Change search
Refine search result
12 51 - 59 of 59
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 51.
    Conrad, Jan M.
    et al.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Farnier, Christian
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Linnaeus University, Sweden.
    Meyer, Manuel
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Morå, Knut
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Wagner, Robert M.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Systematic search for very-high-energy gamma-ray emission from bow shocks of runaway stars2018In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 612, article id A12Article in journal (Refereed)
    Abstract [en]

    Context. Runaway stars form bow shocks by ploughing through the interstellar medium at supersonic speeds and are promising sources of non-thermal emission of photons. One of these objects has been found to emit non-thermal radiation in the radio band. This triggered the development of theoretical models predicting non-thermal photons from radio up to very-high-energy (VHE, E >= 0.1 TeV) gamma rays. Subsequently, one bow shock was also detected in X-ray observations. However, the data did not allow discrimination between a hot thermal and a non-thermal origin. Further observations of different candidates at X-ray energies showed no evidence for emission at the position of the bow shocks either. A systematic search in the Fermi-LAT energy regime resulted in flux upper limits for 27 candidates listed in the E-BOSS catalogue.

    Aims. Here we perform the first systematic search for VHE gamma-ray emission from bow shocks of runaway stars.

    Methods. Using all available archival H.E.S.S. data we search for very-high-energy gamma-ray emission at the positions of bow shock candidates listed in the second E-BOSS catalogue release. Out of the 73 bow shock candidates in this catalogue, 32 have been observed with H.E.S.S.

    Results. None of the observed 32 bow shock candidates in this population study show significant emission in the H.E.S.S. energy range. Therefore, flux upper limits are calculated in five energy bins and the fraction of the kinetic wind power that is converted into VHE gamma rays is constrained.

    Conclusions. Emission from stellar bow shocks is not detected in the energy range between 0.14 and 18 TeV. The resulting upper limits constrain the level of VHE gamma-ray emission from these objects down to 0.1-1% of the kinetic wind energy.

  • 52.
    Conrad, Jan M.
    et al.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Farnier, Christian
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Linnaeus University, Sweden.
    Meyer, Manuel
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Morå, Knut
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Wagner, Robert M.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    The gamma-ray spectrum of the core of Centaurus A as observed with HESS and Fermi-LAT2018In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 619, article id A71Article in journal (Refereed)
    Abstract [en]

    Centaurus A (Cen A) is the nearest radio galaxy discovered as a very-high-energy (VHE; 100 GeV-100 TeV) gamma-ray source by the High Energy Stereoscopic System (H.E.S.S.). It is a faint VHE gamma-ray emitter, though its VHE flux exceeds both the extrapolation from early Fermi-LAT observations as well as expectations from a (misaligned) single-zone synchrotron-self Compton (SSC) description. The latter satisfactorily reproduces the emission from Cen A at lower energies up to a few GeV. New observations with H.E.S.S., comparable in exposure time to those previously reported, were performed and eight years of Fermi-LAT data were accumulated to clarify the spectral characteristics of the gamma-ray emission from the core of Cen A. The results allow us for the first time to achieve the goal of constructing a representative, contemporaneous gamma-ray core spectrum of Cen A over almost five orders of magnitude in energy. Advanced analysis methods, including the template fitting method, allow detection in the VHE range of the core with a statistical significance of 12 sigma on the basis of 213 hours of total exposure time. The spectrum in the energy range of 250 GeV-6 TeV is compatible with a power-law function with a photon index Gamma = 2.52 +/- 0.13(stat) +/- 0.20(sys). An updated Fermi-LAT analysis provides evidence for spectral hardening by Delta Gamma similar or equal to 0.4 +/- 0.1 at gamma-ray energies above 2.8(-0.6)(+1.0) GeV at a level of 4.0 sigma. The fact that the spectrum hardens at GeV energies and extends into the VHE regime disfavour a single-zone SSC interpretation for the overall spectral energy distribution (SED) of the core and is suggestive of a new gamma-ray emitting component connecting the high-energy emission above the break energy to the one observed at VHE energies. The absence of significant variability at both GeV and TeV energies does not yet allow disentanglement of the physical nature of this component, though a jet-related origin is possible and a simple two-zone SED model fit is provided to this end.

  • 53.
    Conrad, Jan M.
    et al.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Farnier, Christian
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Linnaeus University, Sweden.
    Meyer, Manuel
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Morå, Knut
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Wagner, Robert M.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    The HESS Galactic plane survey2018In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 612, article id A1Article in journal (Refereed)
    Abstract [en]

    We present the results of the most comprehensive survey of the Galactic plane in very high-energy (VHE) gamma-rays, including a public release of Galactic sky maps, a catalog of VHE sources, and the discovery of 16 new sources of VHE gamma-rays. The High Energy Spectroscopic System (H.E.S.S.) Galactic plane survey (HGPS) was a decade-long observation program carried out by the H.E.S.S. I array of Cherenkov telescopes in Namibia from 2004 to 2013. The observations amount to nearly 2700 h of quality-selected data, covering the Galactic plane at longitudes from l = 250 degrees to 65 degrees and latitudes vertical bar b vertical bar <= 3 degrees. In addition to the unprecedented spatial coverage, the HGPS also features a relatively high angular resolution (0.08 degrees approximate to 5 arcmin mean point spread function 68% containment radius), sensitivity (less than or similar to 1.5% Crab flux for point-like sources), and energy range (0.2-100 TeV). We constructed a catalog of VHE gamma-ray sources from the HGPS data set with a systematic procedure for both source detection and characterization of morphology and spectrum. We present this likelihood-based method in detail, including the introduction of a model component to account for unresolved, large-scale emission along the Galactic plane. In total, the resulting HGPS catalog contains 78 VHE sources, of which 14 are not reanalyzed here, for example, due to their complex morphology, namely shell-like sources and the Galactic center region. Where possible, we provide a firm identification of the VHE source or plausible associations with sources in other astronomical catalogs. We also studied the characteristics of the VHE sources with source parameter distributions. 16 new sources were previously unknown or unpublished, and we individually discuss their identifications or possible associations. We firmly identified 31 sources as pulsar wind nebulae (PWNe), supernova remnants (SNRs), composite SNRs, or gamma-ray binaries. Among the 47 sources not yet identified, most of them (36) have possible associations with cataloged objects, notably PWNe and energetic pulsars that could power VHE PWNe.

  • 54.
    Conrad, Jan
    et al.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Meyer, Manuel
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Morå, Knut
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Spengler, Gerrit
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Wagner, Robert M.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Gamma-ray blazar spectra with HESS II mono analysis: The case of PKS2155-304 and PG1553+1132017In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 600, article id A89Article in journal (Refereed)
    Abstract [en]

    Context. The addition of a 28 m Cherenkov telescope (CT5) to the H.E.S.S. array extended the experiment's sensitivity to lower energies. The lowest energy threshold is obtained using monoscopic analysis of data taken with CT5, providing access to gamma-ray energies below 100 GeV for small zenith angle observations. Such an extension of the instrument's energy range is particularly beneficial for studies of active galactic nuclei with soft spectra, as expected for those at a redshift >= 0.5. The high-frequency peaked BL Lac objects PKS 2155-304 (z = 0.116) and PG 1553 + 113 (0.43 < z < 0.58) are among the brightest objects in the gamma-ray sky, both showing clear signatures of gamma-ray absorption at E > 100 GeV interpreted as being due to interactions with the extragalactic background light (EBL). Aims. The aims of this work are twofold: to demonstrate the monoscopic analysis of CT5 data with a low energy threshold, and to obtain accurate measurements of the spectral energy distributions (SED) of PKS 2155-304 and PG 1553 + 113 near their SED peaks at energies approximate to 100 GeV. Methods. Multiple observational campaigns of PKS 2155 304 and PG 1553 + 113 were conducted during 2013 and 2014 using the full H.E.S.S. II instrument (CT1-5). A monoscopic analysis of the data taken with the new CT5 telescope was developed along with an investigation into the systematic uncertainties on the spectral parameters which are derived from this analysis. Results. Using the data from CT5, the energy spectra of PKS 2155 304 and PG 1553 + 113 were reconstructed down to conservative threshold energies of 80 GeV for PKS 2155 304, which transits near zenith, and 110 GeV for the more northern PG 1553 + 113. The measured spectra, well fitted in both cases by a log-parabola spectral model ( with a 5.0 similar to statistical preference for non-zero curvature for PKS 2155 304 and 4.5 sigma for PG 1553+113), were found consistent with spectra derived from contemporaneous Fermi-LAT data, indicating a sharp break in the observed spectra of both sources at E approximate to 100 GeV. When corrected for EBL absorption, the intrinsic H.E.S.S. II mono and Fermi-LAT spectrum of PKS 2155 304 was found to show significant curvature. For PG 1553+113, however, no significant detection of curvature in the intrinsic spectrum could be found within statistical and systematic uncertainties.

  • 55.
    Morå, Knut D.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Harmonizing discovery thresholds and reporting two-sided confidence intervals: a modified Feldman & Cousins method2019In: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 14, article id P02003Article in journal (Refereed)
    Abstract [en]

    When searching for new physics effects, collaborations will often wish to publish upper limits and intervals with a lower confidence level than the threshold they would set to claim an excess or a discovery. In this paper a modification to the Feldman-Cousins method is proposed that allows for a transition from one-sided upper confidence limits for null results and a two-sided confidence intervals for non-null results at any given specified threshold chosen to define the observation of a signal, while maintaining exact coverage.

  • 56.
    Morå, Knut Dundas
    Stockholm University, Faculty of Science, Department of Physics. OKC.
    A Search for Dark Matter Lines with H.E.S.S. II2016Licentiate thesis, monograph (Other academic)
    Abstract [en]

    Most of the matter in the universe, ~80% is thought to be dark matter- particles that have small or no interactions with standard model particles. Dark matter is an integral part of the current understanding of cosmology, and leaves signs in the movements of stars and galaxies, as well as the Cosmic Microwave Background. The erakly interacting massive particle (WIMP) is a well-studied dark matter model that would be expected to have a mass around the weak scale, 100 GeV. WIMPs annihilating in the galactic center could give rise to mono- energetic gamma-rays in addition to a more extended spectrum. This thesis details a search for a dark matter line in a region 1.5° west of the galactic center using the High Energy Stereoscopic System (H.E.S.S.) imaging air Cherenkov telescope. The inclusion of a fifth telescope in the array enabled the analysis to extend the HESS energy range down to 100 GeV for a spectral line search. At 130 GeV, a limit of 1.38 10^-27 cm^3/s on the velocity-weighted cross-section at 95% confidence limit could be set using15.2 hours of data. The analysis is the first paper using all five telescopes of H.E.S.S. II. The main subject of the thesis has been in optimization of this analysis as well as future H.E.S.S. pointings.

  • 57.
    Morå, Knut Dundas
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Harmonizing discovery thresholds and reporting two-sided confidence intervals: a modified Feldman & Cousins methodManuscript (preprint) (Other academic)
    Abstract [en]

    When searching for new physics effects, collaborations will often wish to publish upper limits and intervals with a lower confidence level than the threshold they would set to claim an excess or a discovery. However, confidence intervals are typically constructed to provide constant coverage, or probability to contain the true value, with possible overcoverage if the random parameter is discrete. In particular, that means that the confidence interval will contain the 0-signal case with the same frequency as the confidence level. This paper details a modification to the Feldman-Cousins method to allow a different, higher excess reporting significance than the interval confidence level.

  • 58.
    Morå, Knut Dundas
    Stockholm University, Faculty of Science, Department of Physics. OKC.
    Statistical Modelling and Inference for XENON1T2019Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    A great number of astrophysical observations suggests that of the matter in our universe, only a sixth is made up of known matter. The rest, named dark matter, has not been successfully identified. This thesis presents the analysis and statistical inference that was used by the XENON1T collaboration to conduct a search for a particular dark matter candidate; weakly interacting massive particles (WIMPs).

     

    XENON1T is a dual-phase time projection chamber that can detect particles scattering in a 2 tonne target of liquid xenon with deposited recoil energies above ~3 keV. This is low enough to observe the elastic recoil between a WIMP and a xenon nucleus for WIMP masses >5 GeV c-2.

    The results presented in this thesis use 278.8 days of data, with an analysis mass of 1.3 tonne.

     

    XENON1T uses models for backgrounds and signals within this volume to construct a combined likelihood for two science data-taking periods as well as calibration data-sets. Fits to simulated data-sets were used to calibrate and validate the confidence interval construction. In addition, analysis choices were evaluated both to optimize the discovery power and expected sensitivity of the search, and to improve the robustness of the analysis.

     

    No significant excess was observed in the search for a spin-independent WIMP-nucleon interaction for any WIMP masses between 6  GeV c-2 and 104 GeV c-2 for the 1 ton-year exposure. This analysis produced the strongest constraint on the spin-independent WIMP-nucleon cross-section so far, with a minimum of 4.1 10-47 cm2  for a 30 GeV c-2 WIMP.

  • 59.
    Nyholm, Anders
    et al.
    Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Sollerman, Jesper
    Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Tartaglia, Leonardo
    Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Taddia, Francesco
    Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Fremling, Christoffer
    Blagorodnova, Nadia
    Filippenko, Alexei V.
    Gal-Yam, Avishay
    Howell, D. Andrew
    Karamehmetoglu, Emir
    Stockholm University, Faculty of Science, Department of Astronomy.
    Kulkarni, Shrinivas R.
    Laher, Russ
    Leloudas, Giorgos
    Masci, Frank
    Kasliwal, Mansi M.
    Morå, Knut
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Moriya, Takashi J.
    Ofek, Eran O.
    Papadogiannakis, Seméli
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Quimby, Robert
    Rebbapragada, Umaa
    Schulze, Steve
    Type IIn supernova light-curve properties measured from an untargeted survey sampleManuscript (preprint) (Other academic)
    Abstract [en]

    We present a sample of supernovae Type IIn (SNe IIn) from the untargeted, magnitude-limited surveys of the Palomar Transient Factory (PTF) and its successor, iPTF. SNe IIn found and followed by the PTF/iPTF were used to select a sample of 42 events with useful constraints on the rise times as well as with available post-peak photometry. The SNe were discovered in 2009-2016 and have at least one low-resolution classification spectrum, as well as photometry from the P48 and P60 telescopes at Palomar Observatory. We study the light-curve properties of these SNe IIn using spline fits (for the peak and the declining portion) and template matching (for the rising portion). We find that the typical rise times are divided into fast and slow risers as 20±8 d and 50±15 d, respectively. The decline rates could possibly be divided into two groups, but this division has weak statistical significance. We find no significant correlation between the peak luminosity of SNe IIn and their rise times, but the more luminous SNe IIn are generally found to be more durable and the slowly rising SNe IIn are generally found to be slowly declining. The SNe in our sample were hosted by galaxies of absolute magnitude −22≲Mg≲−13 mag. The K-corrections at light-curve peak of the SNe in our sample are found to be within 0.2 mag for the observer's frame r-band, for SNe IIn at redshifts z<0.25. Applying K-corrections and including also ostensibly ``superluminous'' SNe IIn, we find that the peak magnitudes are Mrpeak=−19.18±1.32mag. We conclude that the occurrence of conspicuous light-curve bumps in SNe IIn, such as in iPTF13z, is limited to 1.4+14.6−1.0% of the SNe IIn. We also investigate a possible subtype of SNe IIn with a fast rise to a ≳50 d plateau followed by a slow, linear decline.

12 51 - 59 of 59
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf