo-hexofuranos-3-ulose O-benzyloxime2009In: Acta Crystallographica Section E: Structure Reports Online, ISSN 1600-5368, E-ISSN 1600-5368, Vol. E65, no Part 3, p. o633-o633Article in journal (Refereed)
  • 138.
    Buskas, Therese
    Stockholm University.
    Synthesis of lactosamine-containing carbohydrate structures and development for their easy assembly and conjugation1999Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis is based on four publications. The first chapter describes preparation of anomerically pure thioethyl-, thiophenyl-, and n-pentenyl 2-azido-2-deoxy glycosyl building blocks from easily accessible per-acetylated glycosamines.

    In the second part, acetylated, benzylated and non-protected n-pentenyl glycosides are used as substrates for preparing various spacer functionalities, which are obtained by means of radical elongations, oxidations and reductions.

    The syntheses of a trisaccharide,a-D-GlcpNAc-(1-->4)-b-D-Galp-(1-->4)-b-D-GlcpNAc, and fragments thereof, linked to a long lipophilic aglycon, are described in the third part. For the formation of theb-D-Galp-(1-->4)-D-GlcpNAc bond, several differently protected glucosamine acceptors were prepared and their reactivity towards a disaccharide donor evaluated.

    Finally, lactosamine derivatives were prepared by regioselective galactosylation and used as building blocks in the chemical synthesis of various oligosaccharides. The syntheses of polylactosamine di-, tri- and tetramers were achieved by regioselective glycosylation. Also spacer containing sulfated N-acetyllactosamine and Lewis x structures were synthesised.

  • 139.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Catalytic asymmetric synthesis via combined metal and enzyme catalysis2009In: 3rd Hellenic Symposium on Organic Synthesis, October 15-17, 2009, Athens, Greece: Abstracts of papers, Athens, 2009Conference paper (Other academic)
  • 140.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Modern Oxidation Methods2010Collection (editor) (Other academic)
  • 141.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Palladium- and ruthenium-catalyzed redox reactions in selective organic synthesis2009In: Abstract of LOST II Symposium in honour of Prof. Alain Krief, March 18-20, 2009, Namur, Belgium, 2009Conference paper (Other academic)
  • 142.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Pd- and Ru-catalyzed redox reactions in catalysis. Application to the combination with enzyme catalysis2009In: Abstract of 42nd Jahrestreffen Deutscher Katalytiker, March 11-13, 2009, Weimar, Germany, 2009Conference paper (Other academic)
  • 143.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Preface2010In: Topics in catalysis, ISSN 1022-5528, E-ISSN 1572-9028, Vol. 53, no 13-14, p. 831-831Article in journal (Refereed)
  • 144.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Recent advances in the combination of metal and enzyme catalysis2009In: Abstract of the 10th Netherlands Catalysis and Chemistry Conference (NCCC-X), March 2-4, 2009, Noordwijkerhout, the Netherlands, 2009Conference paper (Other academic)
  • 145.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Selective oxidation of amines and sulfides2010In: Modern Oxidation Methods / [ed] Jan-Erling Bäckvall, Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA , 2010, 2, p. 277-313Chapter in book (Other academic)
  • 146. Cadu, Alban
    et al.
    Upadhyay, Puspesh K.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Andersson, Pher G.
    Stockholm University, Faculty of Science, Department of Organic Chemistry. University of Kwazulu Natal, South Africa.
    Iridium-Catalyzed Asymmetric Hydrogenation of Substituted Pyridines2013In: Asian Journal of Organic Chemistry, ISSN 2193-5807, Vol. 2, no 12, p. 1061-1065Article in journal (Refereed)
    Abstract [en]

    Asymmetric hydrogenation of ortho-substituted pyridines catalyzed by N,P-ligated iridium is demonstrated. To facilitate this reaction, the aromaticity of the pyridines was weakened by forming N-iminopyridium ylides. The reactions give very high conversions, and after a single recrystallization, excellent ee of up to 98% was obtained. This method lends itself to the synthesis of chiral piperidine building blocks.

  • 147. Carballeira, José Daniel
    et al.
    Krumlinde, Patrik
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bocola, Marco
    Vogel, Andreas
    Reetz, Manfred T.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Directed evolution and axial chirality: optimization of the enantioselectivity of Pseudomonas aeruginosa lipase towards the kinetic resolution of a racemic allene2007In: Chemical Communications, ISSN 1359-7345, Vol. 20, p. 1913-1915Article in journal (Refereed)
  • 148.
    Carson, Fabian
    et al.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Martínez-Castro, Elisa
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Marcos, Rocio
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    González Miera, Greco
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Jansson, Kjell
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Zou, Xiaodong
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Martin-Matute, Belén
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Effect of the functionalisation route on a Zr-MOF with an Ir-NHC complex for catalysis2015In: Chemical Communications, ISSN 1359-7345, E-ISSN 1364-548X, Vol. 51, no 54, p. 10864-10867Article in journal (Refereed)
    Abstract [en]

    A new iridium N-heterocyclic carbene (NHC) metallolinker has been synthesised and introduced into a metal-organic framework (MOF), for the first time, via two different routes: direct synthesis and postsynthetic exchange (PSE). The two materials were compared in terms of the Ir loading and distribution using X-ray energy dispersive spectroscopy (EDS), the local Ir structure using X-ray absorption spectroscopy (XAS) and the catalytic activity. The materials showed good activity and recyclability as catalysts for the isomerisation of an allylic alcohol.

  • 149. Cervin, Nicholas T.
    et al.
    Andersson, Linnea
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Ng, Jovice Boon Sing
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Olin, Pontus
    Bergström, Lennart
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Wågberg, Lars
    Lightweight and Strong Cellulose Materials Made from Aqueous Foams Stabilized by Nanofibrillated Cellulose2013In: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 14, no 2, p. 503-511Article in journal (Refereed)
    Abstract [en]

    A lightweight and strong porous cellulose material has been prepared by drying aqueous foams stabilized with surface-modified nanofibrillated cellulose (NFC). This material differs from other dry, particle stabilized foams in that renewable cellulose is used as stabilizing particles. Confocal microscopy and high speed video imaging show that the octylamine-coated, rod-shaped NFC nanoparticles residing at the air-liquid interface prevent the air bubbles from collapsing or coalescing. Stable wet foams can be achieved at solids content around 1% by weight. Careful removal of the water results in a cellulose-based material with a porosity of 98% and a density of 30 mg cm(-3). These porous cellulose materials have a higher Young's modulus than porous cellulose materials made from freeze-drying, at comparable densities, and have a compressive energy absorption of 56 kJ m(-3) at 80% strain. Measurement with the aid of an autoporosimeter revealed that most pores are in the range of 300 to 500 mu m.

  • 150.
    Chai, Guocai
    Stockholm University, Faculty of Science.
    Dendrite coherency during equiaxed solidification in aluminium alloys1994Doctoral thesis, comprehensive summary (Other academic)
1234567 101 - 150 of 1017
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf