Ändra sökning
Avgränsa sökresultatet
12345 151 - 200 av 247
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 151.
    Algeri, Sara
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Imperial College London, UK.
    Conrad, Jan
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Imperial College London, UK.
    van Dyk, David A.
    A method for comparing non-nested models with application to astrophysical searches for new physics2016Ingår i: Monthly notices of the Royal Astronomical Society, ISSN 0035-8711, E-ISSN 1365-2966, Vol. 458, nr 1, s. L84-L88Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Searches for unknown physics and decisions between competing astrophysical models to explain data both rely on statistical hypothesis testing. The usual approach in searches for new physical phenomena is based on the statistical likelihood ratio test and its asymptotic properties. In the common situation, when neither of the two models under comparison is a special case of the other i.e. when the hypotheses are non-nested, this test is not applicable. In astrophysics, this problem occurs when two models that reside in different parameter spaces are to be compared. An important example is the recently reported excess emission in astrophysical gamma-rays and the question whether its origin is known astrophysics or dark matter. We develop and study a new, simple, generally applicable, frequentist method and validate its statistical properties using a suite of simulations studies. We exemplify it on realistic simulated data of the Fermi-Large Area Telescope gamma-ray satellite, where non-nested hypotheses testing appears in the search for particle dark matter.

  • 152.
    Algeri, Sara
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Imperial College London, U.K..
    van Dyk, D. A.
    Conrad, Jan
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Imperial College London, U.K..
    Anderson, Brandon
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    On methods for correcting for the look-elsewhere effect in searches for new physics2016Ingår i: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 11, artikel-id P12010Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The search for new significant peaks over a energy spectrum often involves a statistical multiple hypothesis testing problem. Separate tests of hypothesis are conducted at different locations over a fine grid producing an ensemble of local p-values, the smallest of which is reported as evidence for the new resonance. Unfortunately, controlling the false detection rate (type I error rate) of such procedures may lead to excessively stringent acceptance criteria. In the recent physics literature, two promising statistical tools have been proposed to overcome these limitations. In 2005, a method to find needles in haystacks was introduced by Pilla et al. [1], and a second method was later proposed by Gross and Vitells [2] in the context of the look-elsewhere effect and trial factors. We show that, although the two methods exhibit similar performance for large sample sizes, for relatively small sample sizes, the method of Pilla et al. leads to an artificial inflation of statistical power that stems from an increase in the false detection rate. This method, on the other hand, becomes particularly useful in multidimensional searches, where the Monte Carlo simulations required by Gross and Vitells are often unfeasible. We apply the methods to realistic simulations of the Fermi Large Area Telescope data, in particular the search for dark matter annihilation lines. Further, we discuss the counter-intuitive scenario where the look-elsewhere corrections are more conservative than much more computationally efficient corrections for multiple hypothesis testing. Finally, we provide general guidelines for navigating the tradeoffs between statistical and computational efficiency when selecting a statistical procedure for signal detection.

  • 153.
    Anderson, Brandon
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Zimmer, Stephan
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Conrad, Jan
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Wallenberg Academy Fellow, Sweden.
    Gustafsson, M.
    Sánchez-Conde, Miguel
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Caputo, R.
    Search for Gamma-ray Lines Towards Galaxy Clusters with the Fermi-LAT2016Ingår i: Journal of Cosmology and Astroparticle Physics, ISSN 1475-7516, E-ISSN 1475-7516, nr 2, artikel-id 026Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We report on a search for monochromatic gamma-ray features in the spectra of galaxy clusters observed by the Fermi Large Area Telescope. Galaxy clusters are the largest structures in the Universe that are bound by dark matter (DM), making them an important testing ground for possible self-interactions or decays of the DM particles. Monochromatic gamma-ray lines provide a unique signature due to the absence of astrophysical backgrounds and are as such considered a smoking-gun signature for new physics. An unbinned joint likelihood analysis of the sixteen most promising clusters using five years of data at energies between 10 and 400 GeV revealed no significant features. For the case of self-annihilation, we set upper limits on the monochromatic velocity-averaged interaction cross section. These limits are compatible with those obtained from observations of the Galactic Center, albeit weaker due to the larger distance to the studied clusters.

  • 154. Aprile, E.
    et al.
    Aalbers, J.
    Agostini, F.
    Alfonsi, M.
    Althueser, L.
    Amaro, F. D.
    Anthony, M.
    Arneodo, F.
    Barrow, P.
    Baudis, L.
    Bauermeister, Boris
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Benabderrahmane, M. L.
    Berger, T.
    Breur, P. A.
    Brown, A.
    Brown, E.
    Bruenner, S.
    Bruno, G.
    Budnik, R.
    Buetikofer, L.
    Calvén, Jakob
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Capelli, C.
    Cardoso, J. M. R.
    Cichon, D.
    Coderre, D.
    Colijn, A. P.
    Conrad, Jan
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Cussonneau, J. P.
    Decowski, M. P.
    de Perio, P.
    Di Gangi, P.
    Di Giovanni, A.
    Diglio, S.
    Eurin, G.
    Fei, J.
    Ferella, Alfredo D.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Fieguth, A.
    Fulgione, W.
    Rosso, A. Gallo
    Galloway, M.
    Gao, F.
    Garbini, M.
    Geis, C.
    Goetzke, L. W.
    Greene, Z.
    Grignon, C.
    Hasterok, C.
    Hogenbirk, E.
    Howlett, J.
    Itay, R.
    Kaminsky, B.
    Kazama, S.
    Kessler, G.
    Kish, A.
    Landsman, H.
    Lang, R. F.
    Lellouch, D.
    Levinson, L.
    Lin, Q.
    Lindemann, S.
    Lindner, M.
    Lombardi, F.
    Lopes, J. A. M.
    Manfredini, A.
    Maris, I.
    Undagoitia, T. Marrodan
    Masbou, J.
    Massoli, F. V.
    Masson, D.
    Mayani, D.
    Messina, M.
    Micheneau, K.
    Molinario, A.
    Morå, Knut
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Murra, M.
    Naganoma, J.
    Ni, K.
    Oberlack, U.
    Pakarha, P.
    Pelssers, Bart
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Persiani, R.
    Piastra, F.
    Pienaar, J.
    Pizzella, V.
    Piro, M. -C.
    Plante, G.
    Priel, N.
    Garcia, D. Ramirez
    Rauch, L.
    Reichard, S.
    Reuter, C.
    Rizzo, A.
    Rupp, N.
    dos Santos, J. M. F.
    Sartorelli, G.
    Scheibelhut, M.
    Schindler, S.
    Schreiner, J.
    Schumann, M.
    Lavina, L. Scotto
    Selvi, M.
    Shagin, P.
    Silva, M.
    Simgen, H.
    Sivers, M. V.
    Stein, A.
    Thers, D.
    Tiseni, A.
    Trinchero, G.
    Tunnell, C.
    Vargas, M.
    Wang, H.
    Wang, Z.
    Wei, Y.
    Weinheimer, C.
    Wittweg, C.
    Wulf, J.
    Ye, J.
    Zhang, Y.
    Zhu, T.
    Search for bosonic super-WIMP interactions with the XENON100 experiment2017Ingår i: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 96, nr 12, artikel-id 122002Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We present results of searches for vector and pseudoscalar bosonic super-weakly interacting massive particles (WIMPs), which are dark matter candidates with masses at the keV-scale, with the XENON100 experiment. XENON100 is a dual-phase xenon time projection chamber operated at the Laboratori Nazionali del Gran Sasso. A profile likelihood analysis of data with an exposure of 224.6 live days x34 kg showed no evidence for a signal above the expected background. We thus obtain new and stringent upper limits in the (8-125) keV/c(2) mass range, excluding couplings to electrons with coupling constants of g(ae) > 3 x 10(-13) for pseudo-scalar and alpha'/alpha > 2 x 10(-28) for vector super-WIMPs, respectively. These limits are derived under the assumption that super-WIMPs constitute all of the dark matter in our galaxy.

  • 155. Aprile, E.
    et al.
    Aalbers, J.
    Agostini, F.
    Alfonsi, M.
    Althueser, L.
    Amaro, F. D.
    Anthony, M.
    Arneodo, F.
    Baudis, L.
    Bauermeister, Boris
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Benabderrahmane, M. L.
    Berger, T.
    Breur, P. A.
    Brown, A.
    Brown, A.
    Brown, E.
    Bruenner, S.
    Bruno, G.
    Budnik, R.
    Capelli, C.
    Cardoso, J. M. R.
    Cichon, D.
    Coderre, D.
    Colijn, A. P.
    Conrad, Jan
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Cussonneau, J. P.
    Decowski, M. P.
    de Perio, P.
    Di Gangi, P.
    Di Giovanni, A.
    Diglio, S.
    Elykov, A.
    Eurin, G.
    Fei, J.
    Ferella, Alfredo D.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Fieguth, A.
    Fulgione, W.
    Rosso, A. Gallo
    Galloway, M.
    Gao, F.
    Garbini, M.
    Geis, C.
    Grandi, L.
    Greene, Z.
    Qiu, H.
    Hasterok, C.
    Hogenbirk, E.
    Howlett, J.
    Itay, R.
    Joerg, F.
    Kaminsky, B.
    Kazama, S.
    Kish, A.
    Koltman, G.
    Landsman, H.
    Lang, R. F.
    Levinson, L.
    Lin, Q.
    Lindemann, S.
    Lindner, M.
    Lombardi, F.
    Lopes, J. A. M.
    Mahlstedt, Jörn
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Manfredini, A.
    Undagoitia, T. Marrodan
    Masbou, J.
    Masson, D.
    Messina, M.
    Micheneau, K.
    Miller, K.
    Molinario, A.
    Morå, Knut
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Murra, M.
    Naganoma, J.
    Ni, K.
    Oberlack, U.
    Pelssers, Bart
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Piastra, F.
    Pienaar, J.
    Pizzella, V.
    Plante, G.
    Podviianiuk, R.
    Priel, N.
    Garcia, D. Ramirez
    Rauch, L.
    Reichard, S.
    Reuter, C.
    Riedel, B.
    Rizzo, A.
    Rocchetti, A.
    Rupp, N.
    dos Santos, J. M. F.
    Sartorelli, G.
    Scheibelhut, M.
    Schindler, S.
    Schreiner, J.
    Schulte, D.
    Schumann, M.
    Lavina, L. Scotto
    Selvi, M.
    Shagin, P.
    Shockley, E.
    Silva, M.
    Simgen, H.
    Thers, D.
    Toschi, F.
    Trinchero, G.
    Tunnell, C.
    Upole, N.
    Vargas, M.
    Wack, O.
    Wang, H.
    Wang, Z.
    Wei, Y.
    Weinheimer, C.
    Wittweg, C.
    Wulf, J.
    Ye, J.
    Zhang, Y.
    Zhu, T.
    Dark Matter Search Results from a One Ton-Year Exposure of XENON1T2018Ingår i: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 121, nr 11, artikel-id 111302Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We report on a search for weakly interacting massive particles (WIMPs) using 278.8 days of data collected with the XENON1T experiment at LNGS. XENON1T utilizes a liquid xenon time projection chamber with a fiducial mass of (1.30 +/- 0.01) ton, resulting in a 1.0 ton yr exposure. The energy region of interest, [1.4; 10.6] keV(ee) ([4.9; 40.9] keV(nr)), exhibits an ultralow electron recoil background rate of [82(-3)(+5) (syst) +/- 3 stat)] events/ton yr keV(ee)). No significant excess over background is found, and a profile likelihood analysis parametrized in spatial and energy dimensions excludes new parameter space for the WIMP-nucleon spin-independent elastic scatter cross section for WIMP masses above 6 GeV/c(2), with a minimum of 4.1 x 10(-47) cm(2) at 30 GeV/c(2) and a 90% confidence level.

  • 156. Aprile, E.
    et al.
    Aalbers, J.
    Agostini, F.
    Alfonsi, M.
    Amaro, F. D.
    Anthony, M.
    Antunes, B.
    Arneodo, F.
    Balata, M.
    Barrow, P.
    Baudis, L.
    Bauermeister, Boris
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Benabderrahmane, M. L.
    Berger, T.
    Breskin, A.
    Breur, P. A.
    Brown, A.
    Brown, E.
    Bruenner, S.
    Bruno, G.
    Budnik, R.
    Buetikofer, L.
    Calvén, Jakob
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Cardoso, J. M. R.
    Cervantes, M.
    Chiarini, A.
    Cichon, D.
    Coderre, D.
    Colijn, A. P.
    Conrad, Jan
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Corrieri, R.
    Cussonneau, J. P.
    Decowski, M. P.
    de Perio, P.
    Di Gangi, P.
    Di Giovanni, A.
    Diglio, S.
    Disdier, J. -M.
    Doets, M.
    Duchovni, E.
    Eurin, G.
    Fei, J.
    Ferella, Alfredo D.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Fieguth, A.
    Franco, D.
    Front, D.
    Fulgione, W.
    Rosso, A. Gallo
    Galloway, M.
    Gao, F.
    Garbini, M.
    Geis, C.
    Giboni, K. -L.
    Goetzke, L. W.
    Grandi, L.
    Greene, Z.
    Grignon, C.
    Hasterok, C.
    Hogenbirk, E.
    Huhmann, C.
    Itay, R.
    James, A.
    Kaminsky, B.
    Kazama, S.
    Kessler, G.
    Kish, A.
    Landsman, H.
    Lang, R. F.
    Lellouch, D.
    Levinson, L.
    Lin, Q.
    Lindemann, S.
    Lindner, M.
    Lombardi, F.
    Lopes, J. A. M.
    Maier, R.
    Manfredini, A.
    Maris, I.
    Undagoitia, T. Marrodan
    Masbou, J.
    Massoli, F. V.
    Masson, D.
    Mayani, D.
    Messina, M.
    Micheneau, K.
    Molinario, A.
    Morå, Knut
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Murra, M.
    Naganoma, J.
    Ni, K.
    Oberlack, U.
    Orlandi, D.
    Othegraven, R.
    Pakarha, P.
    Parlati, S.
    Pelssers, Bart
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Persiani, R.
    Piastra, F.
    Pienaar, J.
    Pizzella, V.
    Piro, M. -C.
    Plante, G.
    Priel, N.
    Garcia, D. Ramirez
    Rauch, L.
    Reichard, S.
    Reuter, C.
    Rizzo, A.
    Rosendahl, S.
    Rupp, N.
    dos Santos, J. M. F.
    Saldanha, R.
    Sartorelli, G.
    Scheibelhut, M.
    Schindler, S.
    Schreiner, J.
    Schumann, M.
    Lavina, L. Scotto
    Selvi, M.
    Shagin, P.
    Shockley, E.
    Silva, M.
    Simgen, H.
    von Sivers, M.
    Sterne, M.
    Stein, A.
    Tatananni, D.
    Tatananni, L.
    Thers, D.
    Tiseni, A.
    Trinchero, G.
    Tunnell, C.
    Upole, N.
    Vargas, M.
    Wack, O.
    Walet, R.
    Wang, H.
    Wang, Z.
    Wei, Y.
    Weinheimer, C.
    Wittweg, C.
    Wulf, J.
    Ye, J.
    Zhang, Y.
    The XENON1T dark matter experiment2017Ingår i: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 77, nr 12, artikel-id 881Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The XENON1T experiment at the Laboratori Nazionali del Gran Sasso (LNGS) is the first WIMP dark matter detector operating with a liquid xenon target mass above the ton-scale. Out of its 3.2t liquid xenon inventory, 2.0t constitute the active target of the dual-phase time projection chamber. The scintillation and ionization signals from particle interactions are detected with low-background photomultipliers. This article describes the XENON1T instrument and its subsystems as well as strategies to achieve an unprecedented low background level. First results on the detector response and the performance of the subsystems are also presented.

  • 157. Aprile, E.
    et al.
    Aalbers, J.
    Agostini, F.
    Alfonsi, M.
    Amaro, F. D.
    Anthony, M.
    Arazi, L.
    Arneodo, F.
    Balan, C.
    Barrow, P.
    Baudis, L.
    Bauermeister, Boris
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Johannes Gutenberg-Universität Mainz, Germany.
    Berger, T.
    Breur, P.
    Breskin, A.
    Brown, A.
    Brown, E.
    Bruenner, S.
    Bruno, G.
    Budnik, R.
    Butikofer, L.
    Cardoso, J. M. R.
    Cervantes, M.
    Cichon, D.
    Coderre, D.
    Colijn, A. P.
    Conrad, Jan
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum.
    Contreras, H.
    Cussonneau, J. P.
    Decowski, M. P.
    de Perio, P.
    Di Gangi, P.
    Di Giovanni, A.
    Duchovni, E.
    Fattori, S.
    Ferella, Alfredo D.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. INFN-Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, Italy.
    Fieguth, A.
    Franco, D.
    Fulgione, W.
    Galloway, M.
    Garbini, M.
    Geis, C.
    Goetzke, L. W.
    Greene, Z.
    Grignon, C.
    Gross, E.
    Hampel, W.
    Hasterok, C.
    Itay, R.
    Kaether, F.
    Kaminsky, B.
    Kessler, G.
    Kish, A.
    Landsman, H.
    Lang, R. F.
    Lellouch, D.
    Levinson, L.
    Le Calloch, M.
    Levy, C.
    Lindemann, S.
    Lindner, M.
    Lopes, J. A. M.
    Lyashenko, A.
    Macmullin, S.
    Manfredini, A.
    Undagoitia, T. Marrodan
    Masbou, J.
    Massoli, F. V.
    Mayani, D.
    Fernandez, A. J. Melgarejo
    Meng, Y.
    Messina, M.
    Micheneau, K.
    Miguez, B.
    Molinario, A.
    Murra, M.
    Naganoma, J.
    Oberlack, U.
    Orrigo, S. E. A.
    Pakarha, P.
    Pelssers, Bart
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum.
    Persiani, R.
    Piastra, F.
    Pienaar, J.
    Plante, G.
    Priel, N.
    Rauch, L.
    Reichard, S.
    Reuter, C.
    Rizzo, A.
    Rosendahl, S.
    Rupp, N.
    dos Santos, J. M. F.
    Sartorelli, G.
    Scheibelhut, M.
    Schindler, S.
    Schreiner, J.
    Schumann, M.
    Lavina, L. Scotto
    Selvi, M.
    Shagin, P.
    Simgen, H.
    Stein, A.
    Thers, D.
    Tiseni, A.
    Trinchero, G.
    Tunnell, C.
    von Sivers, M.
    Wall, R.
    Wang, H.
    Weber, M.
    Wei, Y.
    Weinheimer, C.
    Wulf, J.
    Zhang, Y.
    Physics reach of the XENON1T dark matter experiment2016Ingår i: Journal of Cosmology and Astroparticle Physics, ISSN 1475-7516, E-ISSN 1475-7516, nr 4, artikel-id 027Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The XENON1T experiment is currently in the commissioning phase at the Laboratori Nazionali del Gran Sasso, Italy. In this article we study the experiment's expected sensitivity to the spin-independent WIMP-nucleon interaction cross section, based on Monte Carlo predictions of the electronic and nuclear recoil backgrounds. The total electronic recoil background in 1 tonne fiducial volume and (1, 12) keV electronic recoil equivalent energy region, before applying any selection to discriminate between electronic and nuclear recoils, is (1.80+/-0.15) . 10(-4) (kg.day.keV)(-1), mainly due to the decay of Rn-222 daughters inside the xenon target. The nuclear recoil background in the corresponding nuclear recoil equivalent energy region (4, 50) keV, is composed of (0.6 +/- 0.1) (t.y)(-1) from radiogenic neutrons, (1.8+/-0.3) . 10(-2) (t.y)(-1) from coherent scattering of neutrinos, and less than 0.01 (t.y)(-1) from muon-induced neutrons. The sensitivity of XENON1T is calculated with the Pro file Likelihood Ratio method, after converting the deposited energy of electronic and nuclear recoils into the scintillation and ionization signals seen in the detector. We take into account the systematic uncertainties on the photon and electron emission model, and on the estimation of the backgrounds, treated as nuisance parameters. The main contribution comes from the relative scintillation efficiency L-eff, which affects both the signal from WIMPs and the nuclear recoil backgrounds. After a 2 y measurement in 1 tonne fiducial volume, the sensitivity reaches a minimum cross section of 1.6 . 10(-47) cm(2) at m(chi) = 50 GeV/c(2).

  • 158. Aprile, E.
    et al.
    Aalbers, J.
    Agostini, F.
    Alfonsi, M.
    Amaro, F. D.
    Anthony, M.
    Arneodo, F.
    Barrow, P.
    Baudis, L.
    Bauermeister, Boris
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Benabderrahmane, M. L.
    Berger, T.
    Breur, P. A.
    Brown, A.
    Brown, A.
    Brown, E.
    Bruenner, S.
    Bruno, G.
    Budnik, R.
    Buetikofer, L.
    Calvén, Jakob
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Cardoso, J. M. R.
    Cervantes, M.
    Cichon, D.
    Coderre, D.
    Colijn, A. P.
    Conrad, Jan
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Cussonneau, J. P.
    Decowski, M. P.
    de Perio, P.
    Di Gangi, P.
    Di Giovanni, A.
    Diglio, S.
    Eurin, G.
    Fei, J.
    Ferella, Alfredo D.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Fieguth, A.
    Fulgione, W.
    Rosso, A. Gallo
    Galloway, M.
    Gao, F.
    Garbini, M.
    Gardner, R.
    Geis, C.
    Goetzke, L. W.
    Grandi, L.
    Greene, Z.
    Grignon, C.
    Hasterok, C.
    Hogenbirk, E.
    Howlett, J.
    Itay, R.
    Kaminsky, B.
    Kazama, S.
    Kessler, G.
    Kish, A.
    Landsman, H.
    Lang, R. F.
    Lellouch, D.
    Levinson, L.
    Lin, Q.
    Lindemann, S.
    Lindner, M.
    Lombardi, F.
    Lopes, J. A. M.
    Manfredini, A.
    Maris, I.
    Undagoitia, T. Marrodan
    Masbou, J.
    Massoli, F. V.
    Masson, D.
    Mayani, D.
    Messina, M.
    Micheneau, K.
    Molinario, A.
    Morå, Knut
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Murra, M.
    Naganoma, J.
    Ni, K.
    Oberlack, U.
    Pakarha, P.
    Pelssers, Bart
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Persiani, R.
    Piastra, F.
    Pienaar, J.
    Pizzella, V.
    Piro, M. -C.
    Plante, G.
    Priel, N.
    Rauch, L.
    Reichard, S.
    Reuter, C.
    Riedel, B.
    Rizzo, A.
    Rosendahl, S.
    Rupp, N.
    Saldanha, R.
    dos Santos, J. M. F.
    Sartorelli, G.
    Scheibelhut, M.
    Schindler, S.
    Schreiner, J.
    Schumann, M.
    Lavina, L. Scotto
    Selvi, M.
    Shagin, P.
    Shockley, E.
    Silva, M.
    Simgen, H.
    von Sivers, M.
    Stein, A.
    Thapa, S.
    Thers, D.
    Tiseni, A.
    Trinchero, G.
    Tunnell, C.
    Vargas, M.
    Upole, N.
    Wang, H.
    Wang, Z.
    Wei, Y.
    Weinheimer, C.
    Wulf, J.
    Ye, J.
    Zhang, Y.
    Zhu, T.
    First Dark Matter Search Results from the XENON1T Experiment2017Ingår i: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 119, nr 18, artikel-id 181301Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We report the first dark matter search results from XENON1T, a similar to 2000-kg-target-mass dual-phase (liquid-gas) xenon time projection chamber in operation at the Laboratori Nazionali del Gran Sasso in Italy and the first ton-scale detector of this kind. The blinded search used 34.2 live days of data acquired between November 2016 and January 2017. Inside the (1042 +/- 12)-kg fiducial mass and in the [5, 40] keV(nr) energy range of interest for weakly interacting massive particle (WIMP) dark matter searches, the electronic recoil background was (1.93 +/- 0.25) x 10(-4) events/(kg x day x keV(ee)), the lowest ever achieved in such a dark matter detector. A profile likelihood analysis shows that the data are consistent with the background-only hypothesis. We derive the most stringent exclusion limits on the spin-independent WIMP-nucleon interaction cross section for WIMP masses above 10 GeV/c(2), with a minimum of 7.7 x 10(-47) cm(2) for 35-GeV/c(2) WIMPs at 90% C.L.

  • 159. Aprile, E.
    et al.
    Aalbers, J.
    Agostini, F.
    Alfonsi, M.
    Amaro, F. D.
    Anthony, M.
    Arneodo, F.
    Barrow, P.
    Baudis, L.
    Bauermeister, Boris
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Johannes Gutenberg-Universität Mainz, Germany.
    Benabderrahmane, M. L.
    Berger, T.
    Breur, P. A.
    Brown, A.
    Brown, E.
    Bruenner, S.
    Bruno, G.
    Budnik, R.
    Buetikofer, L.
    Calvén, Jakob
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Cardoso, J. M. R.
    Cervantes, M.
    Cichon, D.
    Coderre, D.
    Colijn, A. P.
    Conrad, Jan
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Cussonneau, J. P.
    Decowski, M. P.
    de Perio, P.
    Di Gangi, P.
    Di Giovanni, A.
    Diglio, S.
    Eurin, G.
    Fei, J.
    Ferella, Alfredo D.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Fieguth, A.
    Franco, D.
    Fulgione, W.
    Rosso, A. Gallo
    Galloway, M.
    Gao, F.
    Garbini, M.
    Geis, C.
    Goetzke, L. W.
    Grandi, L.
    Greene, Z.
    Grignon, C.
    Hasterok, C.
    Hogenbirk, E.
    Itay, R.
    Kaminsky, B.
    Kessler, G.
    Kish, A.
    Landsman, H.
    Lang, R. F.
    Lellouch, D.
    Levinson, L.
    Le Calloch, M.
    Lin, Q.
    Lindemann, S.
    Lindner, M.
    Lopes, J. A. M.
    Manfredini, A.
    Maris, I.
    Undagoitia, T. Marrodan
    Masbou, J.
    Massoli, F. V.
    Masson, D.
    Mayani, D.
    Messina, M.
    Micheneau, K.
    Miguez, B.
    Molinario, A.
    Murra, M.
    Naganoma, J.
    Ni, K.
    Oberlack, U.
    Pakarha, P.
    Pelssers, Bart
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Persiani, R.
    Piastra, F.
    Pienaar, J.
    Piro, M. -C.
    Pizzella, V.
    Plante, G.
    Priel, N.
    Rauch, L.
    Reichard, S.
    Reuter, C.
    Rizzo, A.
    Rosendahl, S.
    Rupp, N.
    Saldanha, R.
    dos Santos, J. M. F.
    Sartorelli, G.
    Scheibelhut, M.
    Schindler, S.
    Schreiner, J.
    Schumann, M.
    Lavina, L. Scotto
    Selvi, M.
    Shagin, P.
    Shockley, E.
    Silva, M.
    Simgen, H.
    Sivers, M. V.
    Stein, A.
    Thers, D.
    Tiseni, A.
    Trinchero, G.
    Tunnell, C.
    Upole, N.
    Wang, H.
    Wei, Y.
    Weinheimer, C.
    Wulf, J.
    Ye, J.
    Zhang, Y.
    Laubenstein, M.
    Nisi, S.
    Material radioassay and selection for the XENON1T dark matter experiment2017Ingår i: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 77, nr 12, artikel-id 890Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The XENON1T dark matter experiment aims to detect weakly interactingmassive particles (WIMPs) through low-energy interactions with xenon atoms. To detect such a rare event necessitates the use of radiopure materials to minimize the number of background events within the expected WIMP signal region. In this paper we report the results of an extensive material radioassay campaign for the XENON1T experiment. Using gamma-ray spectroscopy and mass spectrometry techniques, systematic measurements of trace radioactive impurities in over one hundred samples within a wide range of materials were performed. The measured activities allowed for stringent selection and placement of materials during the detector construction phase and provided the input for XENON1T detection sensitivity estimates through Monte Carlo simulations.

  • 160. Aprile, E.
    et al.
    Aalbers, J.
    Agostini, F.
    Alfonsi, M.
    Amaro, F. D.
    Anthony, M.
    Arneodo, F.
    Barrow, P.
    Baudis, L.
    Bauermeister, Boris
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Benabderrahmane, M. L.
    Berger, T.
    Breur, P. A.
    Brown, A.
    Brown, E.
    Bruenner, S.
    Bruno, G.
    Budnik, R.
    Buetikofer, L.
    Calvén, Jakob
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Cardoso, J. M. R.
    Cervantes, M.
    Cichon, D.
    Coderre, D.
    Colijn, A. P.
    Conrad, Jan
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Cussonneau, J. P.
    Decowski, M. P.
    de Perio, P.
    Di Gangi, P.
    Di Giovanni, A.
    Diglio, S.
    Eurin, G.
    Fei, J.
    Ferella, Alfredo D.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Fieguth, A.
    Franco, D.
    Fulgione, W.
    Rosso, A. Gallo
    Galloway, M.
    Gao, F.
    Garbini, M.
    Geis, C.
    Goetzke, L. W.
    Greene, Z.
    Grignon, C.
    Hasterok, C.
    Hogenbirk, E.
    Itay, R.
    Kaminsky, B.
    Kessler, G.
    Kish, A.
    Landsman, H.
    Lang, R. F.
    Lellouch, D.
    Levinson, L.
    Lin, Q.
    Lindemann, S.
    Lindner, M.
    Lombardi, F.
    Lopes, J. A. M.
    Manfredini, A.
    Maris, I.
    Undagoitia, T. Marrodan
    Masbou, J.
    Massoli, F. V.
    Masson, D.
    Mayani, D.
    Messina, M.
    Micheneau, K.
    Molinario, A.
    Murra, M.
    Naganoma, J.
    Ni, K.
    Oberlack, U.
    Pakarha, P.
    Pelssers, Bart
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Persiani, R.
    Piastra, F.
    Pienaar, J.
    Pizzella, V.
    Piro, M. -C.
    Plante, G.
    Priel, N.
    Rauch, L.
    Reichard, S.
    Reuter, C.
    Rizzo, A.
    Rosendahl, S.
    Rupp, N.
    dos Santos, J. M. F.
    Sartorelli, G.
    Scheibelhut, M.
    Schindler, S.
    Schreiner, J.
    Schumann, M.
    Lavina, L. Scotto
    Selvi, M.
    Shagin, P.
    Silva, M.
    Simgen, H.
    von Sivers, M.
    Stein, A.
    Thers, D.
    Tiseni, A.
    Trinchero, G.
    Tunnell, C.
    Vargas, M.
    Wang, H.
    Wei, Y.
    Weinheimer, C.
    Wulf, J.
    Ye, J.
    Zhang, Y.
    Search for magnetic inelastic dark matter with XENON1002017Ingår i: Journal of Cosmology and Astroparticle Physics, ISSN 1475-7516, E-ISSN 1475-7516, nr 10, artikel-id 039Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We present the first search for dark matter-induced delayed coincidence signals in a dual-phase xenon time projection chamber, using the 224.6 live days of the XENON100 science run II. This very distinct signature is predicted in the framework of magnetic inelastic dark matter which has been proposed to reconcile the modulation signal reported by the DAMA/LIBRA collaboration with the null results from other direct detection experiments. No candidate event has been found in the region of interest and upper limits on the WIMP's magnetic dipole moment are derived. The scenarios proposed to explain the DAMA/LIBRA modulation signal by magnetic inelastic dark matter interactions of WIMPs with masses of 58.0 GeV/c(2) and 122.7 GeV/c(2) are excluded at 3.3 sigma and 9.3 sigma, respectively.

  • 161. Aprile, E.
    et al.
    Aalbers, J.
    Agostini, F.
    Alfonsi, M.
    Amaro, F. D.
    Anthony, M.
    Arneodo, F.
    Barrow, P.
    Baudis, L.
    Bauermeister, Boris
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Benabderrahmane, M. L.
    Berger, T.
    Breur, P. A.
    Brown, A.
    Brown, E.
    Bruenner, S.
    Bruno, G.
    Budnik, R.
    Buetikofer, L.
    Calvén, Jakob
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Cardoso, J. M. R.
    Cervantes, M.
    Cichon, D.
    Coderre, D.
    Colijn, A. P.
    Conrad, Jan
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Cussonneau, J. P.
    Decowski, M. P.
    de Perio, P.
    Di Gangi, P.
    Di Giovanni, A.
    Diglio, S.
    Eurin, G.
    Fei, J.
    Ferella, Alfredo D.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Fieguth, A.
    Franco, D.
    Fulgione, W.
    Rosso, A. Gallo
    Galloway, M.
    Gao, F.
    Garbini, M.
    Geis, C.
    Goetzke, L. W.
    Greene, Z.
    Grignon, C.
    Hasterok, C.
    Hogenbirk, E.
    Itay, R.
    Kaminsky, B.
    Kessler, G.
    Kish, A.
    Landsman, H.
    Lang, R. F.
    Lellouch, D.
    Levinson, L.
    Lin, Q.
    Lindemann, S.
    Lindner, M.
    Lopes, J. A. M.
    Manfredini, A.
    Maris, I.
    Undagoitia, T. Marrodan
    Masbou, J.
    Massoli, F. V.
    Masson, D.
    Mayani, D.
    Messina, M.
    Micheneau, K.
    Miguez, B.
    Molinario, A.
    Murra, M.
    Naganoma, J.
    Ni, K.
    Oberlack, U.
    Pakarha, P.
    Pelssers, Bart
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Persiani, R.
    Piastra, F.
    Pienaar, J.
    Pizzella, V.
    Piro, M. -C.
    Plante, G.
    Priel, N.
    Rauch, L.
    Reichard, S.
    Reuter, C.
    Rizzo, A.
    Rosendahl, S.
    Rupp, N.
    dos Santos, J. M. F.
    Sartorelli, G.
    Scheibelhut, M.
    Schindler, S.
    Schreiner, J.
    Schumann, M.
    Lavina, L. Scotto
    Selvi, M.
    Shagin, P.
    Silva, M.
    Simgen, H.
    Sivers, M. V.
    Stein, A.
    Thers, D.
    Tiseni, A.
    Trinchero, G.
    Tunnell, C.
    Wang, H.
    Wei, Y.
    Weinheimer, C.
    Wulf, J.
    Ye, J.
    Zhang, Y.
    Search for Electronic Recoil Event Rate Modulation with 4 Years of XENON100 Data2017Ingår i: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 118, nr 10, artikel-id 101101Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We report on a search for electronic recoil event rate modulation signatures in the XENON100 data accumulated over a period of 4 yr, from January 2010 to January 2014. A profile likelihood method, which incorporates the stability of the XENON100 detector and the known electronic recoil background model, is used to quantify the significance of periodicity in the time distribution of events. There is a weak modulation signature at a period of 431(-14)(+16) day in the low energy region of (2.0-5.8) keV in the single scatter event sample, with a global significance of 1.9 sigma; however, no other more significant modulation is observed. The significance of an annual modulation signature drops from 2.8 sigma, from a previous analysis of a subset of this data, to 1.8 sigma with all data combined. Single scatter events in the low energy region are thus used to exclude the DAMA/LIBRA annual modulation as being due to dark matter electron interactions via axial vector coupling at 5.7 sigma.

  • 162. Aprile, E.
    et al.
    Aalbers, J.
    Agostini, F.
    Alfonsi, M.
    Amaro, F. D.
    Anthony, M.
    Arneodo, F.
    Barrow, P.
    Baudis, L.
    Bauermeister, Boris
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Benabderrahmane, M. L.
    Berger, T.
    Breur, P. A.
    Brown, A.
    Brown, E.
    Bruenner, S.
    Bruno, G.
    Budnik, R.
    Buetikofer, L.
    Calvén, Jakob
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Cardoso, J. M. R.
    Cervantes, M.
    Cichon, D.
    Coderre, D.
    Colijn, A. P.
    Conrad, Jan
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Cussonneau, J. P.
    Decowski, M. P.
    de Perio, P.
    Di Gangi, P.
    Di Giovanni, A.
    Diglio, S.
    Eurin, G.
    Fei, J.
    Ferella, Alfredo D.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Fieguth, A.
    Fulgione, W.
    Rosso, A. Gallo
    Di Galloway, A.
    Gao, F.
    Garbini, M.
    Geis, C.
    Goetzke, L. W.
    Greene, Z.
    Grignon, C.
    Hasterok, C.
    Hogenbirk, E.
    Itay, R.
    Kaminsky, B.
    Kazama, S.
    Kessler, G.
    Kish, A.
    Landsman, H.
    Lang, R. F.
    Lellouch, D.
    Levinson, L.
    Lin, Q.
    Lindemann, S.
    Lindner, M.
    Lombardi, F.
    Lopes, J. A. M.
    Manfredini, A.
    Maris, I.
    Undagoitia, T. Marrodan
    Masbou, J.
    Massoli, F. V.
    Masson, D.
    Mayani, D.
    Messina, M.
    Micheneau, K.
    Molinario, A.
    Morå, Knut
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Murra, M.
    Naganoma, J.
    Ni, K.
    Oberlack, U.
    Pakarha, P.
    Pelssers, Bart
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Persiani, R.
    Piastra, F.
    Pienaar, J.
    Pizzella, V.
    Piro, M. -C.
    Plante, G.
    Priel, N.
    Rauch, L.
    Reichard, S.
    Reuter, C.
    Rizzo, A.
    Rosendahl, S.
    Rupp, N.
    dos Santos, J. M. F.
    Sartorelli, G.
    Scheibelhut, M.
    Schindler, S.
    Schreiner, J.
    Schumann, M.
    Lavina, L. Scotto
    Selvi, M.
    Shagin, P.
    Silva, M.
    Simgen, H.
    Sivers, M. V.
    Stein, A.
    Thers, D.
    Tiseni, A.
    Trinchero, G.
    Tunnell, C.
    Vargas, M.
    Wang, H.
    Wang, Z.
    Wei, Y.
    Weinheimer, C.
    Wulf, J.
    Ye, J.
    Zhang, Y.
    Farmer, Benjamin
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Effective field theory search for high-energy nuclear recoils using the XENON100 dark matter detector2017Ingår i: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 96, nr 4, artikel-id 042004Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We report on weakly interacting massive particles (WIMPs) search results in the XENON100 detector using a nonrelativistic effective field theory approach. The data from science run II (34 kg x 224.6 live days) were reanalyzed, with an increased recoil energy interval compared to previous analyses, ranging from (6.6-240) keV(nr). The data are found to be compatible with the background-only hypothesis. We present 90% confidence level exclusion limits on the coupling constants of WIMP-nucleon effective operators using a binned profile likelihood method. We also consider the case of inelastic WIMP scattering, where incident WIMPs may up-scatter to a higher mass state, and set exclusion limits on this model as well.

  • 163. Aprile, E.
    et al.
    Aalbers, J.
    Agostini, F.
    Alfonsi, M.
    Amaro, F. D.
    Anthony, M.
    Arneodo, F.
    Barrow, P.
    Baudis, L.
    Bauermeister, Boris
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Benabderrahmane, M. L.
    Berger, T.
    Breur, P. A.
    Brown, A.
    Brown, E.
    Bruenner, S.
    Bruno, G.
    Budnik, R.
    Buetikofer, L.
    Calvén, Jakob
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Cardoso, J. M. R.
    Cervantes, M.
    Cichon, D.
    Coderre, D.
    Colijn, A. P.
    Conrad, Jan
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Cussonneau, J. P.
    Decowski, M. P.
    de Perio, P.
    Di Gangi, P.
    Di Giovanni, A.
    Diglio, S.
    Eurin, G.
    Fei, J.
    Ferella, Alfredo D.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Fieguth, A.
    Fulgione, W.
    Rosso, A. Gallo
    Galloway, M.
    Gao, F.
    Garbini, M.
    Geis, C.
    Goetzke, L. W.
    Greene, Z.
    Grignon, C.
    Hasterok, C.
    Hogenbirk, E.
    Itay, R.
    Kaminsky, B.
    Kazama, S.
    Kessler, G.
    Kish, A.
    Landsman, H.
    Lang, R. F.
    Lellouch, D.
    Levinson, L.
    Lin, Q.
    Lindemann, S.
    Lindner, M.
    Lombardi, F.
    Lopes, J. A. M.
    Manfredini, A.
    Maris, I.
    Undagoitia, T. Marrodn
    Masbou, J.
    Massoli, F. V.
    Masson, D.
    Mayani, D.
    Messina, M.
    Micheneau, K.
    Molinario, A.
    Morå, Knut
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Murra, M.
    Naganoma, J.
    Ni, K.
    Oberlack, U.
    Pakarha, P.
    Pelssers, Bart
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Persiani, R.
    Piastra, F.
    Pienaar, J.
    Pizzella, V.
    Piro, M. -C.
    Plante, G.
    Priel, N.
    Rauch, L.
    Reichard, S.
    Reuter, C.
    Rizzo, A.
    Rosendahl, S.
    Rupp, N.
    dos Santos, J. M. F.
    Sartorelli, G.
    Scheibelhut, M.
    Schindler, S.
    Schreiner, J.
    Schumann, M.
    Lavina, L. Scotto
    Selvi, M.
    Shagin, P.
    Silva, M.
    Simgen, H.
    Sivers, M. V.
    Stein, A.
    Thers, D.
    Tiseni, A.
    Trinchero, G.
    Tunnell, C.
    Vargas, M.
    Wang, H.
    Wang, Z.
    Wei, Y.
    Weinheimer, C.
    Wulf, J.
    Ye, J.
    Zhang, Y.
    Search for WIMP inelastic scattering off xenon nuclei with XENON1002017Ingår i: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 96, nr 2, artikel-id 022008Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We present the first constraints on the spin-dependent, inelastic scattering cross section of weakly interacting massive particles (WIMPs) on nucleons from XENON100 data with an exposure of 7.64 x 10(3) kg . days. XENON100 is a dual-phase xenon time projection chamber with 62 kg of active mass, operated at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy and designed to search for nuclear recoils from WIMP-nucleus interactions. Here we explore inelastic scattering, where a transition to a low-lying excited nuclear state of Xe-129 is induced. The experimental signature is a nuclear recoil observed together with the prompt deexcitation photon. We see no evidence for such inelastic WIMP-Xe-129 interactions. A profile likelihood analysis allows us to set a 90% C.L. upper limit on the inelastic, spin-dependent WIMP-nucleon cross section of 3.3 x 10(-38) cm(2) at 100 GeV/c(2). This is the most constraining result to date, and sets the pathway for an analysis of this interaction channel in upcoming, larger dual-phase xenon detectors.

  • 164. Aprile, E.
    et al.
    Aalbers, J.
    Agostini, F.
    Alfonsi, M.
    Amaro, F. D.
    Anthony, M.
    Arneodo, F.
    Barrow, P.
    Baudis, L.
    Bauermeister, Boris
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Johannes Gutenberg-Universität Mainz, Germany.
    Benabderrahmane, M. L.
    Berger, T.
    Breur, P. A.
    Brown, A.
    Brown, E.
    Bruenner, S.
    Bruno, G.
    Budnik, R.
    Buss, A.
    Butikofer, L.
    Cardoso, J. M. R.
    Cervantes, M.
    Cichon, D.
    Coderre, D.
    Colijn, A. P.
    Conrad, Jan
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum.
    Cussonneau, J. P.
    Decowski, M. P.
    de Perio, P.
    Di Gangi, P.
    Di Giovanni, A.
    Duchovni, E.
    Ferella, Alfredo D.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. INFN-Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, Italy.
    Fieguth, A.
    Franco, D.
    Fulgione, W.
    Galloway, M.
    Garbini, M.
    Geis, C.
    Goetzke, L. W.
    Greene, Z.
    Grignon, C.
    Gross, E.
    Hasterok, C.
    Hogenbirk, E.
    Itay, R.
    Kaminsky, B.
    Kessler, G.
    Kish, A.
    Landsman, H.
    Lang, R. F.
    Levinson, L.
    Le Calloch, M.
    Levy, C.
    Linde, F.
    Lindemann, S.
    Lindner, M.
    Lopes, J. A. M.
    Lyashenko, A.
    Manfredini, A.
    Undagoitia, T. Marrodn
    Masbou, J.
    Massoli, F. V.
    Masson, D.
    Mayani, D.
    Fernandez, A. J. Melgarejo
    Meng, Y.
    Messina, M.
    Micheneau, K.
    Miguez, B.
    Molinario, A.
    Murra, M.
    Naganoma, J.
    Oberlack, U.
    Orrigo, S. E. A.
    Pakarha, P.
    Pelssers, Bart
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum.
    Persiani, R.
    Piastra, F.
    Pienaar, J.
    Plante, G.
    Priel, N.
    Rauch, L.
    Reichard, S.
    Reuter, C.
    Rizzo, A.
    Rosendahl, S.
    Rupp, N.
    dos Santos, J. M. F.
    Sartorelli, G.
    Scheibelhut, M.
    Schindler, S.
    Schreiner, J.
    Schumann, M.
    Lavina, L. Scotto
    Selvi, M.
    Shagin, P.
    Simgen, H.
    Stein, A.
    Thers, D.
    Tiseni, A.
    Trinchero, G.
    Tunnell, C. D.
    von Sivers, M.
    Wall, R.
    Wang, H.
    Weber, M.
    Wei, Y.
    Weinheimer, C.
    Wulf, J.
    Zhang, Y.
    Low-mass dark matter search using ionization signals in XENON1002016Ingår i: Physical Review D, ISSN 2470-0010, Vol. 94, nr 9, artikel-id 092001Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We perform a low-mass dark matter search using an exposure of 30 kg x yr with the XENON100 detector. By dropping the requirement of a scintillation signal and using only the ionization signal to determine the interaction energy, we lowered the energy threshold for detection to 0.7 keV for nuclear recoils. No dark matter detection can be claimed because a complete background model cannot be constructed without a primary scintillation signal. Instead, we compute an upper limit on the WIMP-nucleon scattering cross section under the assumption that every event passing our selection criteria could be a signal event. Using an energy interval from 0.7 keV to 9.1 keV, we derive a limit on the spin-independent WIMP-nucleon cross section that excludes WIMPs with a mass of 6 GeV/c(2) above 1.4 x 10(-41) cm(2) at 90% confidence level.

  • 165. Aprile, E.
    et al.
    Aalbers, J.
    Agostini, F.
    Alfonsi, M.
    Amaro, F. D.
    Anthony, M.
    Arneodo, F.
    Barrow, P.
    Baudis, L.
    Bauermeister, Boris
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Johannes Gutenberg-Universität Mainz, Germany.
    Benabderrahmane, M. L.
    Berger, T.
    Breur, P. A.
    Brown, A.
    Brown, E.
    Bruenner, S.
    Bruno, G.
    Budnik, R.
    Butikofer, L.
    Calven, Jakob
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Cardoso, J. M. R.
    Cervantes, M.
    Cichon, D.
    Coderre, D.
    Colijn, A. P.
    Conrad, Jan
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Cussonneau, J. P.
    Decowski, M. P.
    de Perio, P.
    Di Gangi, P.
    Di Giovanni, A.
    Diglio, S.
    Duchovni, E.
    Eurin, G.
    Fei, J.
    Ferella, Alfredo D.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Fieguth, A.
    Franco, D.
    Fulgione, W.
    Rosso, A. Gallo
    Galloway, M.
    Gao, F.
    Garbini, M.
    Geis, C.
    Goetzke, L. W.
    Grandi, L.
    Greene, Z.
    Grignon, C.
    Hasterok, C.
    Hogenbirk, E.
    Itay, R.
    Kaminsky, B.
    Kessler, G.
    Kish, A.
    Landsman, H.
    Lang, R. F.
    Lellouch, D.
    Levinson, L.
    Le Calloch, M.
    Lin, Q.
    Lindemann, S.
    Lindner, M.
    Lopes, J. A. M.
    Manfredini, A.
    Maris, I.
    Undagoitia, T. Marrodan
    Masbou, J.
    Massoli, F. V.
    Masson, D.
    Mayani, D.
    Meng, Y.
    Messina, M.
    Micheneau, K.
    Miguez, B.
    Molinario, A.
    Murra, M.
    Naganoma, J.
    Ni, K.
    Oberlack, U.
    Orrigo, S. E. A.
    Pakarha, P.
    Pelssers, Bart
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Persiani, R.
    Piastra, F.
    Pienaar, J.
    Piro, M. -C.
    Plante, G.
    Priel, N.
    Rauch, L.
    Reichard, S.
    Reuter, C.
    Rizzo, A.
    Rosendahl, S.
    Rupp, N.
    Saldanha, R.
    dos Santos, J. M. F.
    Sartorelli, G.
    Scheibelhut, M.
    Schindler, S.
    Schreiner, J.
    Schumann, M.
    Lavina, L. Scotto
    Selvi, M.
    Shagin, P.
    Shockley, E.
    Silva, M.
    Simgen, H.
    v Sivers, M.
    Stein, A.
    Thers, D.
    Tiseni, A.
    Trinchero, G.
    Tunnell, C.
    Upole, N.
    Wang, H.
    Wei, Y.
    Weinheimer, C.
    Wulf, J.
    Ye, J.
    Zhang, Y.
    Results from a calibration of XENON100 using a source of dissolved radon-2202017Ingår i: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 95, nr 7, artikel-id 072008Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A Rn-220 source is deployed on the XENON100 dark matter detector in order to address the challenges in calibration of tonne-scale liquid noble element detectors. We show that the Pb-212 beta emission can be used for low-energy electronic recoil calibration in searches for dark matter. The isotope spreads throughout the entire active region of the detector, and its activity naturally decays below background level within a week after the source is closed. We find no increase in the activity of the troublesome Rn-222 background after calibration. Alpha emitters are also distributed throughout the detector and facilitate calibration of its response to Rn-222. Using the delayed coincidence of Rn-220-Po-216, we map for the first time the convective motion of particles in the XENON100 detector. Additionally, we make a competitive measurement of the half-life of Po-212, t(1/2) = (293.9 +/- (1.0)(stat) +/- (0.6)(sys)) ns.

  • 166. Aprile, E.
    et al.
    Aalbers, J.
    Agostini, F.
    Alfonsi, M.
    Amaro, F. D.
    Anthony, M.
    Arneodo, F.
    Barrow, P.
    Baudis, L.
    Bauermeister, Boris
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Johannes Gutenberg-Universität, Germany.
    Benabderrahmane, M. L.
    Berger, T.
    Breur, P. A.
    Brown, A.
    Brown, E.
    Bruenner, S.
    Bruno, G.
    Budnik, R.
    Butikofer, L.
    Calvén, Jakob
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Cardoso, J. M. R.
    Cervantes, M.
    Cichon, D.
    Coderre, D.
    Colijn, A. P.
    Conrad, Jan
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Cussonneau, J. P.
    Decowski, M. P.
    de Perio, P.
    Di Gangi, P.
    Di Giovanni, A.
    Diglio, S.
    Duchovni, E.
    Eurin, G.
    Fei, J.
    Ferella, Alfredo D.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Fieguth, A.
    Franco, D.
    Fulgione, W.
    Rosso, A. Gallo
    Galloway, M.
    Gao, F.
    Garbini, M.
    Geis, C.
    Goetzke, L. W.
    Grandi, L.
    Greene, Z.
    Grignon, C.
    Hasterok, C.
    Hogenbirk, E.
    Itay, R.
    Kaminsky, B.
    Kessler, G.
    Kish, A.
    Landsman, H.
    Lang, R. F.
    Lellouch, D.
    Levinson, L.
    Le Calloch, M.
    Lin, Q.
    Lindemann, S.
    Lindner, M.
    Lopes, J. A. M.
    Manfredini, A.
    Maris, I.
    Undagoitia, T. Marrodan
    Masbou, J.
    Massoli, F. V.
    Masson, D.
    Mayani, D.
    Meng, Y.
    Messina, M.
    Micheneau, K.
    Miguez, B.
    Molinario, A.
    Murra, M.
    Naganoma, J.
    Ni, K.
    Oberlack, U.
    Orrigo, S. E. A.
    Pakarha, P.
    Pelssers, Bart
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Persiani, R.
    Piastra, F.
    Pienaar, J.
    Piro, M. -C.
    Pizzella, V.
    Plante, G.
    Priel, N.
    Rauch, L.
    Reichard, S.
    Reuter, C.
    Rizzo, A.
    Rosendahl, S.
    Rupp, N.
    Saldanha, R.
    dos Santos, J. M. F.
    Sartorelli, G.
    Scheibelhut, M.
    Schindler, S.
    Schreiner, J.
    Schumann, M.
    Lavina, L. Scotto
    Selvi, M.
    Shagin, P.
    Shockley, E.
    Silva, M.
    Simgen, H.
    von Sivers, M.
    Stein, A.
    Thers, D.
    Tiseni, A.
    Trinchero, G.
    Tunnell, C.
    Upole, N.
    Wang, H.
    Wei, Y.
    Weinheimer, C.
    Wulf, J.
    Ye, J.
    Zhang, Y.
    Cristescu, I.
    Online Rn-222 removal by cryogenic distillation in the XENON100 experiment2017Ingår i: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 77, nr 6, artikel-id 358Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We describe the purification of xenon from traces of the radioactive noble gas radon using a cryogenic distillation column. The distillation column was integrated into the gas purification loop of the XENON100 detector for online radon removal. This enabled us to significantly reduce the constant Rn-222 background originating from radon emanation. After inserting an auxiliary 222Rn emanation source in the gas loop, we determined a radon reduction factor of R > 27 (95% C.L.) for the distillation column by monitoring the Rn-222 activity concentration inside the XENON100 detector.

  • 167. Aprile, E.
    et al.
    Aalbers, J.
    Agostini, F.
    Alfonsi, M.
    Amaro, F. D.
    Anthony, M.
    Arneodo, F.
    Barrow, P.
    Baudis, L.
    Bauermeister, Boris
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Johannes Gutenberg-Universität Mainz, Germany.
    Benabderrahmane, M. L.
    Berger, T.
    Breur, P. A.
    Brown, A.
    Brown, E.
    Bruenner, S.
    Bruno, G.
    Budnik, R.
    Butikofer, L.
    Calvén, Jakob
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Cardoso, J. M. R.
    Cervantes, M.
    Cichon, D.
    Coderre, D.
    Colijn, A. P.
    Conrad, Jan
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Cussonneau, J. P.
    Decowski, M. P.
    De Perio, P.
    Di Gangi, P.
    Di Giovanni, A.
    Diglio, S.
    Duchovni, E.
    Fei, J.
    Ferella, Alfredo D.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Fieguth, A.
    Franco, D.
    Fulgione, W.
    Rosso, A. Gallo
    Galloway, M.
    Gao, F.
    Garbini, M.
    Geis, C.
    Goetzke, L. W.
    Greene, Z.
    Grignon, C.
    Hasterok, C.
    Hogenbirk, E.
    Itay, R.
    Kaminsky, B.
    Kessler, G.
    Kish, A.
    Landsman, H.
    Lang, R. F.
    Lellouch, D.
    Levinson, L.
    Le Calloch, M.
    Levy, C.
    Lin, Q.
    Lindemann, S.
    Lindner, M.
    Lopes, J. A. M.
    Manfredini, A.
    Undagoitia, T. Marrodan
    Masbou, J.
    Massoli, F. V.
    Masson, D.
    Mayani, D.
    Meng, Y.
    Messina, M.
    Micheneau, K.
    Miguez, B.
    Molinario, A.
    Murra, M.
    Naganoma, J.
    Ni, K.
    Oberlack, U.
    Orrigo, S. E. A.
    Pakarha, P.
    Pelssers, Bart
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Persiani, R.
    Piastra, F.
    Pienaar, J.
    Piro, M. -C.
    Plante, G.
    Priel, N.
    Rauch, L.
    Reichard, S.
    Reuter, C.
    Rizzo, A.
    Rosendahl, S.
    Rupp, N.
    dos Santos, J. M. F.
    Sartorelli, G.
    Scheibelhut, M.
    Schindler, S.
    Schreiner, J.
    Schumann, M.
    Lavina, L. Scotto
    Selvi, M.
    Shagin, P.
    Silva, M.
    Simgen, H.
    Sivers, M. V.
    Stein, A.
    Thers, D.
    Tiseni, A.
    Trinchero, G.
    Tunnell, C. D.
    Wall, R.
    Wang, H.
    Weber, M.
    Wei, Y.
    Weinheimer, C.
    Wulf, J.
    Zhang, Y.
    Search for two-neutrino double electron capture of Xe-124 with XENON1002017Ingår i: Physical Review C, ISSN 2469-9985, Vol. 95, nr 2, artikel-id 024605Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Two-neutrino double electron capture is a rare nuclear decay where two electrons are simultaneously captured from the atomic shell. For Xe-124 this process has not yet been observed and its detection would provide a new reference for nuclear matrix element calculations. We have conducted a search for two-neutrino double electron capture from the K shell of 124Xe using 7636 kg d of data from the XENON100 dark matter detector. Using a Bayesian analysis we observed no significant excess above background, leading to a lower 90% credibility limit on the half-life T-1/2 > 6.5 x 10(20) yr. We have also evaluated the sensitivity of the XENON1T experiment, which is currently being commissioned, and found a sensitivity of T-1/2 > 6.1 x 10(22) yr after an exposure of 2 t yr.

  • 168. Aprile, E.
    et al.
    Aalbers, J.
    Agostini, F.
    Alfonsi, M.
    Amaro, F. D.
    Anthony, M.
    Arneodo, F.
    Barrow, P.
    Baudis, L.
    Bauermeister, Boris
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Benabderrahmane, M. L.
    Berger, T.
    Breur, P. A.
    Brown, A.
    Brown, E.
    Bruenner, S.
    Bruno, G.
    Budnik, R.
    Bütikofer, L.
    Calvén, Jakob
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Cardoso, J. M. R.
    Cervantes, M.
    Cichon, D.
    Coderre, D.
    Colijn, A. P.
    Conrad, Jan
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Cussonneau, J. P.
    Decowski, M. P.
    de Perio, P.
    Di Gangi, P.
    Di Giovanni, A.
    Diglio, S.
    Duchovni, E.
    Eurin, G.
    Fei, J.
    Ferella, Alfredo D.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Fieguth, A.
    Franco, D.
    Fulgione, W.
    Rosso, A. Gallo
    Galloway, M.
    Gao, F.
    Garbini, M.
    Geis, C.
    Goetzke, L. W.
    Grandi, L.
    Greene, Z.
    Grignon, C.
    Hasterok, C.
    Hogenbirk, E.
    Huhmann, C.
    Itay, R.
    Kaminsky, B.
    Kessler, G.
    Kish, A.
    Landsman, H.
    Lang, R. F.
    Lellouch, D.
    Levinson, L.
    Le Calloch, M.
    Lin, Q.
    Lindemann, S.
    Lindner, M.
    Lopes, J. A. M.
    Manfredini, A.
    Maris, I.
    Undagoitia, T. Marrodán
    Masbou, J.
    Massoli, F. V.
    Masson, D.
    Mayani, D.
    Meng, Y.
    Messina, M.
    Micheneau, K.
    Miguez, B.
    Molinario, A.
    Murra, M.
    Naganoma, J.
    Ni, K.
    Oberlack, U.
    Orrigo, S. E. A.
    Pakarha, P.
    Pelssers, Bart
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Persiani, R.
    Piastra, F.
    Pienaar, J.
    Piro, M. -C.
    Pizzella, V.
    Plante, G.
    Priel, N.
    Rauch, L.
    Reichard, S.
    Reuter, C.
    Rizzo, A.
    Rosendahl, S.
    Rupp, N.
    Saldanha, R.
    dos Santos, J. M. F.
    Sartorelli, G.
    Scheibelhut, M.
    Schindler, S.
    Schreiner, J.
    Schumann, M.
    Lavina, L. Scotto
    Selvi, M.
    Shagin, P.
    Shockley, E.
    Silva, M.
    Simgen, H.
    Sivers, M. V.
    Stein, A.
    Thers, D.
    Tiseni, A.
    Trinchero, G.
    Tunnell, C.
    Upole, N.
    Wang, H.
    Wei, Y.
    Weinheimer, C.
    Wulf, J.
    Ye, J.
    Zhang, Y.
    Cristescu, I.
    Removing krypton from xenon by cryogenic distillation to the ppq level2017Ingår i: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 77, nr 5, artikel-id 275Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The XENON1T experiment aims for the direct detection of dark matter in a detector filled with 3.3 tons of liquid xenon. In order to achieve the desired sensitivity, the background induced by radioactive decays inside the detector has to be sufficiently low. One major contributor is the beta-emitter Kr-85 which is present in the xenon. For XENON1T a concentration of natural krypton in xenon Kr-nat/Xe < 200 ppq (parts per quadrillion, 1 ppq = 10(-15) mol/mol) is required. In this work, the design, construction and test of a novel cryogenic distillation column using the common McCabe-Thiele approach is described. The system demonstrated a krypton reduction factor of 6.4 . 10(5) with thermodynamic stability at process speeds above 3 kg/h. The resulting concentration of natKr/Xe < 26 ppq is the lowest ever achieved, almost one order of magnitude below the requirements for XENON1T and even sufficient for future dark matter experiments using liquid xenon, such as XENONnT and DARWIN.

  • 169. Aprile, E.
    et al.
    Aalbers, J.
    Agostini, F.
    Alfonsi, M.
    Amaro, F. D.
    Anthony, M.
    Arneodo, F.
    Barrow, P.
    Baudis, L.
    Bauermeister, Boris
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Benabderrahmane, M. L.
    Berger, T.
    Breur, P. A.
    Brown, A.
    Brown, E.
    Bruenner, S.
    Bruno, G.
    Budnik, R.
    Bütikofer, L.
    Calvén, Jakob
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Cardoso, J. M. R.
    Cervantes, M.
    Cichon, D.
    Coderre, D.
    Colijn, A. P.
    Conrad, Jan
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Cussonneau, J. P.
    Decowski, M. P.
    de Perio, P.
    Di Gangi, P.
    Di Giovanni, A.
    Diglio, S.
    Eurin, G.
    Fei, J.
    Ferella, Alfredo D.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Fieguth, A.
    Fulgione, W.
    Rosso, A. Gallo
    Galloway, M.
    Gao, F.
    Garbini, M.
    Geis, C.
    Goetzke, L. W.
    Grandi, L.
    Greene, Z.
    Grignon, C.
    Hasterok, C.
    Hogenbirk, E.
    Howlett, J.
    Itay, R.
    Kaminsky, B.
    Kazama, S.
    Kessler, G.
    Kish, A.
    Landsman, H.
    Lang, R. F.
    Lellouch, D.
    Levinson, L.
    Lin, Q.
    Lindemann, S.
    Lindner, M.
    Lombardi, F.
    Lopes, J. A. M.
    Mahlstedt, Jörn
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Manfredini, A.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Maris, I.
    Undagoitia, T. Marrodán
    Masbou, J.
    Massoli, F. V.
    Masson, D.
    Mayani, D.
    Messina, M.
    Micheneau, K.
    Molinario, A.
    Morå, Knut
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Murra, M.
    Naganoma, J.
    Ni, K.
    Oberlack, U.
    Pakarha, P.
    Pelssers, Bart
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Persiani, R.
    Piastra, F.
    Pienaar, J.
    Pizzella, V.
    Piro, M. -C.
    Plante, G.
    Priel, N.
    Garcia, D. Ramirez
    Rauch, L.
    Reichard, S.
    Reuter, C.
    Rizzo, A.
    Rupp, N.
    Saldanha, R.
    dos Santos, J. M. F.
    Sartorelli, G.
    Scheibelhut, M.
    Schindler, S.
    Schreiner, J.
    Schumann, M.
    Lavina, L. Scotto
    Selvi, M.
    Shagin, P.
    Shockley, E.
    Silva, M.
    Simgen, H.
    von Sivers, M.
    Stein, A.
    Thers, D.
    Tiseni, A.
    Trinchero, G.
    Tunnell, C.
    Vargas, M.
    Wang, H.
    Wang, Z.
    Wei, Y.
    Weinheimer, C.
    Wittweg, C.
    Wulf, J.
    Ye, J.
    Zhang, Y.
    Zhu, T.
    Signal yields of keV electronic recoils and their discrimination from nuclear recoils in liquid xenon2018Ingår i: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 97, nr 9, artikel-id 092007Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We report on the response of liquid xenon to low energy electronic recoils below 15 keV from beta decays of tritium at drift fields of 92 V/cm, 154 V/cm and 366 V/cm using the XENON100 detector. A data-to-simulation fitting method based on Markov Chain Monte Carlo is used to extract the photon yields and recombination fluctuations from the experimental data. The photon yields measured at the two lower fields are in agreement with those from literature; additional measurements at a higher field of 366 V/cm are presented. The electronic and nuclear recoil discrimination as well as its dependence on the drift field and photon detection efficiency are investigated at these low energies. The results provide new measurements in the energy region of interest for dark matter searches using liquid xenon.

  • 170. Aprile, E.
    et al.
    Aalbers, Jelle
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Nikhef and the University of Amsterdam, The Netherlands.
    Agostini, F.
    Alfonsi, M.
    Althueser, L.
    Amaro, F. D.
    Anthony, M.
    Antochi, Vasile Cristian
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Arneodo, F.
    Baudis, L.
    Bauermeister, Boris
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Benabderrahmane, L.
    Berger, T.
    Breur, P. A.
    Brown, A.
    Brown, A.
    Brown, E.
    Bruenner, S.
    Bruno, G.
    Budnik, R.
    Capelli, C.
    Cardoso, J. M. R.
    Cichon, D.
    Coderre, D.
    Colijn, A. P.
    Conrad, Jan
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Cussonneau, J. P.
    Decowski, M. P.
    de Perio, P.
    Di Gangi, P.
    Di Giovanni, A.
    Diglio, S.
    Elykov, A.
    Eurin, G.
    Fei, J.
    Ferella, Alfredo D.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Fieguth, A.
    Fulgione, W.
    Rosso, A. Gallo
    Galloway, M.
    Gao, F.
    Garbini, M.
    Grandi, L.
    Greene, Z.
    Hasterok, C.
    Hogenbirk, E.
    Howlett, J.
    Iacovacci, M.
    Itay, R.
    Joerg, F.
    Kaminsky, B.
    Kazama, S.
    Kish, A.
    Koltman, G.
    Kopec, A.
    Landsman, H.
    Lang, R. F.
    Levinson, L.
    Lin, Q.
    Lindemann, S.
    Lindner, M.
    Lombardi, F.
    Lopes, J. A. M.
    Fune, E. Lopez
    Macolino, C.
    Mahlstedt, Jörn
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Manfredini, A.
    Marignetti, F.
    Undagoitia, T. Marrodan
    Masbou, J.
    Masson, D.
    Mastroianni, S.
    Messina, M.
    Micheneau, K.
    Miller, K.
    Molinario, A.
    Morå, Knut
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Murra, M.
    Naganoma, J.
    Ni, K.
    Oberlack, U.
    Odgers, K.
    Pelssers, Bart
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Peres, R.
    Piastra, F.
    Pienaar, J.
    Pizzella, V.
    Plante, G.
    Podviianiuk, R.
    Priel, N.
    Qiu, H.
    Garcia, D. Ramirez
    Reichard, S.
    Riedel, B.
    Rizzo, A.
    Rocchetti, A.
    Rupp, N.
    dos Santos, J. M. F.
    Sartorelli, G.
    Sarcevic, N.
    Scheibelhut, M.
    Schindler, S.
    Schreiner, J.
    Schulte, D.
    Schumann, M.
    Lavina, L. Scotto
    Selvi, M.
    Shagin, P.
    Shockley, E.
    Silva, M.
    Simgen, H.
    Therreau, C.
    Thers, D.
    Toschi, F.
    Trinchero, G.
    Tunnell, C.
    Upole, N.
    Vargas, M.
    Wack, O.
    Wang, H.
    Wang, Z.
    Wei, Y.
    Weinheimer, C.
    Wenz, D.
    Wittweg, C.
    Wulf, J.
    Ye, J.
    Zhang, Y.
    Zhu, T.
    Zopounidis, J. P.
    Observation of two-neutrino double electron capture in Xe-124 with XENON1T2019Ingår i: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 568, nr 7753, s. 532-535Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Two-neutrino double electron capture (2 nu ECEC) is a second-order weak-interaction process with a predicted half-life that surpasses the age of the Universe by many orders of magnitude(1). Until now, indications of 2 nu ECEC decays have only been seen for two isotopes(2-5), Kr-78 and Ba-130, and instruments with very low background levels are needed to detect them directly with high statistical significance(6,7). The 2 nu ECEC half-life is an important observable for nuclear structure models(8-14) and its measurement represents a meaningful step in the search for neutrinoless double electron capture-the detection of which would establish the Majorana nature of the neutrino and would give access to the absolute neutrino mass(15-17). Here we report the direct observation of 2 nu ECEC in Xe-124 with the XENON1T dark-matter detector. The significance of the signal is 4.4 standard deviations and the corresponding half-life of 1.8 x 10(22) years (statistical uncertainty, 0.5 x 10(22) years; systematic uncertainty, 0.1 x 10(22) years) is the longest measured directly so far. This study demonstrates that the low background and large target mass of xenon-based dark-matter detectors make them well suited for measuring rare processes and highlights the broad physics reach of larger next-generation experiments(18-20).

  • 171. Aprile, E.
    et al.
    Aalbers, Jelle
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Nikhef and the University of Amsterdam, Netherland.
    Agostini, F.
    Alfonsi, M.
    Althueser, L.
    Amaro, F. D.
    Anthony, M.
    Antochi, Vasile Cristian
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Arneodo, F.
    Baudis, L.
    Bauermeister, Boris
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Benabderrahmane, M. L.
    Berger, T.
    Breur, P. A.
    Brown, A.
    Brown, A.
    Brown, E.
    Bruenner, S.
    Bruno, G.
    Budnik, R.
    Capelli, C.
    Cardoso, J. M. R.
    Cichon, D.
    Coderre, D.
    Colijn, A. P.
    Conrad, Jan
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Cussonneau, J. P.
    Decowski, M. P.
    de Perio, P.
    Di Gangi, P.
    Di Giovanni, A.
    Diglio, S.
    Elykov, A.
    Eurin, G.
    Fei, J.
    Ferella, Alfredo D.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Fieguth, A.
    Fulgione, W.
    Rosso, A. Gallo
    Galloway, M.
    Gao, F.
    Garbini, M.
    Grandi, L.
    Greene, Z.
    Hasterok, C.
    Hogenbirk, E.
    Howlett, J.
    Iacovacci, M.
    Itay, R.
    Joerg, F.
    Kaminsky, B.
    Kazama, S.
    Kish, A.
    Koltman, G.
    Kopec, A.
    Landsman, H.
    Lang, R. F.
    Levinson, L.
    Lin, Q.
    Lindemann, S.
    Lindner, M.
    Lombardi, F.
    Lopes, J. A. M.
    Fune, E. Lopez
    Macolino, C.
    Mahlstedt, Jörn
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Manfredini, A.
    Marignetti, F.
    Undagoitia, T. Marrodan
    Masbou, J.
    Masson, D.
    Mastroianni, S.
    Messina, M.
    Micheneau, K.
    Miller, K.
    Molinario, A.
    Morå, Knut
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Murra, M.
    Naganoma, J.
    Ni, K.
    Oberlack, U.
    Odgers, K.
    Pelssers, Bart
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Piastra, F.
    Pienaar, J.
    Pizzella, V.
    Plante, G.
    Podviianiuk, R.
    Priel, N.
    Qiu, H.
    Garcia, D. Ramirez
    Reichard, S.
    Riedel, B.
    Rizzo, A.
    Rocchetti, A.
    Rupp, N.
    dos Santos, J. M. F.
    Sartorelli, G.
    Sarcevic, N.
    Scheibelhut, M.
    Schindler, S.
    Schreiner, J.
    Schulte, D.
    Schumann, M.
    Lavina, L. Scotto
    Selvi, M.
    Shagin, P.
    Shockley, E.
    Silva, M.
    Simgen, H.
    Therreau, C.
    Thers, D.
    Toschi, F.
    Trinchero, G.
    Tunnell, C.
    Upole, N.
    Vargas, M.
    Wack, O.
    Wang, H.
    Wang, Z.
    Wei, Y.
    Weinheimer, C.
    Wenz, D.
    Wittweg, C.
    Wulf, J.
    Ye, J.
    Zhang, Y.
    Zhu, T.
    Zopounidis, J. P.
    Hoferichter, M.
    Klos, P.
    Menendez, J.
    Schwenk, A.
    First Results on the Scalar WIMP-Pion Coupling, Using the XENON1T Experiment2019Ingår i: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 122, nr 7, artikel-id 071301Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We present first results on the scalar coupling of weakly interacting massive particles (WIMPs) to pions from 1 t yr of exposure with the XENON1T experiment. This interaction is generated when the WIMP couples to a virtual pion exchanged between the nucleons in a nucleus. In contrast to most nonrelativistic operators, these pion-exchange currents can be coherently enhanced by the total number of nucleons and therefore may dominate in scenarios where spin-independent WIMP-nucleon interactions are suppressed. Moreover, for natural values of the couplings, they dominate over the spin-dependent channel due to their coherence in the nucleus. Using the signal model of this new WIMP-pion channel, no significant excess is found, leading to an upper limit cross section of 6.4 x 10(-46) cm(2) (90% confidence level) at 30 GeV/c(2) WIMP mass.

  • 172. Aprile, E.
    et al.
    Aalbers, Jelle
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Nikhef and the University of Amsterdam, Netherlands.
    Agostini, F.
    Alfonsi, M.
    Althueser, L.
    Amaro, F. D.
    Anthony, M.
    Antochi, Vasile Cristian
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Arneodo, F.
    Baudis, L.
    Bauermeister, Boris
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Benabderrahmane, M. L.
    Berger, T.
    Breur, P. A.
    Brown, A.
    Brown, A.
    Brown, E.
    Bruenner, S.
    Bruno, G.
    Budnik, R.
    Capelli, C.
    Cardoso, J. M. R.
    Cichon, D.
    Coderre, D.
    Colijn, A. P.
    Conrad, Jan
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Cussormeau, J. P.
    Decowski, M. P.
    de Perio, P.
    Di Gangi, P.
    Di Giovanni, A.
    Diglio, S.
    Elykov, A.
    Eurin, G.
    Fei, J.
    Ferella, Alfredo D.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Fieguth, A.
    Fulgione, W.
    Gallo Rosso, A.
    Galloway, M.
    Gao, F.
    Garbini, M.
    Grandi, L.
    Greene, Z.
    Hasterok, C.
    Hogenbirk, E.
    Howlett, J.
    Iacovacci, M.
    Itay, R.
    Joerg, F.
    Kazamna, S.
    Kish, A.
    Koltman, G.
    Kopec, A.
    Landsman, H.
    Lang, R. F.
    Levinson, L.
    Lin, Q.
    Lindemann, S.
    Lindner, M.
    Lombardi, F.
    Lopes, J. A. M.
    Fune, E. Lopez
    Macolino, C.
    Mahlstedt, Jörn
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Manfredini, A.
    Marignetti, F.
    Undagoitia, T. Marrodan
    Masbou, J.
    Masson, D.
    Mastroianni, S.
    Messina, M.
    Micheneau, K.
    Miller, K.
    Molinario, A.
    Morå, Knut
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Mosbacher, Y.
    Murra, M.
    Naganoma, J.
    Ni, K.
    Oberlack, U.
    Odgers, K.
    Pelssers, Bart
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Piastra, F.
    Pienaar, J.
    Pizzella, V
    Plante, G.
    Podviianiuk, R.
    Prie, N.
    Qiu, H.
    Garcia, D. Ramirez
    Reichard, S.
    Riedel, B.
    Rizzo, A.
    Rocchetti, A.
    Rupp, N.
    dos Santos, J. M. F.
    Sartorelli, G.
    Sarcevic, N.
    Scheibelhut, M.
    Schindler, S.
    Schreiner, J.
    Schulte, D.
    Schumann, M.
    Lavina, L. Scotto
    Selvi, M.
    Shagin, P.
    Shockley, E.
    Silva, M.
    Simgen, H.
    Therreau, C.
    Thers, D.
    Toschi, F.
    Trinchero, G.
    Tunnell, C.
    Upole, N.
    Vargas, M.
    Wack, O.
    Wang, H.
    Wang, Z.
    Wei, Y.
    Weinheimer, C.
    Wenz, D.
    Wittweg, C.
    Wulf, J.
    Xu, Z.
    Ye, J.
    Zhang, Y.
    Zhu, T.
    Zopounidis, J. P.
    Constraining the Spin-Dependent WIMP-Nucleon Cross Sections with XENON1T2019Ingår i: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 122, nr 14, artikel-id 141301Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We report the first experimental results on spin-dependent elastic weakly interacting massive particle (WIMP) nucleon scattering from the XENON1T dark matter search experiment. The analysis uses the full ton year exposure of XENON1T to constrain the spin-dependent proton-only and neutron-only cases. No significant signal excess is observed, and a profile likelihood ratio analysis is used to set exclusion limits on the WIMP-nucleon interactions. This includes the most stringent constraint to date on the WIMP-neutron cross section, with a minimum of 6.3 x 10(-42) cm(2) at 30 GeV/c(2) and 90% confidence level. The results are compared with those from collider searches and used to exclude new parameter space in an isoscalar theory with an axial-vector mediator.

  • 173. Aprile, E.
    et al.
    Aalbers, Jelle
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Agostini, F.
    Alfonsi, M.
    Althueser, L.
    Amaro, F. D.
    Antochi, Vasile C.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Angelino, E.
    Arneodo, F.
    Barge, Derek
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Baudis, L.
    Bauermeister, Boris
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Bellagamba, L.
    Benabderrahmane, M. L.
    Berger, T.
    Breur, P. A.
    Brown, A.
    Brown, E.
    Bruenner, S.
    Bruno, G.
    Budnik, R.
    Capelli, C.
    Cardoso, J. M. R.
    Cichon, D.
    Coderre, D.
    Colijn, A. P.
    Conrad, Jan M.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Cussonneau, J. P.
    Decowski, M. P.
    de Perio, P.
    Depoian, A.
    Di Gangi, P.
    Di Giovanni, A.
    Diglio, S.
    Elykov, A.
    Eurin, G.
    Fei, J.
    Ferella, Alfredo D.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Fieguth, A.
    Fulgione, W.
    Gaemers, P.
    Gallo Rosso, A.
    Galloway, M.
    Gao, F.
    Garbini, M.
    Grandi, L.
    Greene, Z.
    Hasterok, C.
    Hils, C.
    Hogenbirk, E.
    Howlett, J.
    Iacovacci, M.
    Itay, R.
    Joerg, F.
    Kazama, S.
    Kish, A.
    Kobayashi, M.
    Koltman, G.
    Kopec, A.
    Landsman, H.
    Lang, R. F.
    Levinson, L.
    Lin, Q.
    Lindemann, S.
    Lindner, M.
    Lombardi, F.
    Lopes, J. A. M.
    Lopez Fune, E.
    Macolino, C.
    Mahlstedt, Jörn
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Manenti, M.
    Manfredini, A.
    Marignetti, F.
    Marrodan Undagoitia, T.
    Masbou, J.
    Mastroianni, S.
    Messina, M.
    Micheneau, K.
    Miller, K.
    Molinario, A.
    Morå, Knut
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Mosbacher, Y.
    Murra, M.
    Naganoma, J.
    Ni, K.
    Oberlack, U.
    Odgers, K.
    Palacio, J.
    Pelssers, Bart
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Peres, R.
    Pienaar, J.
    Pizzella, V.
    Plante, G.
    Podviianiuk, R.
    Qin, J.
    Qiu, H.
    Ramirez Garcia, D.
    Reichard, S.
    Riedel, B.
    Rocchetti, A.
    Rupp, N.
    dos Santos, J. M. F.
    Sartorelli, G.
    Sarcevic, N.
    Scheibelhut, M.
    Schindler, S.
    Schreiner, J.
    Schulte, D.
    Schumann, M.
    Scotto Lavina, L.
    Selvi, M.
    Shagin, P.
    Shockley, E.
    Silva, M.
    Simgen, H.
    Therreau, C.
    Thers, D.
    Toschi, F.
    Trinchero, G.
    Tunnell, C.
    Upole, N.
    Vargas, M.
    Volta, G.
    Wack, O.
    Wang, H.
    Wei, Y.
    Weinheimer, C.
    Wenz, D.
    Wittweg, C.
    Wulf, J.
    Ye, J.
    Zhang, Y.
    Zhu, T.
    Zopounidis, J. P.
    Search for Light Dark Matter Interactions Enhanced by the Migdal Effect or Bremsstrahlung in XENON1T2019Ingår i: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 123, nr 24, artikel-id 241803Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Direct dark matter detection experiments based on a liquid xenon target are leading the search for dark matter particles with masses above similar to 5 GeV/c(2), but have limited sensitivity to lighter masses because of the small momentum transfer in dark matter-nucleus elastic scattering. However, there is an irreducible contribution from inelastic processes accompanying the elastic scattering, which leads to the excitation and ionization of the recoiling atom (the Migdal effect) or the emission of a bremsstrahlung photon. In this Letter, we report on a probe of low-mass dark matter with masses down to about 85 MeV/c(2) by looking for electronic recoils induced by the Migdal effect and bremsstrahlung using data from the XENON1T experiment. Besides the approach of detecting both scintillation and ionization signals, we exploit an approach that uses ionization signals only, which allows for a lower detection threshold. This analysis significantly enhances the sensitivity of XENON1T to light dark matter previously beyond its reach.

  • 174. Aprile, E.
    et al.
    Aalbers, Jelle
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Agostini, F.
    Alfonsi, M.
    Althueser, L.
    Amaro, F. D.
    Antochi, Vasile C.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Angelino, E.
    Arneodo, F.
    Barge, Derek
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Baudis, L.
    Bauermeister, Boris
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Bellagamba, L.
    Benabderrahmane, M. L.
    Berger, T.
    Breur, P. A.
    Brown, A.
    Brown, E.
    Bruenner, S.
    Bruno, G.
    Budnik, R.
    Capelli, C.
    Cardoso, J. M. R.
    Cichon, D.
    Coderre, D.
    Colijn, A. P.
    Conrad, Jan M.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Cussonneau, J. P.
    Decowski, M. P.
    de Perio, P.
    Depoian, A.
    Di Gangi, P.
    Di Giovanni, A.
    Diglio, S.
    Elykov, A.
    Eurin, G.
    Fei, J.
    Ferella, Alfredo D.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Fieguth, A.
    Fulgione, W.
    Gaemers, P.
    Gallo Rosso, A.
    Galloway, M.
    Gao, F.
    Garbini, M.
    Grandi, L.
    Greene, Z.
    Hasterok, C.
    Hils, C.
    Hogenbirk, E.
    Howlett, J.
    Iacovacci, M.
    Itay, R.
    Joerg, F.
    Kazama, S.
    Kish, A.
    Kobayashi, M.
    Koltman, G.
    Kopec, A.
    Landsman, H.
    Lang, R. F.
    Levinson, L.
    Lin, Q.
    Lindemann, S.
    Lindner, M.
    Lombardi, F.
    Lopes, J. A. M.
    Lopez Fune, E.
    Macolino, C.
    Mahlstedt, Jörn
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Manfredini, A.
    Marignetti, F.
    Marrodan Undagoitia, T.
    Masbou, J.
    Mastroianni, S.
    Messina, M.
    Micheneau, K.
    Miller, K.
    Molinario, A.
    Morå, Knut
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Mosbacher, Y.
    Murra, M.
    Naganoma, J.
    Ni, K.
    Oberlack, U.
    Odgers, K.
    Palacio, J.
    Pelssers, Bart
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Peres, R.
    Pienaar, J.
    Pizzella, V.
    Plante, G.
    Podviianiuk, R.
    Qin, J.
    Qiu, H.
    Ramirez Garcia, D.
    Reichard, S.
    Riedel, B.
    Rocchetti, A.
    Rupp, N.
    dos Santos, J. M. F.
    Sartorelli, G.
    Sarcevic, N.
    Scheibelhut, M.
    Schindler, S.
    Schreiner, J.
    Schulte, D.
    Schumann, M.
    Scotto Lavina, L.
    Selvi, M.
    Shagin, P.
    Shockley, E.
    Silva, M.
    Simgen, H.
    Therreau, C.
    Thers, D.
    Toschi, F.
    Trinchero, G.
    Tunnell, C.
    Upole, N.
    Vargas, M.
    Volta, G.
    Wack, O.
    Wang, H.
    Wei, Y.
    Weinheimer, C.
    Wenz, D.
    Wittweg, C.
    Wulf, J.
    Ye, J.
    Zhang, Y.
    Zhu, T.
    Zopounidis, J. P.
    Light Dark Matter Search with Ionization Signals in XENON1T2019Ingår i: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 123, nr 25, artikel-id 251801Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We report constraints on light dark matter (DM) models using ionization signals in the XENON1T experiment. We mitigate backgrounds with strong event selections, rather than requiring a scintillation signal, leaving an effective exposure of (22 +/- 3) tonne day. Above similar to 0.4 keV(ee), we observe <1 event/(tonne day keV(ee)), which is more than 1000 times lower than in similar searches with other detectors. Despite observing a higher rate at lower energies, no DM or CEvNS detection may be claimed because we cannot model all of our backgrounds. We thus exclude new regions in the parameter spaces for DM-nucleus scattering for DM masses m(chi) within 3-6 GeV/c(2), DM-electron scattering for m(chi) > 30 MeV/c(2), and absorption of dark photons and axionlike particles for m(chi) within 0.186-1 keV/c(2).

  • 175. Aprile, E.
    et al.
    Aalbers, Jelle
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Nikhef and the University of Amsterdam, Netherlands.
    Agostini, F.
    Alfonsi, M.
    Althueser, L.
    Amaro, F. D.
    Antochi, Vasile Cristian
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Arneodo, F.
    Barge, Derek
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Baudis, L.
    Bauermeister, Boris
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Bellagamba, L.
    Benabderrahmane, M. L.
    Berger, T.
    Breur, P. A.
    Brown, A.
    Brown, E.
    Bruenner, S.
    Bruno, G.
    Budnik, R.
    Buetikofer, L.
    Capelli, C.
    Cardoso, J. M. R.
    Cichon, D.
    Coderre, D.
    Colijn, A. P.
    Conrad, Jan
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Cussonneau, J. P.
    Decowski, M. P.
    de Perio, P.
    Di Gangi, P.
    Di Giovanni, A.
    Diglio, S.
    Elykov, A.
    Eurin, G.
    Fei, J.
    Ferella, Alfredo D.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Fieguth, A.
    Fulgione, W.
    Gaemers, P.
    Rosso, A. Gallo
    Galloway, M.
    Gao, F.
    Garbini, M.
    Grandi, L.
    Greene, Z.
    Hasterok, C.
    Hogenbirk, E.
    Howlett, J.
    Iacovacci, M.
    Itay, R.
    Joerg, F.
    Kazama, S.
    Kish, A.
    Kobayashi, M.
    Koltman, G.
    Kopec, A.
    Landsman, H.
    Lang, R. F.
    Levinson, L.
    Lin, Q.
    Lindemann, S.
    Lindner, M.
    Lombardi, F.
    Lopes, J. A. M.
    Fune, E. Lopez
    Macolino, C.
    Mahlstedt, Jörn
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Manfredini, A.
    Marignetti, F.
    Undagoitia, T. Marrodan
    Masbou, J.
    Masson, D.
    Mastroianni, S.
    Messina, M.
    Micheneau, K.
    Miller, K.
    Molinario, A.
    Morå, Knut
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Mosbacher, Y.
    Murra, M.
    Naganoma, J.
    Ni, K.
    Oberlack, U.
    Odgers, K.
    Pelssers, Bart
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Peres, R.
    Piastra, F.
    Pienaar, J.
    Pizzella, V
    Plante, G.
    Podviianiuk, R.
    Qiu, H.
    Garcia, D. Ramirez
    Reichard, M. S.
    Riedel, B.
    Rocchetti, A.
    Rupp, N.
    dos Santos, J. M. F.
    Sartorelli, G.
    Sarcevic, N.
    Scheibelhut, M.
    Schindler, S.
    Schreiner, J.
    Schulte, D.
    Schumann, M.
    Lavina, L. Scotto
    Selvi, M.
    Shagin, P.
    Shockley, E.
    Silva, M.
    Simgen, H.
    Therreau, C.
    Thers, D.
    Toschi, F.
    Trinchero, G.
    Tunnell, C. D.
    Upole, N.
    Vargas, M.
    Volta, G.
    Wack, O.
    Wang, H.
    Wei, Y.
    Weinheimer, C.
    Wenz, D.
    Wittweg, C.
    Wulf, J.
    Ye, J.
    Zhang, Y.
    Zhu, T.
    Zopounidis, J. P.
    Pieracci, M.
    Tintori, C.
    The XENON1T data acquisition system2019Ingår i: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 14, artikel-id P07016Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The XENON1T liquid xenon time projection chamber is the most sensitive detector built to date for the measurement of direct interactions of weakly interacting massive particles with normal matter. The data acquisition system (DAQ) is constructed from commercial, open source, and custom components to digitize signals from the detector and store them for later analysis. The system achieves an extremely low signal threshold by triggering each channel independently, achieving a single photoelectron acceptance of (93 +/- 3)%, and deferring the global trigger to a later, software stage. The event identification is based on MongoDB database queries and has over 98% efficiency at recognizing interactions at the analysis threshold in the center of the target. A readout bandwidth over 300 MB/s is reached in calibration modes and is further expandable via parallelization. This DAQ system was successfully used during three years of operation of XENON1T.

  • 176. Aprile, E.
    et al.
    Aalbers, Jelle
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Nikhef and the University of Amsterdam, Netherlands.
    Agostini, F.
    Alfonsi, M.
    Althueser, L.
    Amaro, F. D.
    Antochi, Vasile Cristian
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Arneodo, F.
    Baudis, L.
    Bauermeister, Boris
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Bellagamba, L.
    Benabderrahmane, M. L.
    Berger, T.
    Breur, P. A.
    Brown, A.
    Brown, E.
    Bruenner, S.
    Bruno, G.
    Budnik, R.
    Capelli, C.
    Cardoso, J. M. R.
    Cichon, D.
    Coderre, D.
    Colijn, A. P.
    Conrad, Jan
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Cussonneau, J. P.
    Decowski, M. P.
    de Perio, P.
    Di Gangi, P.
    Di Giovanni, A.
    Diglio, S.
    Elykov, A.
    Eurin, G.
    Fei, J.
    Ferella, Alfredo D.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Fieguth, A.
    Fulgione, W.
    Rosso, A. Gallo
    Galloway, M.
    Gao, F.
    Garbini, M.
    Grandi, L.
    Greene, Z.
    Hasterok, C.
    Hogenbirk, E.
    Howlett, J.
    Iacovacci, M.
    Itay, R.
    Joerg, F.
    Kazama, S.
    Kish, A.
    Koltman, G.
    Kopec, A.
    Landsman, H.
    Lang, R. F.
    Levinson, L.
    Lin, Q.
    Lindemann, S.
    Lindner, M.
    Lombardi, F.
    Lopes, J. A. M.
    Fune, E. Lopez
    Macolino, C.
    Mahlstedt, Jörn
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Manfredini, A.
    Marignetti, F.
    Undagoitia, T. Marrodan
    Masbou, J.
    Masson, D.
    Mastroianni, S.
    Messina, M.
    Micheneau, K.
    Miller, K.
    Molinario, A.
    Morå, Knut
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Mosbacher, Y.
    Murra, M.
    Naganoma, J.
    Ni, K.
    Oberlack, U.
    Odgers, K.
    Pelssers, Bart
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Peres, R.
    Piastra, F.
    Pienaar, J.
    Pizzella, V
    Plante, G.
    Podviianiuk, R.
    Qiu, H.
    Garcia, D. Ramirez
    Reichard, S.
    Riedel, B.
    Rizzo, A.
    Rocchetti, A.
    Rupp, N.
    dos Santos, J. M. F.
    Sartorelli, G.
    Sarcevic, N.
    Scheibelhut, M.
    Schindler, S.
    Schreiner, J.
    Schulte, D.
    Schumann, M.
    Lavina, L. Scotto
    Selvi, M.
    Shagin, P.
    Shockley, E.
    Silva, M.
    Simgen, H.
    Therreau, C.
    Thers, D.
    Toschi, F.
    Trinchero, G.
    Tunnell, C.
    Upole, N.
    Vargas, M.
    Wack, O.
    Wang, H.
    Wang, Z.
    Wei, Y.
    Weinheimer, C.
    Wenz, D.
    Wittweg, C.
    Wulf, J.
    Ye, J.
    Zhang, Y.
    Zhu, T.
    Zopounidis, J. P.
    XENON1T dark matter data analysis: Signal reconstruction, calibration, and event selection2019Ingår i: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 100, nr 5, artikel-id 052014Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The XENON1T experiment at the Laboratori Nazionali del Gran Sasso is the most sensitive direct detection experiment for dark matter in the form of weakly interacting particles (WIMPs) with masses above 6 GeV/c(2) scattering off nuclei. The detector employs a dual-phase time projection chamber with 2.0 metric tons of liquid xenon in the target. A one metric ton x year exposure of science data was collected between October 2016 and February 2018. This article reports on the performance of the detector during this period and describes details of the data analysis that led to the most stringent exclusion limits on various WIMP-nucleon interaction models to date. In particular, signal reconstruction, event selection, and calibration of the detector response to nuclear and electronic recoils in XENON1T are discussed.

  • 177. Aprile, E.
    et al.
    Aalbers, Jelle
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Nikhef and the University of Amsterdam, Netherlands.
    Agostini, F.
    Alfonsi, M.
    Althueser, L.
    Amaro, F. D.
    Antochi, Vasile Cristian
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Arneodo, F.
    Baudis, L.
    Bauermeister, Boris
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Benabderrahmane, M. L.
    Berger, T.
    Breur, P. A.
    Brown, A.
    Brown, E.
    Bruenner, S.
    Bruno, G.
    Budnik, R.
    Capelli, C.
    Cardoso, J. M. R.
    Cichon, D.
    Coderre, D.
    Colijn, A. P.
    Conrad, Jan
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Cussonneau, J. P.
    Decowski, M. P.
    de Perio, P.
    Di Gangi, P.
    Di Giovanni, A.
    Diglio, S.
    Elykov, A.
    Eurin, G.
    Fei, J.
    Ferella, Alfredo D.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Fieguth, A.
    Fulgione, W.
    Rosso, A. Gallo
    Galloway, M.
    Gao, F.
    Garbini, M.
    Grandi, L.
    Greene, Z.
    Hasterok, C.
    Hogenbirk, E.
    Howlett, J.
    Iacovacci, M.
    Itay, R.
    Joerg, F.
    Kazama, S.
    Kish, A.
    Koltman, G.
    Kopec, A.
    Landsman, H.
    Lang, R. F.
    Levinson, L.
    Lin, Q.
    Lindemann, S.
    Lindner, M.
    Lombardi, F.
    Lopes, J. A. M.
    Fune, E. Lopez
    Macolino, C.
    Mahlstedt, Jörn
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Manfredini, A.
    Marignetti, F.
    Undagoitia, T. Marrodan
    Masbou, J.
    Masson, D.
    Mastroianni, S.
    Messina, M.
    Micheneau, K.
    Miller, K.
    Molinario, A.
    Morå, Knut
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Mosbacher, Y.
    Murra, M.
    Naganoma, J.
    Ni, K.
    Oberlack, U.
    Odgers, K.
    Pelssers, Bart
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Peres, R.
    Piastra, F.
    Pienaar, J.
    Pizzella, V
    Plante, G.
    Podviianiuk, R.
    Qiu, H.
    Garcia, D. Ramirez
    Reichard, S.
    Riedel, B.
    Rizzo, A.
    Rocchetti, A.
    Rupp, N.
    dos Santos, J. M. F.
    Sartorelli, G.
    Sarcevic, N.
    Scheibelhut, M.
    Schindler, S.
    Schreiner, J.
    Schulte, D.
    Schumann, M.
    Lavina, L. Scotto
    Selvi, M.
    Shagin, P.
    Shockley, E.
    Silva, M.
    Simgen, H.
    Therreau, C.
    Thers, D.
    Toschi, F.
    Trinchero, G.
    Tunnell, C.
    Upole, N.
    Vargas, M.
    Wack, O.
    Wang, H.
    Wang, Z.
    Wei, Y.
    Weinheimer, C.
    Wenz, D.
    Wittweg, C.
    Wulf, J.
    Ye, J.
    Zhang, Y.
    Zhu, T.
    Zopounidis, J. P.
    XENON1T dark matter data analysis: Signal and background models and statistical inference2019Ingår i: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 99, nr 11, artikel-id 112009Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The XENON1T experiment searches for dark matter particles through their scattering off xenon atoms in a 2 metric ton liquid xenon target. The detector is a dual-phase time projection chamber, which measures simultaneously the scintillation and ionization signals produced by interactions in target volume, to reconstruct energy and position, as well as the type of the interaction. The background rate in the central volume of XENON1T detector is the lowest achieved so far with a liquid xenon-based direct detection experiment. In this work we describe the response model of the detector, the background and signal models, and the statistical inference procedures used in the dark matter searches with a 1 metric ton x year exposure of XENON1T data, that leads to the best limit to date on WIMP-nucleon spin-independent elastic scatter cross section for WIMP masses above 6 GeV/c(2).

  • 178. Aprile, Elena
    et al.
    Aalbers, Jelle
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Antochi, Vasile Cristian
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Bauermeister, Boris
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Conrad, Jan
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Ferella, Alfredo Davide
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Mahlstedt, Jörn
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Morå, Knut
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Pelssers, Bart
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Zopounidis, J. P.
    Analysis of the XENON1T data for WIMP search: Background Models and Statistical InferenceManuskript (preprint) (Övrigt vetenskapligt)
    Abstract [en]

    The XENON1T experiment searches for dark matter recoils within a $2$ tonne liquid xenon target. The detector is operated as a dual-phase time projection chamber, and reconstructs the energy and position of interactions in the active volume. In the central volume of the target mass, the lowest background rate of a xenon-based direct detection experiment so far has been achieved. In this work we describe the detector response modelling, the background and signal models, and the statistical inference procedures used in a search for Weakly Interacting Massive Particles (WIMPs) using 1\,tonne$\times$year exposure of XENON1T data.

  • 179. Athron, Peter
    et al.
    Balazs, Csaba
    Bringmann, Torsten
    Buckley, Andy
    Chrzaszcz, Marcin
    Conrad, Jan
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Cornell, Jonathan M.
    Dal, Lars A.
    Dickinson, Hugh
    Edsjö, Joakim
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Farmer, Ben
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Gonzalo, Tomas E.
    Jackson, Paul
    Krislock, Abram
    Kvellestad, Anders
    Lundberg, Johan
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    McKay, James
    Mahmoudi, Farvah
    Martinez, Gregory D.
    Putze, Antje
    Raklev, Are
    Ripken, Joachim
    Rogan, Christopher
    Saavedra, Aldo
    Savage, Christopher
    Scott, Pat
    Seo, Seon-Hee
    Serra, Nicola
    Weniger, Christoph
    White, Martin
    Wild, Sebastian
    GAMBIT: the global and modular beyond-the-standard-model inference tool2017Ingår i: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 77, nr 11, artikel-id 784Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We describe the open-source global fitting package GAMBIT: the Global And Modular Beyond-the-Standard-Model Inference Tool. GAMBIT combines extensive calculations of observables and likelihoods in particle and astroparticle physics with a hierarchical model database, advanced tools for automatically building analyses of essentially any model, a flexible and powerful system for interfacing to external codes, a suite of different statistical methods and parameter scanning algorithms, and a host of other utilities designed to make scans faster, safer and more easily-extendible than in the past. Here we give a detailed description of the framework, its design and motivation, and the current models and other specific components presently implemented in GAMBIT. Accompanying papers deal with individual modules and present flrst GAMBIT results. GAMBIT can be downloaded from gambit.hepforge.org.

  • 180. Athron, Peter
    et al.
    Balazs, Csaba
    Bringmann, Torsten
    Buckley, Andy
    Chrzaszcz, Marcin
    Conrad, Jan
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Cornell, Jonathan M.
    Dal, Lars A.
    Dickinson, Hugh
    Edsjö, Joakim
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Farmer, Ben
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Gonzalo, Tomas E.
    Jackson, Paul
    Krislock, Abram
    Kvellestad, Anders
    Lundberg, Johan
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Mckay, James
    Mahmoudi, Farvah
    Martinez, Gregory D.
    Putze, Antje
    Raklev, Are
    Ripken, Joachim
    Rogan, Christopher
    Saavedra, Aldo
    Savage, Christopher
    Scott, Pat
    Seo, Seon-Hee
    Serra, Nicola
    Weniger, Christoph
    White, Martin
    Wild, Sebastian
    GAMBIT: the global and modular beyond-the-standard-model inference tool2018Ingår i: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 78, nr 2, artikel-id 98Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In Ref. (GAMBIT Collaboration: Athron et. al., Eur. Phys. J. C. arXiv: 1705.07908, 2017) we introduced the global-fitting framework GAMBIT. In this addendum, we describe a new minor version increment of this package. GAMBIT 1.1 includes full support for Mathematica backends, which we describe in some detail here. As an example, we backend SUSYHD (Vega and Villadoro, JHEP 07: 159, 2015), which calculates the mass of the Higgs boson in the MSSM from effective field theory. We also describe updated likelihoods in PrecisionBit and DarkBit, and updated decay data included in DecayBit.

  • 181. Athron, Peter
    et al.
    Balazs, Csaba
    Bringmann, Torsten
    Buckley, Andy
    Chrzaszcz, Marcin
    Conrad, Jan
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Cornell, Jonathan M.
    Dal, Lars A.
    Edsjö, Joakim
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Farmer, Ben
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Jackson, Paul
    Krislock, Abram
    Kvellestad, Anders
    Mahmoudi, Farvah
    Martinez, Gregory D.
    Putze, Antje
    Raklev, Are
    Rogan, Christopher
    de Austri, Roberto Ruiz
    Saavedra, Aldo
    Savage, Christopher
    Scott, Pat
    Serra, Nicola
    Weniger, Christoph
    White, Martin
    Global fits of GUT-scale SUSY models with GAMBIT2017Ingår i: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 77, nr 12, artikel-id 824Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We present the most comprehensive global fits to date of three supersymmetric models motivated by grand unification: the Constrained Minimal Supersymmetric Standard Model (CMSSM), and its Non-Universal Higgs Mass generalisations NUHM1 and NUHM2. We include likelihoods from a number of direct and indirect dark matter searches, a large collection of electroweak precision and flavour observables, direct searches for supersymmetry at LEP and Runs I and II of the LHC, and constraints from Higgs observables. Our analysis improves on existing results not only in terms of the number of included observables, but also in the level of detail with which we treat them, our sampling techniques for scanning the parameter space, and our treatment of nuisance parameters. We show that stau co-annihilation is now ruled out in the CMSSM at more than 95% confidence. Stop co-annihilation turns out to be one of the most promising mechanisms for achieving an appropriate relic density of darkmatter in all threemodels, whilst avoiding all other constraints. We find high-likelihood regions of parameter space featuring light stops and charginos, making them potentially detectable in the near future at the LHC. We also show that tonne-scale direct detection will play a largely complementary role, probing large parts of the remaining viable parameter space, including essentially all models with multi-TeV neutralinos.

  • 182. Athron, Peter
    et al.
    Balazs, Csaba
    Bringmann, Torsten
    Buckley, Andy
    Chrzaszcz, Marcin
    Conrad, Jan
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Cornell, Jonathan M.
    Dal, Lars A.
    Edsjö, Joakim
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Farmer, Ben
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Jackson, Paul
    Krislock, Abram
    Kvellestad, Anders
    Mahmoudi, Farvah
    Martinez, Gregory D.
    Putze, Antje
    Raklev, Are
    Rogan, Christopher
    Saavedra, Aldo
    Savage, Christopher
    Scott, Pat
    Serra, Nicola
    Weniger, Christoph
    White, Martin
    A global fit of the MSSM with GAMBIT2017Ingår i: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 77, nr 12, artikel-id 879Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We study the seven-dimensional Minimal Super-symmetric Standard Model (MSSM7) with the new GAMBIT software framework, with all parameters defined at the weak scale. Our analysis significantly extends previous weak-scale, phenomenological MSSM fits, by adding more and newer experimental analyses, improving the accuracy and detail of theoretical predictions, including dominant uncertainties from the Standard Model, the Galactic dark matter halo and the quark content of the nucleon, and employing novel and highly-efficient statistical sampling methods to scan the parameter space. We find regions of the MSSM7 that exhibit co-annihilation of neutralinos with charginos, stops and sbottoms, as well as models that undergo resonant annihilation via both light and heavy Higgs funnels. We find high-likelihood models with light charginos, stops and sbottoms that have the potential to be within the future reach of the LHC. Large parts of our preferred parameter regions will also be accessible to the next generation of direct and indirect dark matter searches, making prospects for discovery in the near future rather good.

  • 183. Athron, Peter
    et al.
    Balázs, Csaba
    Bringmann, Torsten
    Buckley, Andy
    Chrzaszcz, Marcin
    Conrad, Jan
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Cornell, Jonathan M.
    Dal, Lars A.
    Edsjö, Joakim
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Farmer, Ben
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Jackson, Paul
    Kahlhoefer, Felix
    Krislock, Abram
    Kvellestad, Anders
    McKay, James
    Mahmoudi, Farvah
    Martinez, Gregory D.
    Putze, Antje
    Raklev, Are
    Rogan, Christopher
    Saavedra, Aldo
    Savage, Christopher
    Scott, Pat
    Serra, Nicola
    Weniger, Christoph
    White, Martin
    Status of the scalar singlet dark matter model2017Ingår i: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 77, nr 8, artikel-id 568Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    One of the simplest viable models for dark matter is an additional neutral scalar, stabilised by a symmetry. Using the GAMBIT package and combining results from four independent samplers, we present Bayesian and frequentist global fits of this model. We vary the singlet mass and coupling along with 13 nuisance parameters, including nuclear uncertainties relevant for direct detection, the local dark matter density, and selected quark masses and couplings. We include the dark matter relic density measured by Planck, direct searches with LUX, PandaX, SuperCDMS and XENON100, limits on invisible Higgs decays from the Large Hadron Collider, searches for high-energy neutrinos from dark matter annihilation in the Sun with IceCube, and searches for gamma rays from annihilation in dwarf galaxies with the Fermi-LAT. Viable solutions remain at couplings of order unity, for singlet masses between the Higgs mass and about 300 GeV, and at masses above 1 TeV. Only in the latter case can the scalar singlet constitute all of dark matter. Frequentist analysis shows that the low-mass resonance region, where the singlet is about half the mass of the Higgs, can also account for all of dark matter, and remains viable. However, Bayesian considerations show this region to be rather fine-tuned.

  • 184.
    Axelsson, Magnus
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för astronomi. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Royal Institute of Technology, Sweden.
    Baldini, L.
    Barbiellini, G.
    Baring, M. G.
    Bellazzini, R.
    Bregeon, J.
    Brigida, M.
    Bruel, P.
    Buehler, R.
    Caliandro, G. A.
    Cameron, R. A.
    Caraveo, P. A.
    Cecchi, C.
    Chaves, R. C. G.
    Chekhtman, A.
    Chiang, J.
    Claus, R.
    Conrad, Jan
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Royal Swedish Academy of Sciences, Sweden.
    Cutini, S.
    D'Ammando, F.
    de Palma, F.
    Dermer, C. D.
    do Couto e Silva, E.
    Drell, P. S.
    Favuzzi, C.
    Fegan, S. J.
    Ferrara, E. C.
    Focke, W. B.
    Fukazawa, Y.
    Fusco, P.
    Gargano, F.
    Gasparrini, D.
    Gehrels, N.
    Germani, S.
    Giglietto, N.
    Giroletti, M.
    Godfrey, G.
    Guiriec, S.
    Hadasch, D.
    Hanabata, Y.
    Hayashida, M.
    Hou, X.
    Iyyani, Shabnam
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Royal Institute of Technology Sweden.
    Jackson, M. S.
    Kocevski, D.
    Kuss, M.
    Larsson, J.
    Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för astronomi.
    Larsson, Stefan
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för astronomi. Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Longo, F.
    Loparco, F.
    Lundman, C.
    Mazziotta, M. N.
    McEnery, J. E.
    Mizuno, T.
    Monzani, M. E.
    Moretti, E.
    Morselli, A.
    Murgia, S.
    Nuss, E.
    Nymark, T.
    Ohno, M.
    Omodei, N.
    Pesce-Rollins, M.
    Piron, F.
    Pivato, G.
    Racusin, J. L.
    Raino, S.
    Razzano, M.
    Razzaque, S.
    Reimer, A.
    Roth, M.
    Ryde, F.
    Sanchez, D. A.
    Sgro, C.
    Siskind, E. J.
    Spandre, G.
    Spinelli, P.
    Stamatikos, M.
    Tibaldo, L.
    Tinivella, M.
    Usher, T. L.
    Vandenbroucke, J.
    Vasileiou, V.
    Vianello, G.
    Vitale, V.
    Waite, A. P.
    Winer, B. L.
    Wood, K. S.
    Burgess, J. M.
    Bhat, P. N.
    Bissaldi, E.
    Briggs, M. S.
    Connaughton, V.
    Fishman, G.
    Fitzpatrick, G.
    Foley, S.
    Gruber, D.
    Kippen, R. M.
    Kouveliotou, C.
    Jenke, P.
    McBreen, S.
    McGlynn, S.
    Meegan, C.
    Paciesas, W. S.
    Pelassa, V.
    Preece, R.
    Tierney, D.
    von Kienlin, A.
    Wilson-Hodge, C.
    Xiong, S.
    Pe'er, A.
    GRB110721A: AN EXTREME PEAK ENERGY AND SIGNATURES OF THE PHOTOSPHERE2012Ingår i: Astrophysical Journal Letters, ISSN 2041-8205, Vol. 757, nr 2, artikel-id L31Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    GRB110721A was observed by the Fermi Gamma-ray Space Telescope using its two instruments, the Large Area Telescope (LAT) and the Gamma-ray Burst Monitor (GBM). The burst consisted of one major emission episode which lasted for similar to 24.5 s (in the GBM) and had a peak flux of (5.7 +/- 0.2) x 10(-5) erg s(-1) cm(-2). The time-resolved emission spectrum is best modeled with a combination of a Band function and a blackbody spectrum. The peak energy of the Band component was initially 15 +/- 2 MeV, which is the highest value ever detected in a GRB. This measurement was made possible by combining GBM/BGO data with LAT Low Energy events to achieve continuous 10-100 MeV coverage. The peak energy later decreased as a power law in time with an index of -1.89 +/- 0.10. The temperature of the blackbody component also decreased, starting from similar to 80 keV, and the decay showed a significant break after similar to 2 s. The spectrum provides strong constraints on the standard synchrotron model, indicating that alternative mechanisms may give rise to the emission at these energies.

  • 185.
    Baltz, Edward A.
    et al.
    Stanford, USA.
    Bergström, Lars
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum.
    Bringmann, Torsten
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum.
    Conrad, Jan
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum.
    Edsjö, Joakim
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum.
    Sellerholm, Alexander
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum.
    Pre-launch estimates for GLAST sensitivity to Dark Matter annihilation signals2008Ingår i: Journal of Cosmology and Astroparticle Physics, ISSN 1475-7516, E-ISSN 1475-7516, Vol. 0807, nr 013Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We investigate the sensitivity of the Gamma-ray Large Area Space Telescope (GLAST) for indirectly detecting weakly interacting massive particles (WIMPs) through the γ-ray signal that their pair annihilation produces. WIMPs are among the favorite candidates for explaining the compelling evidence that about 80% of the mass in the Universe is non-baryonic dark matter (DM). They are serendipitously motivated by various extensions of the standard model of particle physics such as supersymmetry and universal extra dimensions (UED). With its unprecedented sensitivity and its very large energy range (20 MeV to more than 300 GeV) the main instrument on board the GLAST satellite, the Large Area Telescope (LAT), will open a new window of discovery. As our estimates show, the LAT will be able to detect an indirect DM signature for a large class of WIMP models given a cuspy profile for the DM distribution. Using the current state of the art Monte Carlo and event reconstruction software developed within the LAT collaboration, we present preliminary sensitivity studies for several possible sources inside and outside the Galaxy. We also discuss the potential of the LAT to detect UED via the electron/positron channel. Diffuse background modeling and other background issues that will be important in setting limits or seeing a signal are presented

  • 186. Balázs, Csaba
    et al.
    Conrad, Jan
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Farmer, Ben
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Jacques, Thomas
    Li, Tong
    Meyer, Manuel
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Stanford University, USA.
    Queiroz, Farinaldo S.
    Sánchez-Conde, Miguel A.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Universidad Autónoma de Madrid, Spain.
    Sensitivity of the Cherenkov Telescope Array to the detection of a dark matter signal in comparison to direct detection and collider experiments2017Ingår i: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 96, nr 8, artikel-id 083002Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Imaging atmospheric Cherenkov telescopes (IACTs) that are sensitive to potential.-ray signals from dark matter (DM) annihilation above similar to 50 GeV will soon be superseded by the Cherenkov Telescope Array (CTA). CTA will have a point source sensitivity an order of magnitude better than currently operating IACTs and will cover a broad energy range between 20 GeV and 300 TeV. Using effective field theory and simplified models to calculate gamma-ray spectra resulting from DM annihilation, we compare the prospects to constrain such models with CTA observations of the Galactic center with current and near-future measurements at the Large Hadron Collider (LHC) and direct detection experiments. For DM annihilations via vector or pseudoscalar couplings, CTA observations will be able to probe DM models out of reach of the LHC, and, if DM is coupled to standard fermions by a pseudoscalar particle, beyond the limits of current direct detection experiments.

  • 187.
    Baum, Sebastian
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Catena, Riccardo
    Conrad, Jan
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Freese, Katherine
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). University of Michigan, USA.
    Krauss, Martin B.
    Determining dark matter properties with a XENONnT/LZ signal and LHC Run 3 monojet searches2018Ingår i: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 97, nr 8, artikel-id 083002Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We develop a method to forecast the outcome of the LHC Run 3 based on the hypothetical detection of O(100) signal events at XENONnT. Our method relies on a systematic classification of renormalizable single-mediator models for dark matter-quark interactions and is valid for dark matter candidates of spin less than or equal to one. Applying our method to simulated data, we find that at the end of the LHC Run 3 only two mutually exclusive scenarios would be compatible with the detection of O(100) signal events at XENONnT. In the first scenario, the energy distribution of the signal events is featureless, as for canonical spin-independent interactions. In this case, if a monojet signal is detected at the LHC, dark matter must have spin 1/2 and interact with nucleons through a unique velocity-dependent operator. If a monojet signal is not detected, dark matter interacts with nucleons through canonical spin-independent interactions. In a second scenario, the spectral distribution of the signal events exhibits a bump at nonzero recoil energies. In this second case, a monojet signal can be detected at the LHC Run 3; dark matter must have spin 1/2 and interact with nucleons through a unique momentum-dependent operator. We therefore conclude that the observation of O(100) signal events at XENONnT combined with the detection, or the lack of detection, of a monojet signal at the LHC Run 3 would significantly narrow the range of possible dark matter-nucleon interactions. As we argued above, it can also provide key information on the dark matter particle spin.

  • 188.
    Bergström, Lars
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Bertone, Gianfranco
    Conrad, Jan
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Farnier, Christian
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Weniger, Christoph
    Investigating gamma ray lines from dark matter with future observatories2012Ingår i: Journal of Cosmology and Astroparticle Physics, ISSN 1475-7516, E-ISSN 1475-7516, nr 11, s. 025-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We study the prospects for studying line features in gamma-ray spectra with upcoming gamma-ray experiments, such as HESS-II, the Cherenkov Telescope Array (CTA), and the GAMMA-400 satellite. As an example we use the narrow feature at 130 GeV seen in public data from the Fermi-LAT satellite. We found that all three experiments should be able to confidently confirm or rule out the presence of this 130 GeV feature. If it is real, it should be confirmed with a confidence level higher than 5 sigma. Assuming it to be a spectral signature of dark matter origin, GAMMA-400, thanks to a projected energy resolution of about 1.5 % at 100 GeV, should also be able to resolve both the gamma gamma line and a corresponding Z gamma or H gamma feature, if the corresponding branching ratio is comparable to that into two photons. It will also allow to distinguish between a gamma-ray line and the similar feature resulting from internal bremsstrahlung photons.

  • 189. Bergström, Sebastian
    et al.
    Catena, Riccardo
    Chiappo, Andrea
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Conrad, Jan
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Eurenius, Björn
    Eriksson, Magdalena
    Högberg, Michael
    Larsson, Susanna
    Olsson, Emelie
    Unger, Andreas
    Wadman, Rikard
    J-factors for self-interacting dark matter in 20 dwarf spheroidal galaxies2018Ingår i: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 98, nr 4, artikel-id 043017Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Dwarf spheroidal galaxies are among the most promising targets for indirect dark matter (DM) searches in gamma rays. The gamma-ray flux from DM annihilation in a dwarf spheroidal galaxy is proportional to the J-factor of the source. The J-factor of a dwarf spheroidal galaxy is the line-of-sight integral of the DM mass density squared times <sigma(ann)v(rel)>/<sigma(ann)v(rel)>(0), where sigma(ann)v(rel) is the DM annihilation cross-section times relative velocity v(rel) = vertical bar v(rel)vertical bar angle brackets denote average over v(rel), and (sigma(ann)v(rel)) is the v(rel)-independent part of sigma(ann)v(rel). If sigma(ann)v(rel) is constant in v(rel), J-factors only depend on the DM space distribution in the source. However, if sigma(ann)v(rel) varies with v(rel), as in the presence of DM self-interactions, J-factors also depend on the DM velocity distribution, and on the strength and range of the DM self-interaction. Models for self interacting DM are increasingly important in the study of the small scale clustering of DM, and are compatible with current astronomical and cosmological observations. Here we derive the J-factor of 20 dwarf spheroidal galaxies from stellar kinematic data under the assumption of Yukawa DM self-interactions. J-factors are derived through a profile likelihood approach, assuming either NavarroFrenk-White (NEW) or cored DM profiles. We also compare our results with J-factors derived assuming the same velocity for all DM particles in the target galaxy. We find that this common approximation overestimates the Mactors by up to 1 order of magnitude. J-factors for a sample of DM particle masses and self-interaction coupling constants, as well as for NFW and cored density profiles, are provided electronically, ready to he used in other projects.

  • 190. Betti, M. G.
    et al.
    Biasotti, M.
    Bosca, A.
    Calle, F.
    Canci, N.
    Cavoto, G.
    Chang, C.
    Cocco, A. G.
    Colijn, A. P.
    Conrad, Jan
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    D'Ambrosio, N.
    De Groot, N.
    de Salas, Pablo Fernández
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Faverzani, M.
    Ferella, Alfredo
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Ferri, E.
    Garcia-Abia, P.
    Garcia-Cortes, I
    Garcia Gomez-Tejedor, G.
    Gariazzo, S.
    Gatti, F.
    Gentile, C.
    Giachero, A.
    Gudmundsson, Jón E.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Hochberg, Y.
    Kahn, Y.
    Kievsky, A.
    Lisanti, M.
    Mancini-Terracciano, C.
    Mangano, G.
    Marcucci, L. E.
    Mariani, C.
    Martinez, J.
    Messina, M.
    Molinero-Vela, A.
    Monticone, E.
    Morono, A.
    Nucciotti, A.
    Pandolfi, F.
    Parlati, S.
    Pastor, S.
    Pedros, J.
    de los Heros, C. Perez
    Pisanti, O.
    Polosa, A. D.
    Puiu, A.
    Rago, I
    Raitses, Y.
    Rajteri, M.
    Rossi, N.
    Rucandio, I
    Santorelli, R.
    Schaeffner, K.
    Tully, C. G.
    Viviani, M.
    Zhao, F.
    Zurek, K. M.
    Neutrino physics with the PTOLEMY project: active neutrino properties and the light sterile case2019Ingår i: Journal of Cosmology and Astroparticle Physics, ISSN 1475-7516, E-ISSN 1475-7516, nr 7, artikel-id 047Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The PTOLEMY project aims to develop a scalable design for a Cosmic Neutrino Background (CNB) detector, the first of its kind and the only one conceived that can look directly at the image of the Universe encoded in neutrino background produced in the first second after the Big Bang. The scope of the work for the next three years is to complete the conceptual design of this detector and to validate with direct measurements that the non-neutrino backgrounds are below the expected cosmological signal. In this paper we discuss in details the theoretical aspects of the experiment and its physics goals. In particular, we mainly address three issues. First we discuss the sensitivity of PTOLEMY to the standard neutrino mass scale. We then study the perspectives of the experiment to detect the CNB via neutrino capture on tritium as a function of the neutrino mass scale and the energy resolution of the apparatus. Finally, we consider an extra sterile neutrino with mass in the eV range, coupled to the active states via oscillations, which has been advocated in view of neutrino oscillation anomalies. This extra state would contribute to the tritium decay spectrum, and its properties, mass and mixing angle, could be studied by analyzing the features in the beta decay electron spectrum.

  • 191. Betti, M. G.
    et al.
    Biasotti, M.
    Boscá, A.
    Calle, F.
    Carabe-Lopez, J.
    Cavoto, G.
    Chang, C.
    Chung, W.
    Cocco, A. G.
    Colijn, A. P.
    Conrad, Jan
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum.
    D'Ambrosio, N.
    de Salas, Pablo F.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Instituto de Física Corpuscular (CSIC-Universitat de València), Spain.
    Faverzani, M.
    Ferella, Alfredo
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum.
    Ferri, E.
    Garcia-Abia, P.
    Garcia Gomez-Tejedor, G.
    Gariazzo, S.
    Gatti, F.
    Gentile, C.
    Giachero, A.
    Gudmundsson, Jón E.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Luleå University of Technology, Sweden.
    Hochberg, Y.
    Kahn, Y.
    Lisanti, M.
    Mancini-Terracciano, C.
    Mangano, G.
    Marcucci, L. E.
    Mariani, C.
    Martínez, J.
    Messina, M.
    Molinero-Vela, A.
    Monticone, E.
    Nucciotti, A.
    Pandolfi, F.
    Pastor, S.
    Pedrós, J.
    de los Heros, C. Pérez
    Pisanti, O.
    Polosa, A. D.
    Puiu, A.
    Raitses, Y.
    Rajteri, M.
    Rossi, N.
    Santorelli, R.
    Schaeffner, K.
    Strid, C. F.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Luleå University of Technology, Sweden.
    Tully, C. G.
    Zhao, F.
    Zurek, K. M.
    A design for an electromagnetic filter for precision energy measurements at the tritium endpoint2019Ingår i: Progress in Particle and Nuclear Physics, ISSN 0146-6410, E-ISSN 1873-2224, Vol. 106, s. 120-131Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    We present a detailed description of the electromagnetic filter for the PTOLEMY project to directly detect the Cosmic Neutrino Background (CNB). Starting with an initial estimate for the orbital magnetic moment, the higher-order drift process of E x B is configured to balance the gradient-B drift motion of the electron in such a way as to guide the trajectory into the standing voltage potential along the mid-plane of the filter. As a function of drift distance along the length of the filter, the filter zooms in with exponentially increasing precision on the transverse velocity component of the electron kinetic energy. This yields a linear dimension for the total filter length that is exceptionally compact compared to previous techniques for electromagnetic filtering. The parallel velocity component of the electron kinetic energy oscillates in an electrostatic harmonic trap as the electron drifts along the length of the filter. An analysis of the phase-space volume conservation validates the expected behavior of the filter from the adiabatic invariance of the orbital magnetic moment and energy conservation following Liouville's theorem for Hamiltonian systems.

  • 192. Bringmann, Torsten
    et al.
    Conrad, Jan
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Cornell, Jonathan M.
    Dal, Lars A.
    Edsjö, Joakim
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Farmer, Ben
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Kahlhoefer, Felix
    Kvellestad, Anders
    Putze, Antje
    Savage, Christopher
    Scott, Pat
    Weniger, Christoph
    White, Martin
    Wild, Sebastian
    DarkBit: a GAMBIT module for computing dark matter observables and likelihoods2017Ingår i: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 77, nr 12, artikel-id 831Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We introduce DarkBit, an advanced software code for computing dark matter constraints on various extensions to the Standard Model of particle physics, comprising both new native code and interfaces to external packages. This release includes a dedicated signal yield calculator for gamma-ray observations, which significantly extends current tools by implementing a cascade decay Monte Carlo, as well as a dedicated likelihood calculator for current and future experiments (gamLike). This provides a general solution for studying complex particle physics models that predict dark matter annihilation to a multitude of final states. We also supply a direct detection package that models a large range of direct detection experiments (DDCalc), and provides the corresponding likelihoods for arbitrary combinations of spin-independent and spin-dependent scattering processes. Finally, we provide custom relic density routines along with interfaces to DarkSUSY, micrOMEGAs, and the neutrino telescope likelihood package nulike. DarkBit is written in the framework of the Global And Modular Beyond the StandardModel Inference Tool (GAMBIT), providing seamless integration into a comprehensive statistical fitting framework that allows users to explore new models with both particle and astrophysics constraints, and a con-sistent treatment of systematic uncertainties. In this paper we describe its main functionality, provide a guide to getting started quickly, and show illustrative examples for results obtained with DarkBit (both as a standalone tool and as a GAMBIT module). This includes a quantitative comparison between two of the main dark matter codes (DarkSUSY and micrOMEGAs), and application of DarkBit's advanced direct and indirect detection routines to a simple effective dark matter model.

  • 193. Catena, Riccardo
    et al.
    Conrad, Jan
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Döring, Christian
    Ferella, Alfredo Davide
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Krauss, Martin B.
    Dark matter spin determination with directional direct detection experiments2018Ingår i: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 97, nr 2, artikel-id 023007Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    If dark matter has spin 0, only two WIMP-nucleon interaction operators can arise as leading operators from the nonrelativistic reduction of renormalizable single-mediator models for dark matter-quark interactions. Based on this crucial observation, we show that about 100 signal events at next generation directional detection experiments can be enough to enable a 2 sigma rejection of the spin 0 dark matter hypothesis in favor of alternative hypotheses where the dark matter particle has spin 1/2 or 1. In this context, directional sensitivity is crucial since anisotropy patterns in the sphere of nuclear recoil directions depend on the spin of the dark matter particle. For comparison, about 100 signal events are expected in a CF4\ detector operating at a pressure of 30 torr with an exposure of approximately 26,000 cubic-meter-detector days for WIMPs of 100 GeV mass and a WIMP-fluorine scattering cross section of 0.25 pb. Comparable exposures require an array of cubic meter time projection chamber detectors.

  • 194. Catena, Riccardo
    et al.
    Conrad, Jan
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Krauss, Martin B.
    Compatibility of a dark matter discovery at XENONnT or LZ with the WIMP thermal production mechanism2018Ingår i: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 97, nr 10, artikel-id 103002Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The discovery of dark matter (DM) at XENONnT or LZ would place constraints on DM particle mass and coupling constants. It is interesting to ask when these constraints can be compatible with the DM thermal production mechanism. We address this question within the most general set of renormalizable models that preserve Lorentz and gauge symmetry, and that extend the standard model by one DM candidate of mass m(DM) and one particle of mass M-med mediating DM-quark interactions. Our analysis divides into two parts. First, we postulate that XENONnT/LZ has detected mu(s) similar to O(100) signal events, and use this input to calculate the DM relic density, Omega(Dm)h(2). Then, we identify the regions in the M-med - Omega(Dm)h(2) plane which are compatible with the observed signal and with current CMB data. We find that for most of the models considered here, O(100) signal events at XENONnT/LZ and the DM thermal production are only compatible for resonant DM annihilations, i.e. for M-med similar or equal to 2m(DM). In this case, XENONnT/LZ would be able to simultaneously measure m(DM) and M-med. We also discuss the dependence of our results on m(DM), mu(s) and the DM spin, and provide analytic expressions for annihilation cross sections and mediator decay widths for all models considered in this study.

  • 195. Centers, Gary P.
    et al.
    Blanchard, John W.
    Conrad, Jan
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum.
    Figueroa, Nataniel L.
    Garcon, Antoine
    Gramolin, Alexander V.
    Kimball, Derek F. Jackson
    Lawson, Matthew
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Helmholtz Institute, Germany.
    Pelssers, Bart
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum.
    Smiga, Joseph A.
    Sushkov, Alexander O.
    Wickenbrock, Arne
    Budker, Dmitry
    Derevianko, Andrei
    Stochastic fluctuations of bosonic dark matterManuskript (preprint) (Övrigt vetenskapligt)
  • 196.
    Chiappo, Andrea
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum.
    Cohen-Tanugi, J.
    Conrad, Jan
    Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum.
    Strigari, L. E.
    Dwarf spheroidal J-factor likelihoods for generalized NFW profiles2019Ingår i: Monthly notices of the Royal Astronomical Society, ISSN 0035-8711, E-ISSN 1365-2966, Vol. 488, nr 2, s. 2616-2628Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Indirect detection strategies of particle dark matter (DM) in Dwarf spheroidal satellite galaxies (dSphs) typically entail searching for annihilation signals above the astrophysical background. To robustly compare model predictions with the observed fluxes of product particles, most analyses of astrophysical data - which are generally frequentist - rely on estimating the abundance of DM by calculating the so-called J factor. This quantity is usually inferred from the kinematic properties of the stellar population of a dSph using the Jeans equation, commonly by means of Bayesian techniques that entail the presence (and additional systematic uncertainty) of prior choice. Here, extending earlier work, we develop a scheme to derive the profile likelihood for J factors of dwarf spheroidals for models with five or more free parameters. We validate our method on a publicly available simulation suite, released by the Gaia Challenge, finding satisfactory statistical properties for bias and probability coverage. We present the profile likelihood function and maximum likelihood estimates for the J-factor of 10 dSphs. As an illustration, we apply these profile likelihoods to recently published analyses of gamma-ray data with the Fermi Large Area Telescope to derive new, consistent upper limits on the DM annihilation cross-section. We do this for a subset of systems, generally referred to as classical dwarfs. The implications of these findings for DM searches are discussed, together with future improvements and extensions of this technique.

  • 197.
    Chiappo, Andrea
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Cohen-Tanugi, J.
    Conrad, Jan
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Strigari, L. E.
    Anderson, Brandon
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Sánchez-Conde, Miguel A.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Dwarf spheroidal J-factors without priors: A likelihood-based analysis for indirect dark matter searches2017Ingår i: Monthly notices of the Royal Astronomical Society, ISSN 0035-8711, E-ISSN 1365-2966, Vol. 466, nr 1, s. 669-676Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Line-of-sight integrals of the squared density, commonly called the J-factor, are essential for inferring dark matter (DM) annihilation signals. The J-factors of DM-dominated dwarf spheroidal satellite galaxies (dSphs) have typically been derived using Bayesian techniques, which for small data samples implies that a choice of priors constitutes a non-negligible systematic uncertainty. Here we report the development of a new fully frequentist approach to construct the profile likelihood of the J-factor. Using stellar kinematic data from several classical and ultra-faint dSphs, we derive the maximum likelihood value for the J-factor and its confidence intervals. We validate this method, in particular its bias and coverage, using simulated data from the Gaia Challenge. We find that the method possesses good statistical properties. The J-factors and their uncertainties are generally in good agreement with the Bayesian-derived values, with the largest deviations restricted to the systems with the smallest kinematic data sets. We discuss improvements, extensions, and future applications of this technique.

  • 198.
    Conrad, Jan
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC). Imperial College London, UK.
    Statistical issues in astrophysical searches for particle dark matter2015Ingår i: Astroparticle physics, ISSN 0927-6505, E-ISSN 1873-2852, Vol. 62, s. 165-177Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    In this review statistical issues appearing in astrophysical searches for particle dark matter, i.e. indirect detection (dark matter annihilating into standard model particles) or direct detection (dark matter particles scattering in deep underground detectors) are discussed. One particular aspect of these searches is the presence of very large uncertainties in nuisance parameters (astrophysical factors) that are degenerate with parameters of interest (mass and annihilation/decay cross sections for the particles). The likelihood approach has become the most powerful tool, offering at least one well motivated method for incorporation of nuisance parameters and increasing the sensitivity of experiments by allowing a combination of targets superior to the more traditional data stacking. Other statistical challenges appearing in astrophysical searches are to large extent similar to any new physics search, for example at colliders, a prime example being the calculation of trial factors. Frequentist methods prevail for hypothesis testing and interval estimation, Bayesian methods are used for assessment of nuisance parameters and parameter estimation in complex parameter spaces. The basic statistical concepts will be exposed, illustrated with concrete examples from experimental searches and caveats will be pointed out.

  • 199.
    Conrad, Jan
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Cohen-Tanugi, J.
    Strigari, L. E.
    Wimp searches with gamma rays in the Fermi era: Challenges, methods and results2015Ingår i: Journal of Experimental and Theoretical Physics, ISSN 1063-7761, E-ISSN 1090-6509, Vol. 121, nr 6, s. 1104-1135Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    The launch of the gamma-ray telescope Fermi Large Area Telescope (Fermi-LAT) started a pivotal period in indirect detection of dark matter. By outperforming expectations, for the first time a robust and stringent test of the paradigm of weakly interacting massive particles (WIMPs) is within reach. In this paper, we discuss astrophysical targets for WIMP detection and the challenges they present, review the analysis tools which have been employed to tackle these challenges, and summarize the status of constraints on and the claimed detections in the WIMP parameter space. Methods and results will be discussed in comparison to Imaging Air Cherenkov Telescopes. We also provide an outlook on short term and longer term developments.

  • 200.
    Conrad, Jan
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Dickinson, Hugh
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Finley, Chad
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Fransson, Claes
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för astronomi. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Hultqvist, Klas
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Ripken, Joachim
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy2011Ingår i: Experimental astronomy (Print), ISSN 0922-6435, E-ISSN 1572-9508, Vol. 32, nr 3, s. 193-316Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA.

12345 151 - 200 av 247
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf